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ANTI-NETS 11

(COLLINEATIONS OF ANTI-NETS)
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(Received December 16, 1983)

Summary. This paper is meant as an immediate continuation of the paper “Anti-nets I"’.

Its aim is to investigate the so-called collineations of an anti-net. After describing the groups
of special collineations (the group of translations, the group of homotheties with given centre,
the group of perspective affinities with given axis), the group of all possible collineations of
a given anti-net is characterized, making use of the automorphisms of the partition of the group
of translations of that anti-net. The conditions of existence of the groups of collineations are
expressed in terms of closure conditions and their algebraic equivalents, discussed in ‘“‘Anti-
nets I'”.

Keywords: Anti-net, automorphism and collineation of anti-net, translation group, perspective
affinity, partition of group, equivalence and automorphism of partition.
Classification AMS: 51A15.

INTRODUCTION

The aim of this part of our treatise about anti-nets is the determination of the
groups of some special automorphisms of an anti-net. By an automorphism of an
anti-net o = (P, &, (h),,) we mean any mapping n: P — P having the following
properties:

(i) m is a bijective mapping;

(i) for any line g e & there exists exactly one line g’ € & and exactly one line
g € ¥ sothat {X"| Xeg} = g aswellas {X*' | Xeg} = g".

Moreover, it can be easily shown that any automorphism © of the anti-net &/
and any line g € & satisfy g* = {X"|Xeg} = g'aswellasg® ' = {X"™'| Xeg} =
=g

The assertions a)—c) follow from the just introduced property of an automorphism
of of.

a) If g = AB (A, B are two distinct points of P) then g* = A"B".

b) If Q = an b (a, b are two distinct lines of &) then Q" = a™ n b".

¢) For any principal line h,, te I the line h™ is also a principal line. For any
ordinary line g the line g"® is also an ordinary line. :

32



An automorphism y of o will be called a collineation of & if for any lines a,be &
the condition a || b <> a || b is fulfilled.

The set I of all collineations of the anti-net & together with the operation “the
composition of mappings” is a group (I, ). The neutral element of this group is
the identical automorphism, i.e. the mapping € such that B* = B and g° = g holds
for any B e P and any g e &Z.

Let &' = (PUh,, LU {h,}, (h).,(x)) be the extension of an anti-net of =
= (P, %, (h,),). Similarly to the case of s, by an automorphism of &' we will
mean any bijection n: PuU h, - P U h_ with the following property: for any
ge L u {h,} there exists a uniquely determined line g’ € £ U {h,} and a uniquely
determined g" € £ U {h,,} such that {X"|Xeg} = g’ as well as {X*' | Xeg} =
< g" is true. The automorphisms of the extension &’ have properties analogous
to those of the automorphisms of & introduced above.

Any collineation y of & induces in a very natural way an automorphism (denoted
also by v) of &#’. Such an automorphism of &/’ reproduces the principal line h,,.
Conversely, let an automorphism'y of &’ with the property h?, = h_ be given.
The restriction of y to & (more exactly, to P) is an automorphism of the anti-net &/
denoted also by y. Such an automorphism y of & preserves the parallelity relation.
Hence any collineation of &/ may be investigated as an automorphism of the exten-
sion &' reproducing the improper principal line h. Such an automorphism of &/’
will be also called the collineation of the extension &#’. The group of all collineations
of the extension &/’ of an anti-net & will be also denoted by (I, ).

It follows from the property c) of the automorphism of & that the common
improper point L € h, of all principal lines h,, ¢ € I will be fixed under all collinea-
tions of &',

As every anti-net &/ is a parallel structure in the sense of [1] we will use the same
terminology as in [1] when studying collineations of anti-nets. We will give a short
survey of them together with some principal properties of collineations of an
anti-net.

Let the extension &’ of an anti-net &/ be given. The collineation 1 e T of o’
fixing every point of some principal line h, will be called an axial collineation.
The line h, is an axis of n. Obviously the set IT,, of all axial collineations with the
same axis h, together with the operation ‘“the composition of mappings” is a sub-
group of the group (T, ). According to Theorem 4.1 in [1], a non-identical axial
collineation 7 with the axis h, fixes at most one point not lying on h,.

A collineation { eI of the extension &/’ which fixes every line going through
a fixed point Ze P U h,, will be called a central collineation with the centre Z.
Evidently the set of all central collinestions of &' with the same centre Z together
with the operation “the composition of mappings” is a subgroup of the group (T, )
of all collineations. '

If the axis of an axial collineation © of &’ is the improper principal line h_, then
for any line ge &£, g" || g is true. According to [1], p. 97 the set IT of all axial col-
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lineations with the axis h,, (together with the operation “the composition of map-
pings”) is a normal subgroup of the group (T, ). '

Let a non-identical axial collineation m with the axis h of &' be given. Then the
following two cases are possible: either no proper point is fixed under © or n fixes
a unique proper point Z of &’. In the first case © will be called a translation, in the
second  will be called a homothety with the centre Z. The set of all translations
will be denoted by T, the set of all homotheties with the same centre Z will be
denoted by II,.

In virtue of Theorem 4.2 in [1], any homothety of &’ with the centre Z is a central
collineation of &/’ with the centre Z. On the other hand, a translation t of &/’ need
not be a central collineation of &’. If a translation 7 is a central collineation of ¢’
then it has an improper centre Z. In this case the translation t fixes, in addition
to the improper line h, just the proper lines going through Z. Hence a non-identical
translation t of &/’ is a central collineation iff

1. there exists a proper line g € & such that g* = g;

2. for any other proper line g'€ &, g° = g’ < g’ || g is true.

A non-identical central translation t of &', i.e. a non-identical translation t which is
a central collineation of &', may be characterized by: AA® | BB® for all A, Be P.

The set I, of all homotheties of &/’ with the same centre Z together with the
operation ‘“‘the composition of mappings” is a subgroup of (II, ). On the other
hand, it is not known whether the set of all translations of &/’ is a subgroup of (IT, ).
J. André introduced some necessary and sufficient conditions for the set of all
translations of an affine-parallel structure to be a group. According to [1] p. 97,
the following implication holds: If the set of all translations of &’ is a group then
it is also a normal subgroup of the group (I, ). The following result can be proved
without troubles: If the set of all translatinos of ¢’ is a group (T, ) then (T, ) is
a normal subgroup of (T, ).

In virtue of Theorem 4.4 in [1] any central translation t of &/’ is uniquely deter-
mined by its operating on an arbitrarily chosen proper point of «Z’. It may be shown
without difficulties that also any homothety of &’ with a given centre Z is uniquely
determined by its operating on an arbitrarily chosen proper point of &/’ different
from Z.

In the extension &’ = (P U h,, £ U {h,}, (h). () of an anti-net of the
statement that any axial collineation is also a central one and conversely (which holds
e.g. in the case of projective planes) is in general not true (cf. [1] p. 95— 96). If the
extension o/’ has a degree =4 and if it possesses the properties (rs), (D,,) and (dg)
then any translation t, ,), ® € J, a € S\ {0} defined by (3) in Sec. 1 is an axial col-
lineation with the axis h,; but 7, , is not generally a central collineation. The
automorphism f, = (¢;, @,) of the partition of the group (P, + +) where ¢, = id,
@, € Z(Z*) (see Sections 3 and 4) is an example of a central collineation of 2/’ which
is not an axial collineation of «#’ («#" has a degree >4 and possesses the properties
(rs), (D), (Dy), (dg) and (R)). The centre of this collineation is the improper point
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L = (o0) but if @, # idg then there exists no principal line h,, te I'u {0} whose
points are fixed under the automorphism f,, i.e. if ¢, # idg the collineation f, has
no axis.

An axial collineation © of &’ with the axis h, (v € I'L {oo}) which at the same time
is a central collineation of &’ with the centre Z € P U h_, will be called a perspective
collineation of the extension &/’. The set of all perspective collineations of o7’
with the same axis h, and with the same centre Z (together with the operation “the
composition of mappings”, of course) is a group. Using this property of the perspec-
tive collineations of &7’ and Theorem 4.1 in [1] we can easily prove: Any non-identical
perspective collineation © with the centre Z € P U h,, and with the axis h, (¢e U
U {oo}) is uniquely determined by an arbitrary point Be P, B & Z, B¢ h, and its
image B", B® + Z, B™ ¢ h, with “ZBB™,

As has been shown above there exists no non-identical perspective collineation
of o’ with the proper axis h, (¢ € I) and proper centre Z € P. Hence the following
types of perspective collineations of &’ are possible:

a) perspective collineations with the improper axis h,, and with an improper
centre Z € h; these collineations are central translations of &/’ studied in Sec. 1;

b) perspective collineations with the improper axis h,, and with a proper centre
Z e P; these ones are homotheties of &/’ with the centre Z described in Sec. 6;

c) perspective collineations with the proper axis h, and with an improper centre
Z c h; they will be termed the perspective affinities of &Z'. They are investigated
in Sec. 7.

