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112(1987) ČASOPIS PRO PĚSTOVÁNÍ MATEMATIKY No, 2,197—-208 

NOTE ON CONTRACTIVITY OF THE NEUMANN OPERATOR 

DAGMAR MEDKOVA, Praha 

(Received September 18, 1984) 

Summary. The paper deals with the Neumann operator on the space of signed measures on 
boundary, for which the measure of the whole space equals zero. An example of a set, the comple­
ment of which is a non-convex bounded set, and at the same time the corresponding Neumann 
operator is contractive on this space, is shown. 

Keywords: generalized normal derivative, perimeter, hit. 
AMS classification: 31B20. 

It was shown in [l] that the Neumann problem for the Laplace equation on an 
open set G — Rm (m = 2) with compact boundary dG = B can be investigated 
without apriori smoothness restrictions on B. The corresponding generalized problem 
leads to the operator equation 
(1) (I + U)v = 2n 

on ^'(B), the linear space of all finite signed measures carried by B. Denote r€0(B) : = 
:= %>'(B) n {v; v(B) = 0}. Both spaces are Banach spaces with respect to the norm 
defined as the total variation. 

Let us recall some facts: necessary and sufficient conditions to have (J + U) v e 
e <g'{B) for every v e %'(B) were obtained by Krai (see [1], Theorem 1.13). If G is 
unbounded, then \\U\\ =" 1 if and ond if C := Rm — G is convex. If C is convex then 
\\U\\ = 1 and, moreover, necessary and sufficient conditions for contractivity of U 
on the space ^0(B) (which go back to C. Neumann) are known; see [1], Theorem 3.1, 
Theorem 3.5. Thus the following two problems are of interest: Under which con­
ditions on G is it true that (I + U)ve <g'(B) for each v e %(B)1 Is the convexity of C 
also a necessary condition for U to be a contractive operator on ^0(B) provided G 
is unbounded? 

In our text we use the same notation as in [1], but for the sake of convenience 
we recall some definitions. 

Let us examine the Neumann problem for the Laplace equation on an open set 
G c: Rm (m _ 2) with a compact boundary B. We define the generalized normal 
derivative of a function h harmonic in G as the distribution 

<<p, NGh} = grad <p(x) grad h(x) dx , <p e 9) 
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provided |grad h\ is integrable on every bounded open subset of G; as usual, @ =• 

= S)(Rm) stands for the class of all infinitely differentiable functions with compact 

support in Rm. Then NGh is a distribution with a support in B (see [1], Remark 1.2). 

Given a finite signed measure ji with a support in B we seek for a function h harmonic 

in G, such that NGh = \i. Suppose for a moment that G is bounded by a smooth 

closed surface B with the area element ds and the exterior normal n = (nu ..., nm), 

and that the partial derivatives with respect to the i-th variable dth (i = 1,..., m) 

extend from G to continuous functions on the whole G u B; the Gauss-Green 

formula yields 
/• m 

(<p,NGhy= ^(Xn.-^ds, ^ e ^ 
/• m 

Jв >=i 

Consequently, NGh is a natural weak characterization of the normal derivative 

Yjii d(h = dhjdn and the above problem is a generalization of the classical Neumann 

problem. 

We shall try to find the solution h(x) of the Neumann problem in the form of 

a potential 

qi v(x) = j hz(x) dv(z) , 
J Rm 

where 

K(x) = \x - Z|2"m if m > 2 , 
W (m - 2) A ' ' 

- log - - if m = 2 ; 
A \x — z\ 

here A = Am = 27cm/2/F(m/2) is the area of the unit sphere in Rm and v denotes 

a finite signed measure with support in B. Since °Uv is a harmonic function on Rm — B, 

our problem reduces to finding such v e %>f(B) that 

1VG^v = ii. 

We denote by Qr(y) the ball with radius r and centre y, and by xk the fc-dimensional 

Hausdorff measure. It suffices to investigate our problem only for those sets G for 

which the boundary B coincides with deG = {y e Rm; Vr > 0: ycm(Qr(y) n G) > 0, 

xJ<Pr(y) — G) > 0}, the essential boundary of G (see [ l ] , Remark 1.14). In what 

follows we assume that B = deG. 

