Gary Chartrand; Farrokh Saba; Hung Bin Zou
Edge rotations and distance between graphs

Časopis pro pěstování matematiky, Vol. 110 (1985), No. 1, 87--91

Terms of use:

© Institute of Mathematics AS CR, 1985

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz
INTRODUCTION

In [1] Zelinka introduced the following definition of distance between two graphs of the same order. Let G_1 and G_2 be two graphs of order p. Then the distance $\delta(G_1, G_2)$ between G_1 and G_2 is n ($0 \leq n \leq p - 1$) if $p - n$ is the order of a largest graph that is an induced subgraph of both G_1 and G_2.

Zelinka showed that on the family of graphs having a fixed order, the above distance function δ produces a metric space. He further showed for graphs G_1 and G_2 of order p that $\delta(G_1, G_2) \leq p - 1$ and $\delta(G_1, G_2) = \delta(\overline{G}_1, \overline{G}_2)$, where \overline{G} denotes the complement of G.

In this paper, we introduce a new distance function defined on graphs having the same order and the same size (number of edges).

EDGE ROTATIONS AND TRANSFORMATIONS

We say that a graph G can be transformed into a graph H by an edge rotation if G contains distinct vertices u, v and w such that $uv \in E(G)$, $uw \notin E(G)$ and $H \cong G - uv + uw$. In this case, G is transformed into H by "rotating" the edge uv of G into uw. Observe that a graph G can be transformed into some graph H by an edge rotation if and only if G is neither complete nor empty.

Figure 1 shows graphs G, H_1 and H_2. Note that G can be transformed into H_1 by an edge rotation (xy is rotated into xz). Also, G can be transformed into H_2 by an edge rotation (xw is rotated into xz). Further observe that $G \not\cong H_1$ and $G \cong H_2$.

![Figure 1](image_url)
It is immediate that a graph G can be transformed into a graph H by an edge rotation if and only if H can be transformed into G by an edge rotation. More generally, we say simply that G_1 can be transformed into G_2, written $G_1 \rightarrow G_2$, if either (1) $G_1 \cong G_2$, or (2) there exists a sequence

$$G_1 \cong H_0, H_1, \ldots, H_n \cong G_2 \ (n \geq 1)$$

of graphs such that H_i can be transformed into H_{i+1} by an edge rotation for $i = 0, 1, \ldots, n - 1$. It is obvious that the relation “can be transformed into” is an equivalence relation on the set of all graphs. Moreover, if G_1 and G_2 are graphs for which $G_1 \rightarrow G_2$, then clearly G_1 and G_2 have the same order (the same number of vertices) and the same size (the same number of edges). It is perhaps less clear that the converse of the preceding implication is also true.

Proposition 1. Let G_1 and G_2 be graphs having the same order and the same size. Then $G_1 \rightarrow G_2$.

Proof. If $G_1 \cong G_2$, then $G_1 \rightarrow G_2$; so we may assume, without loss of generality, that $G_1 \not\cong G_2$. Suppose that G_1 (and G_2) has order p and size q (necessarily $p \geq 4$ and $q \geq 2$). Without loss of generality, we assume that $V(G_1) = V(G_2) = \{v_1, v_2, \ldots, v_p\}$.

For the complete graph K_p having the vertex set $\{v_1, v_2, \ldots, v_p\}$, we say that an edge $v_av_b \ (a < b)$ is less than an edge $v_cv_d \ (c < d)$, written $v_av_b < v_cv_d$, if either (i) $a < c$ or (ii) $a = c$ and $b < d$. This produces a linear ordering of the edges $e_i, \ i = 1, 2, \ldots, \binom{p}{2}$, of K_p, where

$$(1) \quad v_1v_2 = e_1 < e_2 < e_3 < \ldots < e_{\binom{p}{2}} = v_{p-1}v_p.$$

We say that the weight of the edge e_i is i. Further, if G is a graph having the vertex set $\{v_1, v_2, \ldots, v_p\}$, then the weight of G is defined to be the sum of the weights of its edges, where the weights are determined by (1).