In section 1 of this work we determine the translation group (T’, ) of the extension
s’ of an anti-net o/. This group operates strictly simply transitively (=effectively
and freely) on the set P of all proper points of &2’ (see Theorems 1.1 and 1.2).

With help of the translation group (T’, ) of &' and the relation (4) we define
in Sec. 2 a binary operation ‘“+ +” on the set P of all proper points of «/’. Then
the structure (P, ++) is a group whose neutral element is the point (B, 0) (see
Theorem 2.1). For any line g e % going through the “zero point” (B, 0), the set
of all points of g together with the operation ““+ + is a proper subgroup of (P, + +).
The system of these subgroups forms a partition 2 of (P, + +). The left cosets of
the decompositions of the group (P, + +) with respect to all components of the
partition 2 are precisely all proper lines (without improper points) of the structure
s’ (see Theorem 2.3).

In Section 3 some groups of automorphisms of groups (S, +) and (J’, +,) of &’
are studied (see Lemmas 3.1—3.4).

Section 4 deals with equivalences and automorphisms of the partition 2 of the
group (P, + +). Theorem 4.1 describes all automorphisms f, of 2 sending the
components (Py, + +) and (P, + +) onto themselves.

By using the automorphisms f, of the partition 2 of the group (P, + +) and the
translations of the translation group (T’, ) of &', the group of all collineations
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of o’ fixing the improper points L = (c0) and (0) = o n h,, is described in Section 5
(see Theorem 5.1).

As a special case of these collineations, the transformation formulas for the
homothety with the centre (ﬁ, 0) = Z are determined in Section 6. Further, the group
of all homotheties of ¢’ with an arbitrary given proper centre Z is described (see
Theorem 6.1 and Remark 6.1).

Section 7 is devoted to the characterization of all perspective affinities of 2/’
with a given (proper) axis h, (¢« € I) and with a given improper centre Z € h,,. First,
all perspective affinities with the axis hy and with the centre Z = (0) € h,, (as the
special case of automorphisms f, = (¢, @,) of the partition £ of the group
(P, + +)) are determined (see Lemma 7.1). Further, in Lemma 7.2 the group of all
perspective affinities with the axis h, and with the centre L € h_, is described. The
perspective affinities with the centres (0) and L form the group of all perspective
affinities with the axis h,, and the centre Z € h,, (cf. Theorems 7.1 and 7.2). Using
the translations of the translation group (T’, ) of the extension «/’of the given anti-
-net &', the group of all perspective affinities with an arbitrary axis h,, te I is
described.

Section 8 is a continuation of the investigation of the equivalence of automorphisms
of the partition # of the group (P, + +) started in Section 4. Let o, ,, be a perspec-
tive affinity of A, aeS where a,, does not belong to the group Auty(2, P)
of all automorphisms f, = (¢;, ¢,) determined in Sec. 4 (see Lemma 8.1). Then o,
is also an automorphism of the partition 2 of (P, + +). Moreover, the composition
of the automorphism f, € Auto(£, P) and the perspective affinity &, , € A, (in this
order) is an automorphism of the partition # of (P, ++) (see Lemma 8.2). By
interchanging the order of the automorphisms f, and &, ,, in the composition we get
new automorphisms of the partition 2 of P(, + +) (see Lemma 8.3). All such
compound automorphisms f = fyx, ,, form the group Aut(#, P) (see Lemma 8.4)
isomorphic with the group of all automorphisms of the partition £ of the group
(P, ++) (see Theorem 8.1). Any collineation y eI of </’ may be expressed in
terms of the automorphism f = fyo, , € Aut{#, P) and the translation te T’ in
the form y = fy%, ,T (see Theorem 8.2).

1. TRANSLATIONS OF AN ANTI-NET

According to the remarks in Introduction we can investigate any translation t
of an anti-net o = (P, &, (h,),) as an axial collineation of the extension &/’ =
=(Puh,, LU {h.}, (h),rw) With the axis h,, in which either all proper points
of P are fixed or none of them is.

In what follows we will always suppose that the extension /' has the property (rs),
i.e. the triple (0; B, 7) is its frame and A = (S, 0, (0.),cs, (+.)ies) is the coordinate
algebra with respect to the frame (o; 8, y). The index set J of the coordinate algebra A
will be supposed to be J = I\ {B}.
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For any element a € S let us define the mapping 1, by the rules

{&y) = (& y+ya) Viel, VyeS;

(k) (k) VkeS;
(1) L —L;
{k,q} —{k,q +,a} Vk,qeS$;
h, +—h, Vie Iu {0} .

Lemma 1.1. Let o/’ be the extension of an anti-net &/ of a degree =3 having
the properties(rs) and (D). Then any mapping % 4, a € S defined by (1) is a central
translation with the centre L of sf'. Conversely, any central translation of the
structure =4’ with the centre L satisfies the relation (1) for a suitable a € S.

Proof. a) We will prove that any mapping 74 ,) defined by (1) is central translation
of &' with the centre L.

If a = 0 then 74,0, = & If aeS\{0} then (1) immediately implies that t(,,
fixes any point of the improper line h, but not proper point. As &’ has the property
(Dy), (S, +) is a group and hence 7, ,) induces the permutation of the sets P U h,,
and £ U {hw}. The mapping 7, ,) preserves the incidence relation between the points
and lines of &’ — to verify this fact it is sufficient to use the associativity of the
addition in the group (S, +). Any principal line h,, ¢ € I is mapped (globally) onto
itself under the mapping 7 ). Summarizing these facts we get that for any a € §, 14,
is a central translation of &/ with the centre L.

b) Let t be a non-identical central translation of &/’ with the centre L. Then the
second, third, and fifth relation of (1) must be true for 1. The translation t is uniquely
determined by its operating on some fixed proper point of «/’. Let us suppose that
this point is (B, 0) with (B, 0)° = (B, a), a € S\ {0}. We may easily verify by direct
calculation that t fulfils the first and the fourth relation of (1), too. It suffices to use
the assumption that </’ has the property (D). Therefore © = 1, for some a e
eS\{0}. u :

We will denote by Ty, the set of all central translations 7, , With the same centre L
determined by (1). The composition of two translations T 4, T(s5 of Ty, is a trans-
lation T 4)T(s,5) = T(p,a+5) € Tr- The operation “composition of central collinea-
tions” has the neutral element € = 1, o, — the identical collineation. The inverse
mapping to the translation 7t 4 € Ty, is again a translation, viz. 1:(",,},,) = T(g,—a) € T1.
As (S, +) is a group (&' has the property (D)), the composition of translations
of Ty, is associative. Thus we have obtained

Lemma 1.2. Let the extension &' of an anti-net o of a degree 23 have the
properties (rs) and (D). Then the set Ty, of all central translations %t 4, a€$
determined by (1) together with the operation “the composition of mappings”
is a group (Ty, ).
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Now let the extension &/’ of an anti-net s/ have the properties (rs), (D,,) and (dg).
According to the corollary of Theorem 4.1 in [4] the formulas

(& y) P (% +, &) Véel, VyeS;
(k) (k) VkeS;
) L —L;
{k,q} — {k,(k)o, + q} Vk,qeS;
h, +—h,, Viel;
h, —h,

correctly define a mapping 7, o), ¥ € L.

Lemma 1.3. Let the extension &' of an anti-net o/ of a degree =4 have the
properties (rs), (D) and (dg). Then any mapping 1, x € I defined by (2) is
a central translation of s’ with the centre Z = (0). Conversely, any central
translation of o' with the centre (0) satisfies the relations (2) for some x € L.