For the investigation of NG^ we shall introduce several useful concepts. A point 

yeSczRm will be termed a hit of S on G if for every r > 0 both xx(Qr(y) n S n G) > 

> 0 and ^(^.(.y) n (S \ G)) > 0 hold. (In our applications S will usually be a straight 

line or a half-line.) Put 

i>G(y) = sup J grad i//(x). grad hy(x) dx ; i/>e0, l i A l ^ 1 , 
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spt ф c= Rm - {y}\, 

where spt \J/ denotes the support of \j/ and grad if/ = (d^, ..., dm\\/) is the gradient 
of \j/. According to [1], Corollary 1.11, 

vG(y) = ^\nG(o,y)*xm-ÁO) 

where F is the unit sphere and nG(6, y) is the number (possibly 0 or + oo) of all hits 
of {y + tO; t > 0} = P(.y, 0) on G, for each OeT. 

Theorem 1. NGW maps <€'(B) into <£'(B) if and only if 

VG = sup vG(y) < oo . 
yeB 

Proof. See [1], Theorem 1.13. 

Now we prove a similar theorem for the space ^0(B). We define the perimeter of 
the set G by 

P(G) = sup div w(x) dx , 
w JG 

where w = (w l 5 . . . , wm) runs over all vector-valued functions with components 
Wj e Qs such that |w|2 = ]_w? ^ 1, and where div w(x) = J] ^Wj(x) is the divergence 
of Wi Denote 

P^G) = sup | f 3^(x) dx; ^ e •?, |«/r| ^ l i for / = 1, . . . , m, 

Lemma 1. 
m 

sup Pi(G)^P(G)^Y.HG) 
i= l , . . . ,m i = l 

P/G) = P?(yi, —,yi-u yi + i , . . . , ym) dy! . . . dyi_! dy i + 1 . . . dym, 
JR—-

w/?ere Pf(yi, . . . ,y i_ i , yi+i5.... ym) *s - ^ number (possibly 0 or -f-oo) of all hits 
of{(yi,...,yi-i,t,yi+i9...,yn); teR} on G. 

Proof. See [2], Definition 2, Definition 15, Lemma 11 and Lemma 17. 

Lemma 2. If NG%v e W(B) for each v e %(B) then P(G) < oo. 

Proof. We distinguish two cases: 
1) For every xe B there are z 1 , . . . , zm + 1 e B — {x} such that the matrix 
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( \ ( z1 - x _ z w + 1 - x zm - x __ zm+1 - X \ 
W Viz1 - x | m | z m + 1 - x | m ' ' " ' | z m - x | m | z m + 1 - x|m/ 

is regular. 
2) There is an x e B such that the matrix (*) is singular for every z1, ,.., z m + 1 e= 

eB - {x}. 
Let us consider the case 1. According to Lemma 1 it suffices to prove that P/G) < 

< oo for j = 1,..., m. Let, for example, j = 1. If x e B then there are z1, ..., z m + 1 e 
e B — {x} such that the determinant D(z1, ..., z m + 1 , x) of (*) is not 0. Since the 
determinant D(z1,..., zm+1, •) is a continuous function on Rm — {z1, ..., z m + 1 } , 
there exists r(x) > 0 such that Qr{x)(x) n {z1, . . .,zm + 1} = fland^z1, ..., z m + l , >•) * 
=j= 0 for each y e Qr(x)(x). Thus the vectors 

( z 1 - j ; ) / ^ 1 - y|m - (zm+1 - y)j\zm+1 - y\m,...,(zm - y)j\zm - y\m -

- ( z m + 1 - j ) / | z m + 1 - y\m 

are linearly independent for all y e Qr(x)(x); such a ball can be found for every x e B. 