Define the graph H to have the vertex set $\{v_1, v_2, \ldots, v_p\}$ and the q smallest edges of K_p as defined in (1), i.e., $E(H) = \{e_1, e_2, \ldots, e_q\}$. Note that H has weight $\sum_{i=1}^{q} i$. We now show that $G_1 \rightarrow H$. Suppose, to the contrary, that G_1 cannot be transformed into H. Then let F be a graph with $V(F) = \{v_1, v_2, \ldots, v_p\}$ and minimum weight w such that $G_1 \rightarrow F$. Therefore, $w > \sum_{i=1}^{q} i$. This implies that there exist edges v_av_b and v_cv_d such that $v_av_b \notin E(F)$, $v_cv_d \in E(F)$ and $v_av_b < v_cv_d$. Let $F^* = F + v_av_b - v_cv_d$. We show that $F \rightarrow F^*$. Since $G_1 \rightarrow F$, this implies that $G_1 \rightarrow F^*$. However, since F^* has smaller weight than F, a contradiction is produced, yielding the desired result that $G_1 \rightarrow H$. We consider two cases.
Case 1. Suppose that $a = c$. Thus $b < d$. By rotating the edge v_cv_d into v_aw_b, the graph F is transformed into F^*.

Case 2. Suppose that $a < c$. If $b = d$ or $b = c$, then, as in Case 1, we may rotate the edge $v_c v_d$ into $v_b v_a$ so that F is transformed into F^*. Assume, then, that $b \neq d$ and $b \neq c$ so that v_a, v_b, v_c and v_d are four distinct vertices. If $v_b v_d \notin E(F)$, then we may rotate $v_c v_d$ into $v_b v_a$, and then rotate $v_b v_d$ into $v_b v_a$, thereby concluding that F can be transformed into F^*. If $v_b v_d \in E(F)$, then we rotate $v_b v_d$ into $v_b v_a$, after which we rotate $v_c v_d$ into $v_b v_d$, again showing that F can be transformed into F^*.

We now have that $G_1 \rightarrow H$. Likewise, $G_2 \rightarrow H$. From this, it follows that $G_1 \rightarrow G_2$.

DISTANCE BETWEEN GRAPHS

Let G_1 and G_2 be two graphs having the same order and the same size. We define the distance $d(G_1, G_2)$ between G_1 and G_2 as 0 if $G_1 \cong G_2$ and, otherwise, as the smallest positive integer n for which there exists a sequence H_0, H_1, \ldots, H_n of graphs such that $G_1 \cong H_0$, $G_2 \cong H_n$, and H_i can be transformed into H_{i+1} by an edge rotation for $i = 0, 1, \ldots, n - 1$. By Proposition 1, this “distance” is a well-defined concept. Further, if $\mathcal{G}_{p,q}$ is the set of all graphs having order p and size q, for some fixed integers p and q, then $(\mathcal{G}_{p,q}, d)$ is a metric space.

We make the following observation concerning complements of graphs.

Proposition 2. Let G_1 and G_2 be two graphs having the same order and the same size. Then

$$d(G_1, G_2) = d(\bar{G}_1, \bar{G}_2).$$

Proof. If $d(G_1, G_2) = 0$ then $G_1 \cong G_2$, implying that $\bar{G}_1 \cong \bar{G}_2$ and $d(\bar{G}_1, \bar{G}_2) = 0$. Assume then that $d(G_1, G_2) = n \geq 1$. Hence there exists a sequence

$$G_1 \cong H_0, H_1, \ldots, H_n \cong G_2,$$

where H_i can be transformed into H_{i+1} by an edge rotation for $i = 0, 1, \ldots, n - 1$, where, say, $H_{i+1} = H_i - u_i v_i + u_i w_i$. Observe that $H_{i+1} = H_i - u_i w_i + u_i v_i$, i.e., H_i can be transformed into \bar{H}_{i+1} by an edge rotation. Thus the sequence

$$G_1 \cong \bar{H}_0, \bar{H}_1, \ldots, \bar{H}_n \cong \bar{G}_2$$

implies that $d(\bar{G}_1, \bar{G}_2) \leq d(G_1, G_2) = n$.

Now by applying the above technique to the sequence (2), we have $d(\bar{G}_1, \bar{G}_2) \leq d(\bar{G}_1, \bar{G}_2)$ or

$$n = d(G_1, G_2) \leq d(\bar{G}_1, \bar{G}_2) = n,$$

producing the desired result.

Next we show that any nonnegative integer is the distance between some pair of graphs.
Proposition 3. For every nonnegative integer n, there exist graphs G_1 and G_2 such that $d(G_1, G_2) = n$.

Proof. If $n = 0$, then for every graph G, $d(G, G) = 0$, so take $G_1 = G_2 = G$. Let $n \geq 1$ be given. Let $G_1 = (n + 1)K_2$ and $G_2 = K(1, n + 1) \cup nK_1$, so that G_1 and G_2 are graphs of order $2n + 2$ and size $n + 1$. Suppose that $E(G_1) = \{u_0v_0, u_1v_1, \ldots, u_nv_n\}$. Let $H_0 = G_1$ and for $i = 0, 1, \ldots, n - 1$, define

$$H_{i+1} = H_i - u_{i+1}v_{i+1} + u_0v_{i+1}.$$

Note that $H_n \cong G_2$ so that $d(G_1, G_2) \leq n$. On the other hand, every edge rotation of a graph G produces a graph H such that $|\deg_G v - \deg_H v| \leq 1$ for every vertex v of G_1. Since G_1 is 1-regular and G_2 contains a vertex of degree $n + 1$, at least n edge rotations are required to transform G_1 into G_2. Thus $d(G_1, G_2) \geq n$ and the result follows.

