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EXTREMAL OPERATORS AND OBLIQUE PROJECTIONS 

VLASTIMIL PTAK, Praha 

(Received February 9, 1984) 

INTRODUCTION 

It is the purpose of this note to point out a geometric explanation of some earlier 
results concerning the extremal operators T(cp) = S | Ker cp(S), where S is the 
backward shift operator on H2 and cp is a given inner function. The note is a revised 
version of an earlier paper where we have shown how some of the results proved 
in [9] and [10] may be deduced from a simple proposition concerning norms of 
oblique projections. The note was rewritten because it turned out that the geometric 
proposition from which the results were deduced was known already; the author is 
indebted to T. Ando and B. Sz. Nagy for having called his attention to the fact 
that it is contained already in a paper of V. E. Ljance [1]; the journal is not accessible 
to the author. Under a different form the proposition was also used in the paper [12]. 

The present note (as well as its predecessor) is the result of an attempt to extract 
the geometric substance of the results concerning theexttremal operators mentioned 
above; it is interesting that the geometric idea used in [9] to prove the symmetry 
of the C(cp9 i/y) is, in fact, quite close to the proposition on oblique projections due 
to Ljance; however, it was only quite recently that the author realized fully that the 
geometric substance of the properties of the operators \l/(T(cp)) is contained in the 
proposition about the properties of oblique projections. 

The note is divided into two parts. The first section, which is included for the sake 
of completeness, is devoted to a discussion of oblique projections — the propositions 
are formulated in a form suitable for application to the T(cp). There is no claim origi­
nality for this section. The essential results are contained in the paper of Ljance. 
In the second section the results are applied to the particular case of projections whose 
ranges are the wandering subspaces of some isometries. 

Suppose we are given a Hilbert space H which is decomposed into the direct sum 
of two closed subspaces M 0 and Ml; denote by R the projection operator of H 
onto M 0 along Mv It is possible to show that 

| / i | - - = ( i - | p 1 p 0 | - ) - 1 

where P0 and Pt are respectively the orthogonal projections of H onto M0 and Mv 

This equality will be used to explain the geometric substance of the properties of the 
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extremal operators T((p) = S | Ker (p(S) where S is the backward shift operator on H2 

and (p is a given inner function [4, 2]; we believe it throws some more light onto some 
properties of the constants C((p, ij/) but it is not without interest in its own right. 

The C((p, i//) are defined as follows: we take two functions (p, i// such that tp(A) 
and ij/(A) is meaningful for any contraction A. Then 

C((p, <A) = sup {|<A(A)|; |A | ^ 1, (p(A) = 0} . 

The operators T((p) appear first in the author's papers [4, 5]. It turns out that T(ip) 
realizes the maximum in C((p, \jj). The motivation for the study of the C(q>, yjj) is 
explained in [5]. We believe that the result of the present note forms the geometrical 
substance of some interesting properties of the C((p, \jj) as described in [9] and [10]. 
In particular, we show how it may be used to obtain a recent result of N. J. Young. 

1. PRELIMINARIES 

In the whole note H will stand for a Hilbert space. If H0 is a closed subspace of I1 
and if P stands for the orthogonal projection of H onto H0 then P = V(P)* where 
V(P) is the natural injection operator of H0 into H. 

If the space H is the direct sum of two subspaces A and B then every x e H may 
be written in a unique way in the form x = a + b with a e A and b e B. The operator 
which assigns to each x e H the element a will be called the projection of H onto A 
along B. It follows from the closed graph theorem that R is bounded if and only if 
both A and B are closed subspaces; R is selfadjoint if and only if A and B are ortho­
gonal to each other. We shall adopt the convention commonly used in the theory 
of C* and W* algebras: if x belongs to the range of the orthogonal projection P 
we shall write x e P. Thus x e P is equivalent to x = Px. 

The following simple proposition characterizes oblique projections onto Im Q 
along Ker P in terms of P and Q. 