Since B is compact and B c U^i-ooC*); * e -̂ }? there are x1, ..., xn e B such that 

B c U Q r ( o(^0 , 
i = l 

where r(i) = r(x'). There are a 0 , . . . . a„e C°°(Km) such that 0 ^ af = 1, ]Ta,. = -
on G, spt a 0 c G and spt a,- cz O^.^x1') for i = 1, ..., n. Since 

дiФ(x) dx = ^ «/(*) ^ ( x ) dx 
J G Í = 0 J G 

for any xj/ e Q) it suffices to prove that 

< oo sup i í ař(x) a ^ ( x ) ; tfr e 2, \ý\ ú l | 

for i = 0,..., n. Since 5 1a 0 e ^ we have for i = 0 

a0(x) d^x) dx \ = \\ Xo(x) ̂ i^(x) dx = — i/^x) O\a0(x) dx 
I J G I \jRm JR™ 

= ľ |ði«oW| 
JRm 

dx < oo 

Now let i e { l , . . . , « } , for example i = 1. There are z1, . . . , zm + 1 e B such that 
(z1 - x)/|zx - x|m - (zm + 1 - x)/ |zm+1 - x|m, . . . , (zm - x)/|zm - x|m -
(zm + 1 — x)/|zm+1 — x|m are linearly independent vectors for all x e spt a1# Therefore, 
there are ak(x) e C00(.Qr(1)(x

1)), the space of all infinitely differentiable functions 
on Q^^x1), such that 

к=l 

(1, 0, 0,..., 0) = £\aк{x){{zк - x)j\zк - x\m - ( z m + 1 - x)j\zm + 1 -x\m) . 
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I 
í 

fc=l 

Denote by 5X the Dirac measure with the support {x}. If \j/ e 3, |^| g 1 then we have 

ai(x) di*/>(;v) dx 

«i W X ((2* - x)l\zk - x\m - (zm+x - *)/ l z m + ' - X D **(*) • § r a d *KX) dx = 
k = l 

f ((z* - x)/|z" - x|m - (zm+x - x)/|zm+»- x|m). grad («.(*)a*(x) ^(x)) dx -

((-* - x)/|z* - x|m - (zm+1 - x)/|zm+1 - x|m) . 

. \l/{x) grad (oc^x) a*(x)) dx 

m 

< X [<NC^(^ - tW,), ai(x)ak(x)^)>| + 
fc = l 

+ 1 l(z* - *)/lz* - Am - (zm+l - *)/l z m + 1 - Am\ | g r a d ( « i W «*(*)), <** ^ 
"=lJo 

m 

< £ ||Nc^2,-5z,„+1)||sup|a t(x)| + 
fc=l jcєsptai 

+ 1 
fc=l 

{\zk - x | 1 _ m + |z m + 1 - x | 1 _ m ) |grad (^(x) ak{x))\ dx < oo 
sptai 

Remark that sice 5zk - dzm+i e %'0(B) we have NGW(Szk - Szm+i) e #'(£), and that 
(|z* - x|1_m + |zm+1 - x|1-m) jgrad (at(x) ak(x)) is a finite continuous function 
on spt at and (xt(x) ak(x) \//(x) e 3). Thus the perimeter of G is finite. 

Consider now the case 2. There is an x e B such that the matrix (*) is singular 
for every z1 , . . . ,zm + 1GB — {x}. To simplify the situation we may assume that 
x = 0. Thus for all z e B — {0} the points Z/|Z|m are located in a single hyperplane L. 
We may select such a coordinate system preserving the origin that L = {y; y1 = t] 
for some t = 0. Thus zt = t|z|m for every z e B and hence 

(2) •41-І?)" - - ? = o • 
1=1 

If t = 0 then B c: {z; zx = 0} and an easy calculation yields P(G) = 0. Let t > 0. 
According to Lemma 1 it suffices to prove that Pt(G) < oo for 1 = 1,..., m. Fix i. 
Every hit z of {(yl5..., yt-l91, yi+1,..., ym); teR}onG lies in 5. Such z satisfies 
(2) and z} = y} for jr =f= i. Since *2Q_Zy)m — zj is a nonzero polynomial in the variable 
z( the order of which does not exceed 2m, for fixed z l 5 . . . , zi_1,..., zm there exist 
at most 2m different solutions of the equation (2). Thus 
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P?(yi,—>yt-i>yi+u-»>ym)£2™ for any choice of yi9..., y{-u yi+i,...,ym. 