Proof. a) We will prove that any mapping 7, o) defined by (2) is a central transla-
tion of /' with the centre (0). If » = B then 1) = & If xe J = I\{B} then the
relations (2) imply that the mapping T(x,0) fiX€s any point of the improper principal
line h,, but no proper point. From the properties (rs), (D) and (dg) of the structure
&' and from the corollary of Theorem 4.1 in [4] it follows that 1,0, is a bijective
mapping of the sets Pu h, and £ v {hw}, respectively. The permutation t,,q,
preserves the incidence relation between the points and lines of &/'. If e.g. a point
(&, ) lies on a line {k, q} and therefore (k) o, + y = g then its image (x +, ¢, y)
lies on the line {k,(k)o, + q}. In fact, (k)o, s+ y = (k)(o, J-0,) +y =
= ((k) o, + (k) o,) + y = (k) o, + (k) o + ¥) = (k) o, + g. (We have used the
relations (9), (7) and Theorem 4.1 in [4] and finally, the associativity of the addition
in the group (S, +)). The other cases of the incidence of points and lines are obvious.
It follows from the axiom («f) in Sec. 2 of [4] that the mapping 7,0, reproduces
every line {0, q}. Summarizing these results we obtain that for any index x € I the
mapping T,o) is a central translation of /' with the centre (0) € h,.

b) Let © be a non-identical central translation of </’ with the centre (0) € h,.
Then < satisfies the second, third, and sixth relations of (2). The translation 7t is
uniquely determined by the image of a given proper point of <#’. Let e.g. (8, 0)* =
= (%,0), x e I\ {B} By a simple calculation we can verify that = fulfils the remaining
relations of (2) as well, it suffices to use the properties (D) and (dg) of the structure
&'. Thus © = 7o) for some index xe IN{f}. u

Let us denote by T,y the set of all central translations 1, oy with centre (0) € h,,
determined by the relations (2). The composition of two translations 1, o), 1,0y € T(0)
gives the translation t, )T(:.0) = T(1+ox,0) € T(0)- The neutral element of this com-
position is T(s,0) = &, the inverse translation to 7,0y € T(o) is the translation 1:(;,10) =

38



= T(—_x,0) € T(0) Where — x is the opposite element to the element x in the group
(7' +o) (J'= T (B} = 1).

Lemma 1.4. Let the extension of' of an anti-net of of a degree =4 having the
properties (rs). (D) and (dg) be given. Then the set Ty of all central translations
T(x,0)> ¥ € I determined by (2) together with the operation “composition of mapping”
is a group (T(oy, ).

The result of the composition of two central translations t, t’ of the structure o/’
with different centres is, according to Theorem 4.4 of [1] and its corollary, again
a translation. However, we do not know if it is necessarily a central translation.
Using Theorem 4.5 of [1] we get that tt’ = 't

Let 15,4 € Ty, and 7,y € T(oy be two central translations of the structure o'
with the centres L and (0), respectively. Let us put T, = T(5,0Tw.0) = T(x,0)%(s
For the mapping 1, , We have

&y —>(x+.& y+a) VYeel, VyeS;

»a)*

(k) (k) . VkeS;
3) L —L;

{k,q} > {k,(k)o,+ q + a} Vk,qeS;

h, —h,,, Viel;

h, +—h,.

We can verify without troubles that the mapping T4, %€ [, a€Sis indeed a translation
of the structure &', i.e. that it induces permutations of the sets P U h, and &£ u
v {hm} preserving the incidence relation between the points and lines and fixing
each point of the improper principal line h,, but no proper point (in the case (%, «) %
+ (8,0).

Using (3) we have

(~(@ 7", gfe =

—(@o; ', (-(a) o) o, + g +a} =

—(@)o;", —(a)(o;"0,) + q + a} =
={-(a)o ', —a+a+q} ={—(a)o; ', q}.

In virtue of Theorems 4.2 and 5.2 of [4] we may conclude: If the structure &’ has,

in addition to the properties (rs), (D,,), (dg), also the properties (D;) and (R) then

any line {—(a)o; ', q} is invariant under the translation 7, x€ J, a e S\ {0}.

Hence we obtain

Theorem 1.1. Let &’ be the extension of an anti-net &£ of a degree =4 having
the properties (rs), (D,,) and (dg). Then any mapping (., ® € I, a € S determined
by (3) is a translation of the structure s'.

If x = B then 74,4 is a central translation with the centre Le h,. If a = 0 then
T(x,0) is a central translation with the centre (0) € h,,. If % + B, a + 0 and moreover
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&’ has the properties (D,) and (R) then 7,4 is a central translation with the centre
Z = (—(a)o; ') eh,,.

Let us denote by T’ the set of all translations t, ,, x € I, a € S of the extension 2/’
of an anti-net o/ determined by the relations (3). Composing two translations
T(x,ap Ta,p) € T We again get a translation T, 5T = T(1+,x,qa+p € T'. The neutral
element of this composition is 75,9y = & € T". The inverse translation to 7, , €T’
is the translation t(,},) = %~ ,,—4 € T'. For any two proper points (x, a), (4, b) € P
of the structure o/’ there exists exactly one translation t(,_ , _,.5 €T’ carrying
the point (, a) into the point (4, b). Hence we arrive at

Theorem 1.2. Let the extension &’ of an anti-net o of a degree =4 having the
properties (rs), (D,,) and (dg) be given. Then the set T' = {1, 4 |xel aeS}
of all translations of the structure sf' determined by (3) together with the operation
“the composition of mappings” is a group (T’, ). The group (T’, ) operates freely
and effectively on the set P of all proper points of the structure o',

Remark 1.1. The group (T’, ) from Theorem 1.2 will be called the translation
group of the extension &’ of an anti-net &f. The extension &/’ from Theorem 1.2
is an extended translation structure with the translation group (T’, ) in the sense
of [2]. The problem is whether T" is the set of all possible translations of the structure
&', Certainly, we always have T’ < T. If all possible translations of </’ form the
group (T, ) then T = T,

Using the results of [2] on translation structures and Theorem 4.2 of [4] we get
the following theorem

Theorem 1.3. Let of' be the extension of an anti-net &f of a degree =4 having
the properties (rs), (D), (D;), (dg) and (R). Then a) the translation group (T', )
of the structure &’ is abelian and £’ is an extended central translation structure;

b) the translation group (T’, ) is the group of all translations of o', i.e. T' = T.

2. THE PARTITION OF THE GROUP OF PROPER POINTS OF &’

Let the extension &’ of the anti-net o/ have a degree =4 and let it possess the
properties (rs), (D,,) and (dg). According to Theorem 1.2 we may correctly define
the binary operation “+ + (the so-called addition) on the set P of all proper points
of &’ as follows: ‘

Let (%, a), (4, b) be two points of P, then we put

(4 (%, a) ++ (4, b) = (o, a)f*» = (A +,%, a + b).
As for any point (%, a) € P the identity (x, a) = (B, 0)"* is true, we have (x. a) + +
++ (4, b) = (%, a)"*» = (B, 0y’ **»_ Consequently, the mapping T’ - P,

e,y (% @) is an isomorphism of the translation group (T’, ) onto (P, + +).
Hence (P, + +) is a group. Thus we have
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Theorem 2.1. Let &Z’ be the extension of an anti-net of of a degree =4 having
the properties (rs), (D,) and (dg). Then the set of all proper points of the struc-
ture o' together with the operation “+ + defined by (4) is a group (P, + +)
with the neutral-zero element (B, 0).

If besides the properties (rs), (D,,) and (dg) the structure 2/’ has also the properties
(Dg) and (R) then according to Theorem 4.2 in [4], (P, + +) is an abelian group.
Defining the product of a “scalar” x € J'(J' = J U {B} = I)and an element (¢, y) e P
by the formula (¢, y) . % = (¢ o , () 0,) we establish that (P, + +) has, moreover,
the structure of a vector space over the skewfield (J', +., o, B, 7). The axioms of the
vector space may be verified without troubles. Moreover, if m denotes the dimension
of the vector space (S, +) over the skewfield (J', +,, o, B, y) from Theorem 5.4
in [4] then the dimension of the vector space (P, + +) is m + 1. Thus we have
proved

Theorem 2.2. Let the extension &/’ of an anti-net sZ of a degree =4 have the
properties (rs), (D), (Dy), (dg) and (R). Let m denote the dimension of the vector
space (S, +) over (J', +,, 0, B, ). Then the group (P, ++) of all proper points
of o' is a vector space over the skewfied (J', +,, o, B, 7).

Let the extension &/’ have a degree >4 and let it posses the properties (rs), (D,,)
and (dg). We will determine the partition P of the group (P, + +) of all proper
points of &#’. By a partition of a non-trivial group (G, +) with the neutral element o
we mean a system & of proper non-trivial subgroups of the group (G, +) such that
any element of (G, +) different from the neutral element o belongs to exactly one
subgroup of ¥. The subgroups of (G, +) are the so-called components of the parti-
tion 4.