(1,1) Let H be a Hilbert space and let P and Q be two orthogonal projections 
in H. Consider a bounded linear operator R on H. Then these are equivalent 

1° H is the direct sum of Im Q and Ker P and R is the projection onto Im Q 
along Ker P 

2° satisfies the following four relations 
21° QR = R 
22° RP = R 
23° RQ = Q 
24° PR = P 

3° H is the direct sum of Im P and Ker Q and K* is the projection onto Im P 
along Ker Q. 
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Furthermore, suppose H is the sum of Im Q and Ker P and that R satisfies 
2V, 22° and, in addition, the condition 23°. Then R satisfies the condition 24° as 
well (this means, in particular, that the sum Im Q + Ker P is a direct one and R 
is the projection onto Im Q along Ker P). 

Similarly, if the intersection of Im Q and Ker P is the zero vector only and if R 
satisfies conditions 2V, 22°, 24° then condition 23° is satisfied as well. 

Proof. The verification of the first part of the proposition is immediate. 
Taking adjoints in the conditions sub 2° and using the equivalence of V and 2° 

we obtain the equivalence of 2° and 3 r . 
To prove the second part, assume that H is the sum of Im Q and Ker P and that 

2V, 22°, 23° are satisfied. Given x e H, we have x = q + k with q e Q and Pk = 0. 
Using Qq = q,R = RP and RQ = Q we obtain PRx = PRq + PPk = PRQq + 

+ PRPk = PQq = Pq = P(q + k) = Px and this proves 24°. 
To conclude the proof, suppose that the intersection of Im Q and Ker P is only 

the zero vector and that R satisfies conditions 21°, 22°, 24°. Then condition 23° is 
satisfied as well. 

Take any q e Q and set x = (1 — R) q. Since R = QR we have x = q — QRq e Q. 
By 24° we have P(l - R) = 0 so that Px = P(l - R) q = 0 thus x e Im Q n Ker P 
and consequently x = 0. Thus (1 — R) q = 0 for every q e Q so that RQ = Q. 

Remark. Conditions 2V and 23° alone imply that R2 = R. Indeed, applying 
2V. 23° and 2V again, we obtain 

R2 = R(QR) = (RQ) R = QR = R. 

In a similar manner conditions 22° and 24° yield R2 = R as well. 

(1,2) Suppose H is the direct sum of Im Q and of Ker P; denote by P0 the restric­
tion of P to Im Q and by Q0 the restriction of Q to Im P. 

Then 
V P0 is an infective mapping of Im Q onto Im P 
2° |Q(i - P)Q| < i 
3° Q0 is an injective mapping of Im P onto Im Q 
4° |P(1 - Q) P| < 1 

Proof. If q e Q and Pq = 0 then q e Im Q n Ker P so that q = 0. Thus P0 is 
injective. Denote by R the projection of H onto Im Q along Ker P. Since PP = P 
we have, for each p e P 

p = Pp = P(Rp) 

and Rp e Q; thus every p e P is of the form Pq for a suitable q e Q and P0 is sur-
jective. This proves condition 1°. 

It follows from condition 1° that P0 is invertible: thus there exists an a > 0 
such that 
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\Pq\2 ^ oc\q\2 

for every g e Q. Thus 

(QPQx, x) = (PQx, PQx) ^ a(Qx, Qx) = a(Qx, x) 

so that QPQ *> aQ and 

1 - Q(l - P) Q = 1 - Q + QPQ = 1 - Q + aQ ^ a 

Thus Q(l - P)Q ^ 1 - a < 1. 
The second part of the proposition is obtained using the equivalence of 1° and 3° 

from Proposition (1,1). 
Now we are ready to state the main 

(1,3) Proposition. Let H be a Hilbert space and let P and Q be two orthogonal 
projections in H such that H is the direct sum of Im Q and Ker P. Denote by R 
the projection onto Im Q along Ker P. Then 

i R i » . 
| ( 1 - 2 ) J f l - | ( l - P ) Q | J 

Proof. We observe first that R is a bounded operator by the closed graph theorem. 
According to (1,2) the operator P0 has a bounded inverse; if we denote it by Y 
then Yis an injective mapping of Im P onto Im Q so that 

P()Y ~ hm(P) YP() — Jlm(Q) 

Now let us prove that YP is the projection onto Im Q along Ker P. The relations 

Q(YP) = YP and (YP) P = YP 

are obvious. Furthermore, we have 

P(YP) = (PY)P = P 

(YP) Q=YPQ= YP0Q = Q ; 

now it suffices to use Proposition (1,1) to prove that YP = P. 
The next step consists in proving the equality 

\R\ = |Y | . 

