Jochen Harant; Hansjoachim Walther
Some new results about the shortness exponent in polyhedral graphs

Časopis pro pěstování matematiky, Vol. 112 (1987), No. 2, 114--122

Persistent URL: http://dml.cz/dmlcz/118302

Terms of use:
© Institute of Mathematics AS CR, 1987

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz
SOME NEW RESULTS ABOUT THE SHORTNESS EXPONENT IN POLYHEDRAL GRAPHS

Jochen Harant, Hansjoachim Walther, Ilmenau
(Received October 25, 1982)

Summary. The shortness exponent $\sigma(\Gamma)$ of a family Γ of graphs G is defined as $\sigma(\Gamma) := \liminf_{G \in \Gamma} (\log h(G))/(\log n(G))$, where $n(G)$ or $h(G)$ denotes the number of vertices of G or the maximum number of vertices of G belonging to a circuit, respectively.

The paper deals with shortness exponents of families of regular graphs of polyhedra having the smallest number of types of faces and a shortness exponent < 1.

Keywords: Shortness exponent, polyhedral graphs.

We denote by $n(G)$ the number of vertices and by $h(G)$ the number of vertices in a maximum circuit of a graph G. In the following, we deal with families Γ of graphs containing non-Hamiltonian members G, that means $h(G) < n(G)$ and, moreover, for any $\varepsilon > 0$ there exists a $G \in \Gamma$, such that $h(G)/n(G) < \varepsilon$.

A suitable concept for estimating the length of a maximum circuit is the shortness exponent $\sigma(\Gamma)$ of a family Γ of graphs G:

$$\sigma(\Gamma) := \liminf_{G \in \Gamma} \frac{\log h(G)}{\log n(G)}.$$

In this paper, we only study families of polyhedral graphs. Let us denote by Γ_r, $r \in \{3, 4, 5\}$ the family of all regular polyhedral graphs of degree r. As is well-known, a graph G is polyhedral iff G is planar and three-connected. Let us denote by $\Gamma_r(p_1, \ldots, p_m)$ the subfamily of Γ_r containing at most m types of faces, namely, p_1-gons, p_2-gons, ..., p_m-gons.

J. Zaks [4] searched for the minimum $m(r)$ such that there exist $m = m(r)$ integers p_1, p_2, \ldots, p_m with the property that $\sigma(\Gamma_r(p_1, p_2, \ldots, p_m)) < 1$. P. J. Owens [3] proved that for $r \in \{4, 5\}$ the inequality $m(r) \leq 3$ holds. We can prove

Theorem 1. $m(r) = 2$ for $r \in \{3, 4, 5\}$.

If $\Gamma_r(p(r), q(r)) \neq \emptyset$ and $p'(r) < q(r)$ then $p(3) \in \{3, 4, 5\}$, $p(4) = p(5) = 3$ (see [2]).

We can prove

Theorem 2.

$$\sigma(\Gamma_3(4, K)) \leq \frac{\log 44}{\log 45} \quad \text{for any odd} \quad K \geq 21,$$
In this paper we will only prove the first inequality. (The proofs of the remaining estimates of the shortness exponents indicated in Theorem 2 can be seen from [2].) To this aim we construct a sequence \(\{G_i\} \) of 3-regular polyhedral graphs containing only 4-gons and \(K \)-gons and satisfying

\[
\lim_{i \to \infty} \frac{\log h(G_i)}{\log n(G_i)} \leq \frac{\log 44}{\log 45}.
\]

Let \(G_0 \) be the graph of a cube with exactly one distinguished (black) vertex.

\(G_{i+1} \) arises from \(G_i \) by replacing each of the black vertices by a suitable figure \(Z \) still to be constructed.

Definition. Let \(i, j, m \) be integers and \(G \) be a graph with following properties:

(i) \(G \) is planar, 3-connected and 3-regular.
(ii) \(G \) contains a vertex \(P \) incident with an \((i+1)\)-gon, a \((j+1)\)-gon and an \((m+1)\)-gon. All the other faces of \(G \) are 4-gons or \(K \)-gons.
(iii) \(G \) contains a vertex \(Q \) \((Q \neq P)\) incident with three 4-gons. Exactly one of these vertices will be distinguished. We call it black.