Let us denote by Py, the set {(8, x) | x € S} of all proper points of the principal
line hy € £. Further, let

Po ={(&y)|¢el yeS, (k)o, + y =0}

be the set of all proper points of the line g = {k, 0} € Z. It may be easily shown
that (Pg, + +) as well as (Pg,, + +), k€S are proper subgroups of (P, + +). The
point — the element (£, y)e P — belongs to the subgroup (P, ++) iff £ = f.
The element (¢, ) € P is contained in a subgroup (P, + +), ke Siff y = —(k) o,
In the sequel, let us put

(5 P = {(P, ++)} U{(Puy» ++)| keS}.

Theorem 2.3. Let &/’ be the extension of an anti-net &f of a degree =4 having
the properties (rs), (D) and (dg). Then the set 2 defined by (5) is a partition of
the group (P, + +) of all proper points of the structure s#'. The left cosets of the
decomposition of (P, + +) with respect to the components of the partition P are
exactly all the proper lines (without improper points) of o£'.
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Proof. The theorem follows from Theorem 2.1, from the considerations before
Theorem 2.3 and from Theorem 1.3in [2]. Let U = (P, + +), k € S be a component
of the partition £ of the group (P, + +) defined by (5) and let (&, y,) € P be a proper
point of &Z’. Then the left coset of the decomposition of (P, + +) with respect to U

U ++ (8o, o) = {(&, —(K) o) | e I} ++ (Lo, yo) =
= {(éo + ¢, —(k)°'§ + .VO) | EGI}
is an ordinary line {k, g} € &, q = (k) og, + yo (Without the improper point (k)). m

Remark 2.1. Let the extension &7’ of an anti-net o of a degree =4 have the
properties (rs), (D), (D), (dg) and (R). Then the partition 2 of the group (P, + +)
defined by (5) consists of the vector space (S, +) over the skewfield (J', +,, o, B, 7)
and of all one-dimensional subspaces of the vector space (P, + +) over (J', +,, o, B, 7)
which are not subspaces of (S, +).

3. AUTOMORPHISMS OF THE GROUPS (5, +) AND (J', +,)

Let the extension &/ of an anti-net &/ a degree =3 and let it possess the properties
(rs), (D), (Dg) and (R). Let =* = {o,| 1€ J}. According to Theorem 5.2 in [4],
(Z*, ) is a group with the neutral element o,. It follows from Theorem 3.2 in [4]
that any permutation o,, ¢ € J is an automorphism of the group (S, +).. Hence (Z*, )
is the group of automorphisms of (S, +).

We will denote by Aut(S, +) the group of all automorphisms of the group (S, +).
Evidently Z* = Aut(S, +). Let us denote by Z(E*) the centralizer
{o e Aut(S, +)| 9o, = 6,9, Vo, € Z*} of the set £* in the group Aut(S, +), i.e. the
set of all automorphisms ¢ € Aut(S, +) commuting with any automorphism o, € Z*.
The next lemma is well known from the group theory (see e.g. [3]).

Lemma 3.1. The centralizer Z(*) of the set £* in the group Aut(S, +) is a sub-
group of the group Aut(S, +).

Let N(Z*) denote the normalizer {{ € Aut(S, +) | V™ ',y € T*, Vo, € £*} of the
set £* in the group Aut(S, +), i.e. the set of all automorphisms € Aut(S, +) for
which Y~ 1o, € Z*, Vo, € £* is true. The next result is again well known from the
group theory (see e.g. [3]).

Lemma 3.2. The normalizer N(Z*) of the set £* in the group Aut(S, +) is a sub-
group of the group Aut(S, +). Moreover, the groups (£*, ), (Z(Z*), ) and (Z(Z*).
. Z*, ) are subgroups of the group (N(Z*), ) where Z(X*).Z* = {¢o, | ¢ € Z(Z¥),
o, eZ*}.

Now let the extension &’ of an.anti-net o/ have a degree =4 and let it possess
the properties (rs), (D), (Dg), (dg), (R). By virtue of the results from Sections 4
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and 5in [4], (J', +,) is an abelian group (cf. Theorem 4.2 in [4]) and (J, o) is a group
(cf. Theorem 5.2 in [4]). Let us define the mapping R, for each index ¢, ¢ € J by

(6) J> ', & (R, =Eou.

Lemma 3.3. Each mapping R,, e J is an automorphism of the group (J', +.,).

Proof. According to part a) of Lemma 5.1 in [4] and the relation (13) in [4],
B ot = B holds for any index ¢ e J. Since (J, o) is a group, each mapping R,, t€ J,
is a permutation of J', J' = Ju {B} = I Finally, part b) of Lemma 5.4 in [4]
implies that for any two indices &, n € J' we have

E+emR = +.mot=Cot+not =R+, (MR,. m
Analogously we can define the mapping L, by

(6") J T, ¢ (L, =0¢
and prove

Lemma 3.4 Each mapping L,, ve J is an automorphism of the group (J', +,).

4. THE EQUIVALENCE AND THE AUTOMORPHISM OF THE PARTITION £
OF THE GROUP (P, ++)

In [5] W. Seier defined an equivalence of an partition % of the group {G, +) as
a permutation f of the set G fulfilling the following conditions:

(a) If U is a component of the partition ¥, then (U) f is a component, too;

(b) (U + x) f = (U)f + (x)f is true for each element x € G and for each com-
ponent Ue .

He regarded the automorphism f of the group (G, +) as an automorphism of
the partition % of (G, +), if this automorphism was simultaneously an equivalence
of the partition ¢. He determined the group of all collineations of a translation
structure associated to the group partition 9.

Let the extension &’ of an anti-net &/ of a degree =4 have the properties (rs),
(D), (Dg), (dg), (R). We shall determine some automorphisms of the partition 2
of the group (P, + +) of all proper points of the structure &’ (2 is determined in (5)).
As P ={(¢ y)|éel yeS}, any ordered pair f, = (¢;, 9,) of automorphisms @,
of the group (J’, +,) and ¢, of the group (S, +) is an automorphism of the group
(P, ++), which means: if f, = (¢, 9,), @, €AutJ’, +.), ¢, € Aut(S, +) then
f, € Aut(P, + +).

We shall establish the condition under which the automorphism f, = (9,, ¢,)
of (P, + +) is an equivalence of the partition 2 of (P, + +).

Let U = (P(k,, + +), k € S, be an arbitrary component of the partition £ and let
(¢, y)e P be some of its points different from (B,0) (i.e. y = —(k)o., & + B).
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Applying the automorphism f, of (P, ++) we get (&, y)fy, = (¢, —(k) o) f, =
= ((&) 91, — (k) 0,9,) as well as (U) f, = (P, + +), k' € S. The automorphism f,
becomes an equivalence of the partition 2 iff it possesses the properties (a), (b).
According to (a) we obtain

(& y)foe(U)fy, ie (k') 0wy = (k)osp, for any element k € S. With respect
to (b), Construction 2.1 in [4] and Definition 2.3 in [4], for any k € S we necessarily
have

(K) O = (k) 92, ie. K = (k) 92005, -
This equality and the previous one give
(k) ©20030,009; = (k) 00, .
The last equality holds for any k € S, hence

— 1 _
?20(1)9,0(5)9; = OcP2
and therefore

-1
(7) O&)e1 = O3, P2 OcP2 .

Using the results of the previous section we get that the automorphism ¢, must
belong to the normalizer N(Z*) of the set =* in the group Aut(S, +).

Consequently, the automorphism ¢, of the group (J’, +,) is uniquely determined
by (7) and by the element (y) ¢, = A, e J. In fact, the automorphism ¢, of the
group (S, +), ¢, € N(2*), uniquely determines the permutation ¢, ¢,:J' - J',
& (&) ¢4, fixing the element B and sending y to A. Moreover, (7) is fulfilled. The
permutation @, is an automorphism of the group (J, +,) since for any ke S we
have

(K) ©20050,5c+ mor = (k) O 102 = (k) 002 + (k) 0,02 =
= (k) 9200G39:000: + (K) 920030, mer = (K) 920030,5 (01 .1 -
In this calculation we have used the properties (rs),(D,,),(D;),(dg),(R) of the

structure «#’, the relations (9) and (7) from [4] and the assumption ¢, € N(Z*).
Since any point (B, y) € Py, satisfies

B, y)fo = ((B) 01> () 02) = (B, () 92)

B is a neutral element of the group (J’, +,) and ¢, is an automorphism of this group,
hence (U) f, = U is true for component U = (P, + +) of the partition 2. This
means that the condition (a) of the eqgiuvalence f, is fulfilled iff (7) is true.