Since R = YP the inequality |P | ^ |Y| is obvious. Now it suffices to observe that 
Rp = Ypforpe P so that Yis a restriction of R (to the range of P) whence | Y| <; IPI. 

Since R = YP = QR we have R* = Y*Q and PR* = YY*Q and P*R = Y*YP. 
Let us prove now the identity 

YY* = (1 - Q(l - P)Q)~l | l m Q . 

Since |Q(1 - P) Q| < 1 the inverse (1 - Q(l - P) Q)"1 exists. We have 
(1 ^ Q(l - P) Q) = 1 - Q + QPQ = 1 - Q + (PQ)* PQ = 1 - Q + 
+ (Poe)*PoQ = 1 - Q + Q ^ o Q . Since 
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it follows that 

whence 

Since 

QP*PoQ.QYY*Q = Q 

(1 - <2(1 - P) g ) " 1 = 1 - Q + QYY*Q 

QYY*Q= Q(l - 2(1 - P)Q)~1 Q 

YY* = (i - g(i - p j e j - q i m e 

e(i - p) g + (i - e(i - p) e) = i the identity operator is represented as a sum of two nonnegative operators, the 
second one being invertible. If x ranges over all vectors of norm 1, we obtain 

sup (g( l - P) Qx, x) + inf ((1 - Q(L - P) Q) x, x) = 1 , 

in other words, 

|G( i -p )e | + | ( i - f i ( i - p ) e ) _ , | - 1 = l -

Since (1 - Q{\ - P) Q)'1 = 1 - Q + YY*Q, we have 

|(1 - (2(1 - P) e)"1! = max (|l - Q\, \YY*\) = |yy*| . 

Since |YF*| = \Y\2 = |R |2, we have 

| ( i - p ) e | 2 = | c ( i - p ) e | = i - |R | - 2 . 
The proof is complete. 

It follows from the preceding considerations that PR* = (1 — Q(l — P) Q ) - 1 Q; 
we have thus an expression directly in terms of P and Q. 

It is, sometimes, more convenient to work with operators defined on the whole 
space. It is not difficult to prove the following expression for R 

P = (1 - ( 1 - P)Q)~1P. 

The inverse of (1 - (1 - P) Q) exists since |(l - P) Q\2 = \Q(1 - P) Q\ < 1 by 
(1,2). One way of proving this formula for R is to verify the relations from (1,1). 
We shall use the properties of Y To show that 

(1 - (1 - P)Q)-1P= YP 

it suffices to prove the equality 

(1 - (1 - P) Q) YP = P . 

This equality is an easy consequence of the equalities QY = Yand PYP = P. 
The following result is fairly well known but it is interesting to note that it may be 

considered as a particular case of Proposition (1,3). For many readers the result will 
be no surprise. 
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(1,4) Corollary. For every real t 

sin2 t + cos2 t = 1 

2. APPLICATION TO EXTREMAL OPERATORS 

Let us turn now to projections of a particular type: their ranges wiJl be the wander­
ing subspaces of some isometries. We believe that Proposition (1,3) when applied 
to these projections provides further insight into the properties of the extremal 
operators 

T(<p) = S | Ker <p(S) 

where S is the backward shift operator on H2 and cp is a given inner function. These 
operators appear first in the author's paper [5] where the motivation for their study 
is explained. For a systematic account see the survey [9] or the more recent one [11]. 
In connection with the study of these operators N. J. Young formulated the following 
conjecture: given two Blaschke products cp, \j/ of the same length, then 

\w<p))\ = Hnm • 
Let us remark here that V. V. Peller recently proved that the conjecture is true in 
a much more general situation [11]. However, the proof given in [9] is based on 
a geometric idea, which already implicitly contains, in a rudimentary form, some 
elements of the proof of Proposition (1,3). The present note is the result of an attempt 
to extract the geometric substance of the behaviour of the operators ij/(T(cp)). 