Since B is compact there is K > 0 such that B <= QK(0). It follows from Lemma 1 that 

-°.(G) = h - 1 Pf(yi, . . . , y i - i , y i + i, . .My w )d j ; 1 . . . dy l . _ 1 dy i + 1 . . . dy m g 
J 11 <-*.*> 

1 = i 

^ 2m(2K)m"1 < oo 

and hence P(G) < oo again. 

Theorem 2. NG^v e V'(B)for each v e %(B) if and only if VG < oo. 

Proof. If VG < oo then NG^v e ^'(B) for each v e #'(£) according to Theorem 1. 
Now let us suppose that NG°Uv e ^'(B) for each v e %(B). With any cp e 9 we 

associate the linear functional L^ on ^0(B) defined by 

<v,L^> = <<p,NG^v>, ver0(B). 

If P^ = G n spt <p and c^ = sup {|grad <p(x)\; x e Rm}9 we have 

<v, L^> = grad <p(x) . grad hy(x) dv(y) dx ^ 
J G J B 

^ |grad <p(x) . grad fcy(x)| dx d|v| (y) ^ 
J B J G 

f f \\x- yrm dx d|v| (y) ^ C(P diam (P„ u B) || v|| . 

Thus L^ is a bounded linear functional on the Banach space ^0(B). If v e #0(#) 
then NG^ve<T(B). But NGqive<$'(B) if and only if sup {{<p, NG^v>; <p e 0 , 
\<p\ g 1} < oo. Hence 

sup {<v, L„>; <p G 0 , | ? | = 1} = sup {<<p, NG^rv>; <p e 9, \<p\ g 1} < oo . 

Applying the uniform boundedness principle we obtain 

sup | | L j < oo . 
<pe&,\<p\gl 

Thus there exists an M such that 0 < M < oo and 

(3) |<<p,NG^v>|^MJ|v|| 

for each <p e Q), \<p\ g 1, v e #0(B). 
Now let xe B. Choose y e B - {x}, 0 < <5 < \x - j/ |/2. Since P(G) < oo, 

P(G — Q d(y)) < oo is valid. According to [1], Proposition 2.11 we have 

ûeл 

A 
< 00 
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where H = G - Q5(y). I f> e 0 , |^ | = 1, spt \j/ c G/x) then 

Í, grad i^(z) . grad hx(z) dz 

^ grad ^(z) . (grad hx(z) - grad hy(z)) dz 

+ grad ^(z) . grad hy(z) dz ^ 2M + grad \J/(z) . grad hy(z) dz 
IJ G I I J // 

= 2M + Ay) . 

Therefore, for every x e 5 there are r(x) > 0 and 0 < K(x) < oo such that 

1 grad i/^z) . grad hx(z) âz = ад 

for each \J/ e 29 |i//| ^ 1, spt ^ c O r ( x )(x). Since (J -2r(jc)(x) .3 B and B is a compact 
n xeB 

set, there are x1, . . . , x n e H such that U Gr^C*1') :-> 5, where r(i) = r(x'). Further, 
i = l 

for i = 1,..., w there exist a,- e 0 , 0 ^ af ^ 1, spt a ; c :Qr(i)(x') such that a = ^ a f 

coincides with 1 on the neighbourhood of B. 
Let x e B, ^ e ®, |i//| ^ 1. Since ^ . a = i/> on the neighbourhood of B, it is true, 

according to [1], Remark 1.2, that 

Í, 
= E 

i = l 

grad iД(z) . grad hx(z) àz 

grad (ф(z) . a(z)) . grad hx(z) åz 

grad (a4(z) ^(z)) . grad hx(z) áz 

= z 
i = l 

grad (aÄ(z) ^(z)) . (grad hx(z) - grad /^.(z)) dz 

+ z grad (ař(z) i>(z)) . grad hx{z) áz 

n 

й 2Mn + £ K(xl). 