It remains to verify whether the automorphism f, = (¢, 9,), 9, € N(Z*) of the
group (P, + +) fulfilling (7) satisfies also the condition (b) of the definition of the
equivalence. Let U = (P(k), + +), ke S, be an arbitrary component of & and let
(U)fy = (P, ++), kK'€S be its image under the automorphism f,, ie. k' =
= (k) ;0G5 Further, let (o, y,) € P be an arbitrary proper point and (1, yo) fo =
= ((no) @1, (¥o) 9,) its image under the automorphism f,. Then
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U ++ (10, o) = {(n0 +0 & —(k) o¢ + ¥o) |eeay;
(V) fo = {((&) 01, —(K) 0190) | £€ I} = {((€) @1, —(K) P2930:591) |¢er},

and also

-1
Oer = O(y)e P2 TPz«
Hence

(V) fo = {((¢) 01, —(K) 0:02) | £ € T} ;
(U) fo ++ (10, yo) fo = {(no) @1 +, (&) 01, —(k) o0, + (yo) @2) | ¢el'} =
= {((10 +. &) 01, (—=(k) o¢ + yo) 92| E€ I} = (U ++ (10, ¥o)) fo -

In the case U = (P, + +) the previous considerations become simpler. Thus we
have proved

Theorem 4.1. Let the extension sZ' of an anti-net &Z of a degree =4 have the
properties (rs), (D), (Dy), (dg), (R). Then the automorphism f, = (¢4, ¢3), ¢, €
e Aut(J’, +,), @, € Aut(S, +) of the group (P, ++) is simultaneously an auto-
morphism of the partition P of the group (P, + +) defined by (5) if and only if
¢, € N(Z*) and ¢ is determined by (7). '

Remark 4.1. The set of all translations of the structure &’ from Theorem 4.1
is the support of a group (T, ) where T = T’ (see Theorem 1.3). According to the
remarks made in Introduction the group (T, ) is a normal subgroup of the group
(T, ) of all collineations of &#’. By virtue of Theorem 2.4 and Lemma 2.5 in [5] the
set of all automorphisms f, = (¢4, ¢,) of the partition 2 of (P, + +) from Theorem
4.1 coincides with the set of all equivalences of the partition £ in which the com-
ponent (Py, + +) and (P, + +) maps onto itselves, respectively.

5. THE GROUP OF ALL COLLINEATIONS OF THE EXTENSION &/’
OF AN ANTI-NET & FIXING THE IMPROPER POINT (0)

Let o' = (Puh,, LuU{h,}, (h),,(s;) be the extension of an anti-net o/
of a degree =4 having the properties (rs), (D), (Dy), (dg) and (R). In accordance
with Theorem 1.3 all translations of the structure &/’ form a group (T, ) where
T = T’ denotes the set of all translations defined by (3). According to the remarks
in Introduction the group (T, ) is a normal subgroup of the group (T, ) of all col-
lineations of the structure &f’.

The relation (4) defines an operation “+ onto the set P of all proper points of
the structure &/’. In virtue of Theorem 2.1, (P, + +) is a group isomorphic to the
translation group (T, )- The set of all proper points of lines of o/’ going through
the point (B, 0) € P together with the operation “+ + is a proper subgroup of the
group (P, + +). Theorem 2.3 implies that all such subgroups form the partition 2
of the group (P, + +) defined by (5).
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Any equivalence f, of the partition # of the group (P, + +) — cf. Sec. 4 — is
a collineation of &’ fixing the point (B, 0) € P (as follows from Theorem 2.3 in [5]), .
and obviously also the point L € h,. All collineations of the structure &/’ which -
fix the points (8,0) e P and L € h,, form a group — a subgroup of (T, ). Any auto-
morphism f, = (9y, ¢,) of the partition 2 of (P, + +) described in Theorem 4.1
is a collineation of &’ fixing the points (8, 0)€ P, L € h,, and (0) € h,,. Conversely,
any collineation of the structure «#” with fixed points (8, 0)e P, Le h,, and(0) € h,,
is an automorphism f, = (¢,, ¢,) of the partition 2 of (P, + +). Let us denote
by Auty(£, P) the group of all automorphisms f, = (¢, ¢,) of the partition 2 of
the group (P, + +). According to Theorem 4.1 we have

(8) Auty(2, P) = {f, = (¢4, 9,) | 01 € Aut(J’, +,), ¢, e N(Z*),
O(erer = TPz TeP2} -
Let I' o) denote the set of all collineations of the structure ¢’ fixing the improper

points L, (0) € h,,. It may be easily verified that the translation group (T, ) of &’ is
a normal subgroup of the group (I, ). Part c) of Theorem 2.4 in [5] gives

r(o) = Auto(y, P) . T’ ;
i.e., the group (L), ) of all collineations of &’ fixing the points L, (0) € h,, is the
subdirect product of the group Auty(#2, P) and the group (T, ). (The notion of the

subdirect product of groups is known from the group theory, see e.g. [3].) Sum-
marizing these results we get

Theorem 5.1. Let of' be the extension of an anti-net &/ of a degree =4 having
the properties (rs), (D), (Dy), (dg) and (R). Then any collineation 8 € Ty, of s’
with fixed improper points L, (0) € h,, may be uniquely expressed in the form

6= fyt
where f, = (94, ¢,) € Auty(2, P) is an automorphism of the partition P of the
group (P, + +), Aut(2, P) is given in (8) and © € T’ is a translation defined by (3).

Proof. The correctness of the assertion of the theorem follows from the previous
consideration and some results in [5].

6. HOMOTHETIES OF AN ANTI-NET

According to remarks made in Introduction, any homothety of the extension &/”
of the anti-net &f is an axial collineation with the improper axis h, and the proper
centre Z. We may consider the homothety with the centre Z = (B, 0) of &/’ also as
an equivalence of the partition 2 of the group (P, + +) mapping any component
of 2 onto itself.
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Any component U = (P, + +) of the partition 2 of (P, + +) is mapped onto
itself by the equivalence f, = (9, 92), ©; € Aut{J’, +,), 92 € N(Z*¥), i.e.

(U)fo = (Pay, ++) = (P, ++) =V
if and only if k' = k, othervise

(k) (PZG(_‘);)I(pl =k, ie @, = 0gpo, -
Using (7) we get

O&ei = Oy P2 0Pz = 6:02 = 0:0(3)01 = Oto(ryes >
therefore (&) @; = & o (y) @4. If for example (y) ¢, = 4, then
(f)(Pl = €°1=(5)R1, @ =0,

If the element (y) @; = A runs through all elements of the index set J, we get in this
way all homotheties of &/’ with the centre Z = (B, 0). The relevant transformation
formulas for these homotheties #;, A € J have the form

(&y)(Eoi (y)o,)  VEel, VyeS;

(k) (k) VkeS;
L —L;

©) {k,a} — {k,(q) 0,} Vk,q€S;
h, +—hg;

h —h_;

2]

ht g hto}. Vl, elJ.

All homotheties %,, 4 € J determined by (9) form a group (I o), ) with the neutral
element %, = £. Thus we have proved the following theorem:

Theorem 6.1. Let o/’ be the extension of an anti-net o/ of a degree =4 having
the properties (rs), (D), (D,), (dg) and (R). Then any mapping %,, A€ J defined
by (9) is a homothety of the structure &' with the centre (B, 0). The relations (9)
determine all homotheties of o4’ with the centre (B, 0). These homotheties form
a group (I o), ) with the neutral element «.