A **figure** \((i, j, m)\) is the object arising from \(G \) by splitting up the vertex \(P \) into 3 half-edges (in Fig. 1 \(G \) is the graph of a cube and we obtain by splitting up an arbitrary vertex a figure \((3, 3, 3)\)).

![Figure 1](image-url)

Let us now construct the figure \(Z \). This construction proceeds in two steps:

Step 1: We start with the figure \(E \) arising from the well-known non-Hamiltonian
Grinberg graph (see [5]) splitting off some vertex (remark: E has the property that a path through E which connects any two arbitrary halfedges leaves out at least one vertex).

Step 2: Each of the vertices of E is to be replaced by a suitable figure (i, j, m) and we obtain the figure Z shown in Fig. 2. As one can easily see, we need eleven different figures (i, j, m), namely $(3, 3, 3), (2, 3, 4), (2, K - 16, K - 17), (2, 3, 9), (2, 3, 8), (2, 3, 7), (2, 3, 10), (8, 9, K - 17), (2, 3, 5), (2, K - 12, K - 13), (2, K - 13, K - 14).

Fig. 3 shows a figure $(3, 3, 3)$.

For constructing the eleven figures (i, j, m) needed let us introduce some operations taking into consideration $2 \leq i, j, m \leq K - 2$ (We use the abbreviation: (i, j, m) $A(u, v, w)$, if we obtain a figure (u, v, w) by applying the operation A to the figure (i, j, m)):

a: $(i, j, m) a(K - i, j + 2, m + 2)$, see Fig. 4 for $K = 13$.

116
Bold-face italics (e.g. \(i, K - i\)) means that the operation is performed at the exterior face the border of which contains \(i\) vertices.

\[
\beta: \ (i, j, m) \beta(i, j + 4, m + 4) := (i, j, m) \alpha(K - i, j + 2, m + 2)
\alpha(i, j + 4, m + 4).
\]

\[
\gamma: \ (i, j, m) \gamma(i + 8, j + 8, m + 8) := (i, j, m) \beta(i, j + 4, m + 4)
\beta(i + 4, j + 4, m + 8) \beta(i + 8, j + 8, m + 8).
\]

\[
\delta: \ (K - 2, j, m) \delta(2, j + 1, m + 1), \text{ see Fig. 5 for } K = 13.
\]

\[
\epsilon: \ (2, j, m) \epsilon(2, j + 1, m + 1), \text{ see Fig. 6.}
\]

\[
\varphi: \ (2, 3 + i, 3 + i + j) \varphi(2, 3, j + 3) :=
:= (2, 3 + i, 3 + i + j) \epsilon(2, 3 + i + 1, 3 + i + j + 1)
\epsilon ... \epsilon(2, K - j - 2, K - 2) \delta
(3, K - j - 1, 2) \epsilon(4, K - j, 2)
\epsilon ... \epsilon(j + 2, K - 2, 2) \delta
j + 3, 2, 3).
\]
\[\psi: (2, 3, j + 11) \psi(2, 3, j + 3) := (2, 3, j + 11) \beta(6, 7, j + 11) \]
\[\alpha(K - 6, 9, j + 13) \beta(K - 2, 13, j + 13) \]
\[\delta(2, 14, j + 14) \varphi_{11}(2, 3, j + 3). \]

Given a figure \((2, 3, 5)\) we get the other seven figures \((i, j, m)\) in the following way.

Fig. 5,

\[\begin{align*}
\text{Fig. 6,} \\
\text{Fig. 7,} \\
\end{align*} \]

\(\cong (4, 6, 7)\)

118
\((2, 3, 5) \varepsilon(2, 4, 6) \alpha(4, 6, K - 6)\) and according to Fig. 7, \((4, 6, 7) \alpha
\(6, K - 6, 9) \beta(10, K - 2, 9) \delta(11, 2, 10) \varepsilon^{K-13}(K - 2, 2, K - 3) \delta(2, 3, K - 2)
\delta(3, 4, 2).