For \j/(z) = zn the author proved that the maximum of |i/r(T(<p))| provided cp ranges 
over all Blaschke products of lentgh n with roots in the disc \z\ ^ r is attained if 
cp(z) = ((z — r)/(l — rz))n. It seems natural to expect a similar result even for func­
tions other than z -> zn. The conjecture that ji/>(T(<p))| is plurisubharmonic as 
a function of the roots of cp was formulated first by P. Vrbova. In the particular case 
where i/t is a Blaschke product of the same length as cp a proof was recently given 
by N. J. Young. Although not explicitly formulated expressis verbis the idea of con­
sidering the restriction of one projection to the range of another one plays, similarly 
as in [9], a decisive role in the proof. In our opinion Proposition (1,3) brings out the 
geometrical substance of these considerations in their pure form. 

To illustrate this, we intend to show that Proposition (1,3) contains the result of 
N. J. Young [10] mentioned above. 

Suppose V and Ware two coisometries so that VV* = 1 and WW* = 1. Also, 
Ker V = H 0 V*H = Range (1 - V*V) and similar relations hold for W. Let 
P = 1 — V*Vand Q = 1 — W*Wso that P and Q are respectively the orthogonal 
projections onto Ker V and Ker W. Suppose further that H is the direct sum of 
Ker Wand (Ker V)1. 

The norm of the restriction of Wto Ker Vmay be expressed as follows 
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\W\ Ker V|2 = |WP|2 = |PW*WP| = |P(1 - Q) P| = |(1 - Q) P|2 . 

It follows from the identity proved in Theorem (1,3) that 

\W\ Ker Vj2 = 1 - |R |~2 

where R is the projection onto Ker W along (Ker V)1. 
It is not difficult to give a detailed description of the projection operator. 
The operator R has to satisfy the relations QR = R and RP = P, in other words 

(1) (1-Q)R = 0 

(2) R(l - P) = 0 

Praemultiplying (1) by Wand using the relation WW* = 1 we find that (1) is equi­
valent to 

(V) WR = 0 . 

Similarly, postmultiplying (2) by V* and using the relation VV* = 1 we find that (2) 
is equivalent to 

(T) RV* = 0 . 

From now on we shall assume that the operators Vand Ware of the following parti­
cular form. We consider two polynomials of degree n 

p(z) = (z - cc{)...(z - ccn) 

q(z) = (z~pi)...(z- fiH) 

with all roots inside the unit disc and the corresponding polynomials 

p0(z) = ( l - a t z ) . . . ( l - a : z ) 

a0(z) = ( l - / ? * z ) . . . ( l - ^ z ) 

and set cp(z) = p(z)p0(z)~\ ij/(z) = q(z)q0(z)~l. -
We shall consider the two coisometries (p(S) and ij/(S) where S is the backward 

shift operator on H2. Now we are ready to show that the result mentioned above is 
an immediate consequence of (1,3). 

(2,1) Let cp and i// be two Blaschke products of length n and let S be the backward 
shift operator on H2. Let M be the restriction of \j/(S) to Ker (p(S). Then 

|M|2 = 1 - |1 - p(S)* q0(S)*-i Po(S)~l q(S)\~2 . 

Proof. To simplify the formulae, we shall abbreviate f(S) to f iff is a polynomial. 
Set V = cp(S), W = ij/(S). Since Wis givon as the product of two commuting operators, 
W = qq0

 1 and since q0 is invertible relation (V) is equivalent to 

(1") qR = 0 

and, in analogous manner, (2') is equivalent to 

(2") Rp* = 0 . 
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We have established, in [9, page 370] an interesting relation 

qP* = Poqo • 

The operator qp* = p0q* is invertible; denote by Z its inverse. Set 

A = q*Zq = p0
xq 

B = p*Zp0 = p*q*~l 

and observe that 

AB = q*Zqp*Zp0 = q*Zp0 = 1 

so that BA is a projection. 

Furthermore 

qBA = qp*q*,-\q*0Zq) = q 

BAp* =(p*Zp0)p0
1qp* ^p*; 

hence 1 — BA satisfies 

q(l - BA) = 0 and (1 - BA) p* = 0 

so that R = 1 - BA = 1 - p*Zq satisfies QR = R and KP = P. 

The relation RQ = Q or the equivalent relation p*ZqQ = 0 follows immediately 

from the fact that Q is the projection onto Ker W = Ker q. 

The proof of PR = P is similar. 
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