Remark 6.1. Any homothety % of the structure </’ with the centre Z = (¢, x) e P
may be uniquely expressed as the product

-1
%= T, %aT,x)

where 1, ., € T and %;, A€ Jis a certain homothety from Il o). Hence the set of
all homotheties of the structure &/’ with the centre Z may be described by

-1
ey = T 00,0 %0,y -

47



7. PERSPECTIVE AFFINITIES OF AN ANTI-NET

Let the extension &’ = (P U hy,, £ U {h,}, (h)icro(wy) Of an anti-net o have
a degree >4 and let it possess the properties (rs), (D), (D;), (dg) and (R). Theorem
4.1 determines all automorphisms f, of the partition 2 of the group (P, + +) of &’
If, moreover, the automorphism f, = (¢,, ¢,) fulfils the condition ¢, = ids then
according to (7),

O@e:r = %90 = O(ngios »

ie. (&) oy = (y) @, 0¢ is true for any element &€ J'. If for instance () ¢y = 4,
AeJthen (&) @, = Ao & = (&)L,

We will denote by a; o, the automorphism f, of the partition £ of the group

(P, + +) with this property. We easily verify by direct calculation that the transforma-
tion formulas for the mapping a; o) have the form

(&) — (Ao &) VéeJ, VyeS;
(B, ) — (B, y) - VkeS;
(k) (kK)o VkeS;
L —L;
. {k,a} > {(k)o7',q} Vk,qeS;
h, > hg;
h, +—h,;
h, — h,,, Yie J.

It is immediately seen from (10) that any mapping &; o), 4 € J fixes any point of the
principal line h, and that it reproduces any line {0, g} € &, q € S. Thus any mapping
®(1,0y 4 € J determined by (10) is an axial collineation with the axis h, and simul-
taneously a central collineation of &#’ with the centre (0) € h,, — a perspective affinity
of o’. The image of the point (7, 0) € P under the perspective affinity %00 AES
is the point (4, 0) e P.

Let us consider the set A, of all perspective affinities &, o), 4 € J determined by
the relations (10). Let &, o), %y,0y be two elements of A, then their composition

%(3,00%,0) = uon,0 € A0

is a perspective affinity. Evidently the affinity &, o) = € is the neutral element of A .
Finally, the inverse element to the perspective affinity a; o) € A, is the perspective
affinity ot ;-1 o) € A(g). Therefore the set Ao, together with the composition of map-
pings is a group (Ao, )-

Lemma 7.1, Let /' be the extension of an anti-net & of a degree =4 having
the properties (rs), (D), (D), (dg) and (R). Then any mapping &, o), A € J defined
by (10) is a perspective affinity of s#' with the axis hye £ and with the centre
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(0) € hy,. All such perspective affinities form a group (A, ) with the group opera-
tion “the composition of mappings” and with the neutral element o, . The
relations (10) define exactly all perspective affinities of the structure sf' with the
axis hg and the centre (0) € h,,.

Proof. We shall only prove the last assertion of the lemma. The other assertions
were established by the considerations before Lemma 7.1. Thus, let & be a non-
identical perspective affinity of the structure &/’ with the axis h, and with the centre
(0) e h,,. Then a fulfils the second, fourth, sixth and seventh relations from (10).
According to the remarks made in Introduction the perspective affinity « is uniquely
determined by its action on one proper point which does not lie on the axis hg.
Let us suppose that (y, 0)* = (4, 0), A€ J\{y}. It is a routine matter to verify that o
fulfils also the other relations of (10). Hence any non-identical perspective affinity o
is a mapping a; o) for some A€ J\ {y}. If & is the identical collineation then o =
=%,0 =

Now let the extension &/’ of an anti-net & have a degree =3 and let it possess
the properties (rs), (D,) and (Dg). Our aim is to describe all perspective affinities
of this extension &/’ with the axis h, and with the centre L = h; n h. It has been
repeated several times in this work that any perspective affinity of &/’ is uniquely
determined by its action on one proper point of &’ that does not lie on the axis
of this affinity. Let o, ,, a € S\{0} denote the non-identical perspective affinity
of &' with the axis h; € £ and with the centre L € h,, sending the point (y,0)e P
onto the point (y, a) € P. The perspective affinity o, ,, maps any line {k, k} € &,
keS going through the points (y, 0) and (B, k) € h; onto the line {k’,k}, k'€ S
containing the points (y, a) and (B, k)e h,. Therefore, according to Lemma 2.1
in [4] we get

(K)o, +a=k ie. k" +a=k sothat k' =k —a.
If the point (&, y) e P lies on the line {k, k}, i.e. (k)0 + y = k, then its image
(&, y") € P in the perspective affinity a, ,, lies on the line {k — a, k}. Hence
(k—a)o,+y =k=(kjo; +y
and
Y =(a)os+ y.
Thus we have proved the transformation formulas for the perspective affinity a, ,),
aes:

(& y) — (& (a)os + y) VéeJ, VyeS;

(B,y) = (B, ) Vyes;
(11) (k) +(k—-a) VkeS;
L —L;
{k,q} > {k — a, q} Vk,q€S;
h, —h, Vie Iu {o}.
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Using the relations (11) we immediately obtain that for a = 0 the perspective affinity
,,0) is an identical collineation.

Reversing the processes described above we may prove that any mapping a, ),
a € § defined by (11) is a perspective affinity of &’ with the axis h, and with the centre
L € h,, sending the point (7, 0) onto the point (¥, a).

Let us denote by Ay, the set of all perspective affinities a, ,), a € S determined by
the relations (11). The composition of two perspective affinities o, 4, %5 € Ay,
is a perspective affinity again, more exactly,

O,0%b) = %yb+a) € Ar, -

The neutral element of this composition is the perspective affinity &, o) € Ay, and
the inverse mapping to the perspective affinity o, , € Ay, is the perspective affinity
%(y,-a) € Ar. Thus we have proved

Lemma 7.2. Let the extension &Z' of an anti-net & of a degree = 3 have the
properties (rs), (D) and (Dg). Then any mapping o, 5, a € S determined by the
relations (11) is a perspective affinity of the structure o' with the axis h; and
with the centre Le h. By the relations (11) all such perspective affinities are
determined. The set Ay of all perspective affinities together with the operation
“the composition of mappings” is a group (Ar, ) in which the neutral element
is d, o) = &. ‘

Remark 7.1. Let us consider the extension &£’ of an anti-net & with a degree = 3,
having the property (rs). In section 1 we have proved that all possible perspective
collineations with the axis h,, and with the centre L € h,, — the central translations
T(s.a @ €S — exist in o' if and only if &’ has the property (D,,) (see Lemma 1.1).
Similarly, all possible perspective collineations with the axis h; and with the centre
Leh,, — the perspective affinities o, ;, a €S — exist in &/ if and only if o/’ has
the properties (D,,) and (Dg). Finally, it may be verified by a simple calculation that
all possible perspective affinities with the axis h, (or with the axis h,, ¢e IU {o0})
and with the centre L € h,, exist in o’ if and only if @/’ has the properties (D),
(Dg) and (D,) (¢’ has the property (D), respectively). About the properties (D,)
and (D) see Section 3 in [4].

It follows from the previous.considerations that the validity of the minor Desargues
condition of a certain type in &’ is equivalent to the existence of all possible perspec-
tive collineations whose axis is the corresponding principal line and whose centre is
the common point L of all principal lines.

Now let the extension &’ of an anti-net have a degree = 4 and let it possess the
properties (rs), (D,), (Dg), (dg) and (R). Let a; 0)€ Ay, A€ J, and &, , € Ay,
a € S be the perspective affinities with the axis h, and with the centres (0) € h,, and
L e h,, defined by (10) and (11), respectively. Composing these mappings (in the
given order) we get the mapping &;,0)%y.q) = %z, it Which
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(&) » (Aot (a)os0e + ¥) VéeJ, VyeS;

(B,y) = (B, ) Vyes;
(k)  +—((k)o7' —a) YkeS;
L —L;

12 i

(12) {k,q}— {(k)o;' — a,q} Vk,qeS$;
h, —hg;
h, +h,;
ht Hh).oL Vield

is true.
Composing the same mapping in the reversed order we get the mapping

4 .
%(y,a)%(2,00 = %(1,0) >

such a mapping satisfies e.g. (& »)—(40¢, (a)o, + y) VEe J, VyeS. Hence
%30y F 1,0 and consequently the composition of the given perspective affinities is
not commutative. .

The mapping a; ,), 4 € J, a € S determined in (12) is obviously an axial collineation
of o' with the axis h,. The improper point (ko) € h,, ko €S is a fixed point of the
collineation a; , if and only if (ko) 65 ' — a = ko or

(13) (ko) oz + (a) o, = kg .

The axiom («4) of Definition 2.1 (the definition of the admissible algebra) implies
the existence of the element k, € S fulfilling the relation (13). According to Construc-
tion 2.1 in [4], we may determine it as the intersection point

(13) ko = h; 0 (7,0) (4, (a)o,) .