- \((3, 4, 2) \varepsilon^{K-20}(K - 17, K - 16, 2),\) analogously \((K - 12, K - 13, 2)\) and \((K -
- 13, K - 14, 2),\)

- \((2, 3, 5) \beta(6, 7, 5) \alpha(K - 6, 9, 7) \beta(K - 2, 13, 7) \delta(2, 14, 8) \varphi(2, 9, 3).

- \((2, 3, 5) \beta(6, 7, 5) \alpha(K - 6, 9, 7)\) and according to Fig. 8, \((4, 11, 8) \alpha

- \((2, 3, 8) \alpha(4, 7, K - 10) \varepsilon^2(2, K - 2, 15) \delta(3, 2, 16) \psi(3, 2, 8).

- \((2, 3, 5) \varepsilon^2(2, 5, 10) \alpha(4, 7, K - 10)\) see Fig. 9

- \((8, 6, 8) \alpha(10, K - 6, 10) \beta(10, K - 2, 14) \delta(11, 2, 15) \varphi(3, 2, 7).

- \((2, 3, 4) \varepsilon^2(2, 5, 6) \alpha(4, 7, K - 6) \beta(4, 11, K - 2) \delta(5, 12, 2) \varphi(3, 10, 2).

- \((2, 3, 9) \beta(6, 3, 13) \beta(6, 7, 17) \alpha(8, 9, K - 17).

Now, let us construct a \((2, 3, 5)\). We have to distinguish four cases.

Case 1, \(K = 8N + 7, N \geq 2.

\(\gamma^{N-1}(8N - 5, 8N - 5, 8N - 5) \beta(8N - 5, 8N - 1, 8N - 1)\)
\(\alpha(8N - 3, 8, 8N + 1) \beta(8N + 1, 8, 8N + 5) \delta(8N + 2, 9, 2) \varepsilon^2(8N + 5, 12, 2)
\delta(2, 13, 3) \psi(2, 5, 3).

119
Case 2, $K = 8N + 5$, $N \geq 2$.

$$(3, 3, 3) \varphi^{-1}(8N - 5, 8N - 5, 8N - 5) \beta(8N - 5, 8N - 1, 8N - 1)$$

$$\beta(8N - 1, 8N - 1, 8N + 3) \delta(8N, 8N, 2) \epsilon(8N + 1, 8N + 1, 2) \alpha(4, 8N + 3, 4)$$

$$\delta(5, 2, 5) \alpha(7, 4, K - 5)$$
on the one hand according to Fig. 10, $(8, 11, K - 4)$

$$\vartriangle (K-4, 11, 8)$$

Fig. 10,

$$\alpha(10, K - 11, K - 2) \delta(11, K - 10, 2) \beta^2(11, K - 2, 10) \delta(12, 2, 11) \varphi(4, 2, 3);$$
on the other hand, $(7, 4, K - 5) \alpha(9, K - 4, K - 3)$ and according to Fig. 11,

$$\Delta (3, 13, K - 2)$$

Fig. 11,

$$(3, 13, K - 2) \delta(4, 14, 2) \varphi_1(3, 13, 2) \psi(3, 5, 2).$$

Case 3, $K = 8N + 3$, $N \geq 3$.

$$(3, 3, 3) \varphi^{-1}(8N - 5, 8N - 5, 8N - 5) \alpha(8, 8N - 3, 8N - 3)$$

$$\beta(12, 8N - 3, 8N + 1) \delta(13, 8N - 2, 2) \epsilon^2(16, 8N + 1, 2) \delta(17, 2, 3)$$

$$\psi(9, 2, 3) \alpha'(K - 9, 4, 5) \alpha(K - 7, 6, K - 5) \alpha'(K - 5, K - 6, K - 3)$$

$$\alpha(K - 3, K - 4, 3) \alpha(3, K - 2, 5) \delta(4, 2, 6) \varphi(3, 2, 5).$$

Case 4, $K = 8N + 1$, $N \geq 3$.

$$(3, 3, 3) \varphi^{-1}(8N - 5, 8N - 5, 8N - 5) \alpha(6, 8N - 3, 8N - 3) \alpha(8, 4, 8N - 1)$$

$$\delta(2, 9, 5) \epsilon(10, 6, 2) \alpha(12, K - 6, 4)$$
together with $(*)$ according to Fig. 12 yields

$$(5, 10, 14) \alpha(7, K - 10, 16) \beta^2(15, K - 2, 16) \delta(16, 2, 17) \varphi_{13}(3, 2, 4) (**).$$
From (*) we get \((9, 5, 2) \) \(\varphi_2(7, 3, 2) \alpha(9, K - 3, 4) \) together with (**) according to Fig. 13 yields a \((5, 7, 10) \) \(\alpha(7, 9, K - 10) \) \(\beta(7, 13, K - 6) \) \(\beta(11, 13, K - 2) \) \(\delta(12, 14, 2) \) \(\varphi_3(3, 5, 2) \).