In order to present an upper bound for the distance between graphs (having the same order and size), we introduce a new concept. For nonempty graphs G_1 and G_2, we define a greatest common subgraph of G_1 and G_2 as any graph G of the maximum size without isolated vertices that is a subgraph of both G_1 and G_2.

While every pair G_1, G_2 of nonempty graphs has a greatest common subgraph, such a subgraph need not be unique. For example, the graphs G_1 and G_2 of Figure 2 (of order 7 and size 6) have three greatest common subgraphs, namely G, G' and G''. Although these subgraphs are all different, they, of course, possess the same maximum size, namely 3, in this case.

![Figure 2](image)

The main reason for introducing greatest common subgraphs lies in the following result.
Proposition 4. Let G_1 and G_2 be graphs having order p and size $q \geq 1$, and let G be a greatest common subgraph of G_1 and G_2, where G has size s. Then $d(G_1, G_2) \leq 2(q - s)$.

Proof. If $s = q$, then $G_1 \cong G_2$ and $d(G_1, G_2) = 0$. Thus, we assume that $1 \leq s < q$. Let the vertices of G_1 and G_2 be labeled $v_1, v_2, ..., v_p$ so that subgraphs of G_1 and G_2 isomorphic to G are identically labeled. Since $G_1 \ncong G_2$, the graph G_1 contains an edge v_iv_j that is not in G_2 and G_2 contains an edge v_kv_l that is not in G_1.

Suppose that $v_j = v_k$. Then G_1 can be transformed into $G_1' = G_1 - v_jv_j + v_kv_l$ by an edge rotation and $d(G_1, G_1') = 1$. Hence we may assume that $\{v_i, v_j\} \cap \{v_k, v_l\} = \emptyset$.

Suppose that at least one of v_i and v_j is not adjacent in G_1 to at least one of v_k and v_l; say $v_i v_k \notin E(G_1)$. Then G_1 can be transformed into $G_1^* = G_1 - v_jv_j + v_kv_k$ by rotating $v_j v_j$ into v_kv_k, and G_1^* can be transformed into $G_1^{**} = G_1^* - v_kv_k + v_kv_j$ by rotating v_kv_k into v_kv_j. Thus $d(G_1, G_1^{**}) \leq 2$.

Assume then that each of v_i and v_j is adjacent to both v_k and v_l. The graph G_1 can be transformed into $G_1' = G - v_jv_j + v_jv_j$ by rotating v_jv_j into v_jv_j, and G_1' can be transformed into $G_1'' = G_1' - v_jv_j + v_jv_j$ by rotating v_jv_j into v_jv_j. Therefore, $d(G_1, G_1'') \leq 2$.

Hence, in any case, G_1 can be transformed into $H_1 = G_1 - v_jv_j + v_jv_j$ and $d(G_1, H_1) \leq 2$. The graphs H_1 and H_2 have $s + 1$ edges in common. Proceeding as above, we construct a graph H_2 such that $d(G_1, H_2) \leq 4$, and H_2 and G_2 have $s + 2$ edges in common. Continuing in this manner, we construct a graph $H_{q-s} = G_2$ such that $d(G_1, G_2) \leq 2(q - s)$.

The bound presented in the previous result cannot be improved in general, for if $n \geq 1$, define

\[G_1 = K_{2n} \cup K_{4n^2 - 4n} \quad \text{and} \quad G_2 = (2n^2 - n)K_2. \]

Observe that each of G_1 and G_2 has order $4n^2 - 2n$ and size $q = 2n^2 - n$. In this case, G_1 and G_2 have a unique greatest common subgraph $G = nK_2$, which has size $s = n$. Therefore,

\[2(q - s) = 2[(2n^2 - n) - n] = 4n^2 - 4n. \]

The graph G_2 is 1-regular, while G_1 contains $4n^2 - 4n$ isolated vertices. Therefore, $d(G_1, G_2) \geq 4n^2 - 4n$. By Proposition 4, $d(G_1, G_2) \leq 2(q - s) = 4n^2 - 4n$, so that $d(G_1, G_2) = 2(q - s)$.

Reference

Authors' address: Western Michigan University, Kalamazoo, Michigan 49008, USA.