The collineation a; , reproduces any line {kq, q} €&, q €S so that the improper
point (ko) € h,, is its centre. Consequently, any collineation a; ., A€ J, a€S$ is
a perspective affinity of the structure o/ with the axis h; and with the centre Z =
= (ko). The element ko €S fulfilling (13) is determined by (13'). The perspective
affinity a; ,) sends the point (7, 0) € P to the point (4, (a) 5;).

Theorem 7.1. Let the extension &' of an anti-net o have a degree = 4 and let
it posses the properties (rs), (D), (Dy), (dg) and (R). Then the mappings & .
Le J, aeS defined by the relations (12) are exactly all perspective affinities of '
with the axis hy and with the centre Z € h . At the same time, we have

a) if A = y then the centre of the perspective affinity %y, @ €S is the improper
point L;

b) if a = 0 then the centre of the perspective affinity %1,0y> 4 € J is the improper
point Z = (0); .

) if a0 and A + vy then the centre of the perspective affinity a; 4, a €S,
A€ J is the improper point Z = (ko), ko € S determined by (13').
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Proof. We will prove that all perspective affinities of &#” with the axis h, and the
centre Z = (k) are determined by relations (12). The other statements follow from
Lemma 7.1 and 7.2. '

Let us consider a perspective affinity o of the structure &/’ with the proper axis h,
and with the improper centre Z = (k,), ko € S\ {0}. As any perspective collineation
of &/’ with a given axis and with a given centre is uniquely determined by its action
on one point different from the centre and not lying on the axis of this collineation,
hence also the perspective affinity & is uniquely determined e.g. by the point (7, 0)
and its image (7, 0)* = (4, (a) 0;), Ae I\{y}, aeS\{0}. The cases A =7, a =0
are discussed in Lemmas 1.2, 1.1, respectively. The points (7, 0), (4, (a) 6,), (ko)
are collinear, thus (ko) 6, + (a) o; = k, is true, that is, k, + a = (ko) o7 "

The perspective affinity o determined in this way sends the line {0, 0} € £ (con-
taining the points (, 0), (7, 0) € P) onto the line {—a, 0} € £ (going through the
points (B, 0), (4, (a) 5,)). For this reason the image of the improper point (0) € h
under & is the improper point (—a) € h,,.

The perspective affinity o, _,) € Ay, given in (11) maps the point (4, (a) 5;) onto
the point (4,(—a)o; + (a)o;) = (4,0) and sends any line {—a,q} €%, q€S§
onto the line { —a — (—a), g} = {0, g}. Therefore the image of the improper point
(—a) € h,, under the perspective affinity o, _, is the improper point (—a — (—a)) =
= (0).

'I(‘h)e composition of the perspective affinity o with the perspective affinity &, _, €
€ A, (in this order) is the axial collineation aa,, _,) of &’ with the axis hy. Such an
axial collineation maps the point (3, 0) to the point (4, 0) and reproduces any line
{0, g} € &, q €S. It means that aa, _, is a perspective affinity of =/’ with the axis
h, and with the centre (0) € h,, mapping the point (7, 0) to the point (4, 0), that is

A%y, —a) = %(a,0) € Ao) -
This yields ’
-1 -1
A%y, ~a) %y, —a) = %(2,00%(y,~a) »
hence

o = %1,00%(y,a)

as (Ay, )is a group and aj,'_,, = &, o).
We may conclude: There exist A € J and a € S such that the relations (12) hold for
any perspective affinity a of o/’ with the axis hy. g

Theorem 7.2. Let the extension &' of an anti-net &/ have a degree = 4 and let
it possess the properties (rs), (D), (Dg), (dg) and (R). Then the set A,, of all
perspective affinities of o4’ with the axis hy and with the centre Z lying on the
improper principal line h, together with the operation “the composition of
mappings” is a group (Ahp, ), in which the neutral element is &.
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Proof. According to Theorem 7.1 any perspective affinity & of &/ with the axis h,
and with the centre Z lying on the improper principal line h, is determined by the
relations (12) for suitable A€ J, a €S, i.e. & = 0ty ).

Let a(; o), % 5) € Ay, be two perspective affinities of &’ with the axis hy and with
the centres Z; = (ky), ky € S, Z, = (k,), k; € S,and let (ky) o7 ' — a = kg, (k;) 0, ' —
— b = k,, respectively.

Composing such two perspective affinities (in the given order) we obtain the map-
ping

%p.c) = Fn,a%u,b) € Ang
where ¢ = 1o, ¢ = b + (a)o, ', ie. a perspective affinity from A,, again. Its
centre Z = (k) € h,, fulfils the equation

(k3) Gz — (b + () 0, 7) = ks
or equivalently
(k) G, + (b) Oy = (ks) o;! —a.

Let us remark that the element k5 e S fulfilling the last equation is uniquely de-
termined. This statement follows from the axiom («4) of Definition 2.1 in [4].

The neutral element with respect to such composition is the identical collineation
€ = 0(,,0)- The inverse element of the perspective affinity &; ) € A, is the perspective
affinity o, 5, € Ay, With p = A~1, b = —(a) 5;. The composition of such perspective
affinities of &' is not commutative, therefore (Ah " ) is not an abelian group. g

Remark 7.2. Let &’ be the extension of an anti-net & of a degree = 4 having
the properties (rs), (D), (D;), (dg) and (R). Any perspective affinity & of o’ with
the axis h,, e I and with the centre Z = (k,) € h,, may be uniquely expressed in
the form

& = T,0%(1,0%,0)

where 1, oy € T' and a; 5 is a suitable perspective affinity of A,,. Thus the set Ay,
of all perspective affinities of &/’ with the axis h,, ¢ € I satisfies

-1
Ay, = T0,0)AnT00) -

8. THE GROUP OF ALL COLLINEATIONS OF AN ANTI-NET

In Section 4 we have investigated equivalences and automorphisms of the partition
2 of the group (P, + +) of all proper points of the extension &' of an anti-net &/
of a degree = 4 having the properties (rs), (D), (D), (dg) and (R). It follows from
the results of Section 5 that the automorphisms f, = (¢, ¢,) € Auty(2, P) are
exactly all collineations of &/’ fixing the points (B, 0) € P, (0) € h,, and obviously
also the point L e h,, (the point Leh, is a fixed point with respect to any col-

lineation of «’).
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Now we will characterize the group Aut(#, P) of all automorphisms f of the
partition 2 of the group (P, + +), i.e. the group of all collineations of the structure_
&' fixing the points (B,0)e P and Le h,,

Lemma 8.1. Let the extension &' of an anti-net sZ of a degree = 4 have the
properties (rs), (D), (Dy), (dg) and (R). Then any mapping o, ., € Ay, a € S defined
by the relations (11) — i.e. any perspective affinity of s#' with the axis h, and with
the centre L e h,, — is an automorphism of the partition P of the group (P, + +).
Moreover, a, . ¢ Auty(2, P).

Proof. Let a € S be an arbitrary element of S and let (&, x), (1, y) be two arbitrary
points of P. Then the mapping &, ,) satisfies

((f, X) + + (11, y))u(y,a) — (71 +. & x + y)a(y,,, —
=M+.& (@0t (x+y)=m+.8(a) (o, +0) +x+y) =
= (1 +, f,(a)cq + (a)oe + x + »=m+,¢(@)os+ x + (a)o-” +y) =
= (& (a)op + x) ++ (1, (a) o, + ¥) = (& x)*= ++ (n, y)roo

which means that ay; 4 is an automorphism of the group (P, + +).

Moreover, the mapping &, , is a perspective affinity with the axis h, and with
the centre L € h,,. This implies that the point (B, 0) € h, is a fixed point with respect
to o, and any component U = (P, ++) will be sent onto the component
U’ = (P4_,), ++) under the mapping &, . Thus the automorphism a, ., a€$
fulfils the condition a) from the definition of equivalence of the partition of a group
(see Sec. 4). Applying Theorem 2.3 we get that o, ), a € S fulfils also the condition b).
Hence any mapping oy, ,, a € S is also an automorphism of the partition £ of the
group (P, + +). The image of the component (P, + +) € 2 under the mapping
Oy.a a€S\{0} is the component (P_,, ++)€ 2, consequently ay,, ¢
¢ Auto(P, P). o ’

Lemma 8.2. Let the extension s’ of an anti-net &£ of a degree = 4 have the
properties (rs), (D), (Dy), (dg) and R(). Then the result of composition of auto-
morphisms f, = (9, 9,) € Auty(P, P) and &, €Ay, aeS is again an auto-
morphism f = f,a, ., of the partition P of the group (P, ++) of all proper
points of of'. The automorphisms f = fyu, ,, fixes the points (B,0)e P and Le h;
the image of the point (0) € h,, is the point (—a) € h,,.