In all cases we have found a figure \((2, 3, 5) \), that means for all odd \(K \geq 21 \) we have found the necessary eleven types of \((i, j, m)\) listed in Step 2.

Constructing the figures \((i, j, m)\) needed we have always started with a figure \((3, 3, 3)\), that means, each figure \((i, j, m)\) contains at least one vertex incident with three 4-gons. Hence the figure \(Z \) contains exactly 45 black vertices and an arbitrary path through \(Z \) connecting any two halfedges avoids at least one black vertex. Obviously \(Z \) is a figure \((K - 3, K - 3, K - 3)\).

By induction, if \(G_t \) contains only 4-gons and \(K \)-gons (which is really true for \(l = 0 \)), then after replacing all black vertices of \(G_t \) by a figure \(Z \), the resulting graph \(G_{t+1} \) has only 4-gons and \(K \)-gons as well.

The estimate \(\log 44/\log 45 \) for the shortness exponent may be established in an analogous way as in [1]. Obviously, the number of vertices increases by the factor 45, but the number of vertices in the longest circuit only by the factor 44 if we pass from \(G_t \) to \(G_{t+1} \).
The following problems remain unsolved:
1. What holds in the open cases of Theorem 2, \(K \equiv 0 \pmod{5} \) for \(\Gamma_3(5, K) \) and \(K \equiv 0 \pmod{3} \) for \(\Gamma_4(3, K) \) and \(\Gamma_5(3, K) \)?
2. Conjecture: \(\sigma(\Gamma_3(3, K)) = 1 \) for all \(K \leq 11 \) (obviously, \(\Gamma_3(3, K) = \emptyset \) for \(K \geq 12 \).

References

Souhrn

NOVÉ VÝSLEDKY O ,,SHORTNESS EXPONENTU“ POLYEDRICKÝCH GRAFŮ

JOCHEN HARANT, HANSJOACHIM WALTER

Exponent \(\sigma(\Gamma) \) (,,shortness exponent“) soustavy \(\Gamma \) grafů \(G \) je definován jako \(\sigma(\Gamma) = \liminf (\log h(G)) / (\log n(K)) \), kde \(n(G) \) resp. \(h(G) \) znamená počet vrcholů \(G \) resp. maximální počet vrcholů \(G \), patřících cyklu. V práci se studuje exponent \(G(\Gamma) \) soustav regulárních polyedrických grafů, které mají nejmenší počet typů stěn, a pro něž platí \(\sigma(\Gamma) < 1 \).

Резюме

НОВЫЕ РЕЗУЛЬТАТЫ О ,,ПОКАЗАТЕЛЕ КОРОТКОСТИ“ ПОЛИЭДРИЧЕСКИХ ГРАФОВ

ЙОХЕН ГАРАНТ, ХАНСЙОАХИМ ВАЛТЕР

Показатель \(\sigma(\Gamma) \) (,,показатель короткости“) системы \(\Gamma \) графов \(G \) определяется формулой
\[
\sigma(\Gamma) = \liminf_{G \in \Gamma} (\log h(G)) / (\log n(\Gamma)),
\]
где \(n(G) \) и \(h(G) \) обозначают соответственно число вершин графа \(G \) и максимальное число вершин графа \(G \), принадлежащих циклу. В работе изучается показатель \(G(\Gamma) \) систем регулярных полиэдрических графов, имеющих наименьшее число типов граней и удовлетворяющих \(\sigma(\Gamma) < 1 \).

Authors' address: Technische Hochschule Ilmenau, Postschliessfach 327, DDR-6300 Ilmenau.