Proof. Composing the automorphisms f, and &y, , of the group (P, ++) we
get an automorphism of (P, + +) again. Any equivalence of the partition 2 of the
group (P, + +)is a collineation of the structure o’ fixing the points (8, 0) e P, L € h,,.
For this reason, composing two equivalences of the partition £ of the group ( P, + +)
we get an equivalence of the partition £ again. This equivalence fixes the points
(B,0)eP, Leh,. The automorphism f, € Auty(£, P) maps the point (0) € h,
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onto itself while the automorphism a,, € A, maps this point onto the point
(—a)eh,. m

Lemma 8.3. Let the extension &' of an anti-net sf of a degree = 4 have the pro-
perties (rs), (D), (Dy), (dg) and (R) and let the automorphisms f, = (9, ¢,) €
€ Auty(2, P), o, ., € Ay, a € S of the partition P of the group (P, 4+ +) be given.
Then there exists exactly one automorphism a, ;) € Ay, b € S such that

%y.mfo = fodkyp) -
Proof. Composing the automorphisms &, €Ay, a€S and f, = ((pl, 9,) €
€ Auto(2, P) we get an automorphism a, ,f, for which (&, y)*@=f = (¢, (a) o, +
+ ») = ((¢) 94, (a) 50, + (¥) ;) is true for any proper point (&, y) € P. If we put

b= (a) (926(-7)101 , le. a= (b) G(v)qn(P;l ’
then

(& py oo = ((&) 015 (D) 039,02 '0e2 + (¥) 92) =
= (&) 91, (5) Sgye, + () 92) = (&) 1, (¥) @2)**» = (&, y)ferer».

It is sufficient to use relation (7) for the proof of these equalities.

If we consider the automorphism a, ,f, as a collineation of the structure o’
fixing the points (8,0)e P, Le h,, then for any improper point (k)eh,, keS
we have

(Rt = (k — a)f® = ((k — a) 9205,) =
= ((k) (PZG(_v)lqn - (a) (pZG(—v)lm) = ((k) (plc(_v)lm - b) =
= ((k) (ch‘l )G(v.b) = (k foo(y,b)

91
(we have used the results of Section 4).
Let F = {f = foo, ) | fo € Auty( P, P), o, ., € A}
be the set of all automorphisms f = f,, , of the partition 2 of the group (P, + +)
which are products of automorphisms f, = (¢4, ¢,) € Auto(2, P) and a, , € Ay,
a €S of the partition 2 of (P, + +).

Lemma 8.4. Let the extension of' of an anti-net o/ have a degree = 4 and let
it possess the properties (rs), (D), (Dy), (dg) and (R). Then (F, ) is a group with
the neutral element ¢.

Proof. First of all we shall prove that for any two elements f' = fju, ., f' =
= f3%,5, @, b €S of the set F their product f'f” belongs to the set F, too. Obviously

1" = (596,0) (6%0.0) = fo(@6.0f0) 265 = 6(f0%6.0)%0.n =
= (f6f5) (2.a0%00) = fotr,cr € F
(we have used the associativity of the composition of all automorphisms of the

partition 2 of (P, + +), Lemmas 7.3 and 7.2 and the fact that Aut,(£, P)is a group).
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Now we shall prove: If f = fo(, o € F then also f~! € F. Using Lemmas 7.2 and
8.3 and the fact that Auty(#, P) is a group we obtain

-1 -1 _ =1 g-1 __ —
fl= (an(v,a)) = a(y.a)fo = a(v,—a)fé = fl;a(v.a’) eF.

Thus (F, ) is a subgroup of the group Aut(, P) of all automorphisms of the parti-
tion 2 of (P, + +) and ¢ is its neutral element.

Theorem 8.1. Let the extension &' of an anti-net s have a degree = 4 and let
it have the properties (rs), (D), (D), (dg) and (R). Then (F, ) is a group of all
possible automorphisms of the partition P of the group (P, + +), i.e.

(F, ) = Aut(, P).

Proof. It is sufficient to prove that any automorphisms f e Aut(#, P) may be
expressed in the form f = fya, ., where f, € Auty(2, P) and a, ;) € Ay

Let fe Aut(2, P) be an automorphism of the partition # of (P, + +) mapping
the component (Py, + +) € 2 onto itself and the component (P, + +) € 2 onto
the component (P, ++) e 2, a €S. If we consider the automorphism f as a col-
lineation of <’ then f fixes the points (8, 0) e P, L e h,, and the point (0) € h will
be sent ot the point (a) € h,,. The mapping — the product fa, ,), Where o, , € Ay —
is also a collineation of &’ having (f, 0), L and (0) as its fixes points. With respect
to the results of Section 5 we have

fa(y,a) = fo € Auto(.@, P)

as (AL, ) is a group, hence f = foa(",,la). But Lemma 7.2 gives a, fa) = o(,,—q), hence
f=fo,-qocF.

We have proved that Aut(2, P) < F; according to Lemma 8.4 we get that F =
< Aut(2, P), therefore Aut(?,P) = F. 4

Let again &/’ be the structure from Theorem 8.1. According to this theorem any
collineation of &’ fixing the points (,0)e P and L e h,, is a product of two col-
lineations, the first of which fixes the points (B, 0), L, (0) while the second is a perspec-
tive affinity a, ), a € S with the axis h; and the centre L € h,. Using Theorem 2.4
in [5] we obtain the following

Theorem 8.2. Let the extension s£' of an anti-net of of a degree = 4 have the
properties (rs), (D), (D), (dg) and (R). Then any collineation yeT of o' may
be expressed in the form

'Y = foa(v’a)‘v
where f, = ((pl, @,) is an automorphism of the partition P of the group (P, ++),
O(y,q) € Ay is a perspective affinity with the axis hy and with the centre L e h,, and
t €T’ is a translation from the translation group. The group (T, ) of all collinea-
tions of o' is a subdirect product of the group Aut(2, P) of all automorphisms
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of the partition 2 of (P, ++) and of the translation group (T', ), i.e. (T, ) =
= Aut(.@, P).(T, )

Proof. The correctness of the theorem follows from Theorems 8.1 and 2.4 in [5]
and from the remarks made in Introduction. g
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Sahrn

ANTI-NETS II

(Collineations of anti-nets)

JAROSLAV LETTRICH

Tento &lanok bezprostredne nadvdzuje na ¢lanok ,,Anti-nets I*‘. Je venovany vySctrevaniu
kolinécii antisiete. St tu popisané najprv grupy Specidlnych kolineacii (translana grupa, grupa
homotétii s danym stredom a grupa perspektivnych afinit s danou osou). Potom pomocou
automorfizmov rozdelenia translaénej grupy antisiete je popisand aj grupa vSetkych moZnych
kolineé4cii tejto antisiete. Podmienky existencie jednotlivych grip kolineacii st vyjadrené pomocou
uzaverovych podmienok a ich algebraickych ekvivalentov, vySetrovanych v ,.Anti-nets I“.

Pe3ome

AHTUCETH II

(Konnuneauny aHTHCETH)

JAROSLAV LETTRICH

B craThe, HeNOCPeACTBEHHO IPOAOIKAOIIEH CTATBIO ,, AHTHCETH [, paccMaTpHBArOTCs KOJIIMHEa -
LMY aHTHCeTed. B Hell omuCaHbI MPeXae BCEro IPYMIBI CIEIMAIbHBIX KOJUIMHeauwi (rpynmna nepe-
HOCOB, IPyIa TOMOTETHI C JAHHEIM LIEHTPOM H IPyIa NepCOEKTHBHBIX aGUHUT C AAHHOIL OCBIO).
ITocne Toro ¢ MOMoOLIBI0 aBTOMOPGU3MOB pa3ielieHus I'PYINbl IEPEHOCOB AHTHCETH ONUCAHA TaKXKe
Ipynmna BCeX KOJUIMHEAIMIA AHTUCETU. Y CIIOBHS CYIIECTOBAHMS 3THX I'PYII KOJITMHEALHI BHIPAXKEHbI
YCIIOBHSIMM 3aMBIKAHUSI M UX alre0panyecKuMH 5KBHBAJICHTAMM, IIPUBEJEHHBIMU B ,,AHuTHCeTH I,
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