Hence vG(x) = 2Mn + £.K(*0 and VG = 2Mn + £K(x1') < °°-

It is possible to verify that if VG < oo then NGWv e %(B) for each v e %(B). 
(See [1], Proposition 2.8 and Proposition 2.20.) Now we shall investigate NG^ as 
an operator on the space # '(#) under the assumption VG < oo. If we suppose VG < oo 
then the operator NG<JU is even a bounded linear operator on ^'(B). But the inves-
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tigation of the operator U = 2NG(JU — I is more convenient than the investigation 
of the operator NG°U. Thus our problem is reduced to the study of the equation (1). 
For every v e %>'(B) and for every f e %>(B) we have 

<f, ílv> = ţf(z)dф)dv(x), 
вj в 

where rx is for every xe B a. finite signed measure on B and dxx(z) = [2dG(x) — 1] . 
.d5x(z) - 2nG(z).grad/zJC(z)dxrm_1(z) (see [1], pp. 72, 73 and Proposition 2.20). 
We denote by 

dG(z) = lim xm(Qr(z) n G)jxm(Qr(z)) 
r-0-. 

the density of G at z and by nG(z) Federer's normal of G at z. A vector nG(z) G T is 
termed Federer's normal of G at z G Rm, if the symmetric difference of G and the 
half-space [x e Rm; (x — z). nG(z) > 0} has the m-dimensional density equal to 
zero at z; otherwise we put nG(z) = 0. If there is such a vector nG(z), then it is unique 
and thus the ordinary interior normal of G at z and Federer's normal of G at z 
coincide, provided the former exists. The measure TX is supported by B = {z e Rm; 
\nG(z)\ > 0}, the reduced boundary of G. 

The operator U is a dual operator to the Neumann operator of the arithmetical 
mean (see [1], Proposition 2.20, and the notation on p. 72) which acts on ^(B), 
the space of continuous functions on B with the usual sup norm. But the Neumann 
operator can be defined as an operator on ^(B) not only for any open G but even 
for any Borel set G with compact boundary B provided dB = deB and VG < co 
(VG is defined in the same manner as in the case of an open G) (see [1], Chapter 2). 
Moreover, TG = — Tc, where TG is the Neumann operator corresponding to G 
and C is the complement of G (see [1], p. 73). Thus we may examine the Neumann 
operator corresponding to C instead of that corresponding to G, and hence to restrict 
ourselves e.g. to unbounded sets. 

If the operator U were a contractive operator on ^'(B) the solution of (l) would 
have a form v = 2]T( — if Ukii. If G is unbounded then ||U|| __ 1 if and only if C 
is convex (see [1], Theorem 3.1). If C is convex then ||U|| = 1 (see [1], Remark 3.2), 
so that U cannot be contractive on ^'(B); fortunately, there is just one Q G ^'(B) 
such that UQ = Q and Q(B) = 1. If U is contractive as an operator on ^0(B) then we 
can find the solution of the equation (1) in the form 

v = »(B) Q + 2 £ ( -1)* Uk(ii - »(B) Q) 
fc = 0 

for each \i e # '(£). Indeed, since (p — ix(B) Q) G %(B) and U is contractive on %(B) 
we have _JU<fy - fi(B) Q)\\ = _]||t/||0 \\l* - KB) Q\\ < °°> w h e r e l lu |o is the 
norm of U on %(B), and the series ]T(-1)*UV - ju(£) Q) converges in <$'(B). 
Further, we have 
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(/ + U) v = (/ + U)Џ(B)Q + 2(1 + UШ-1)* Uk(џ - Џ(B)Q) -
fc = 0 

2џ(B)Є + 2ү(-l)kUk(џ-џ(B)в) + 
fe = 0 

+ 2 £ (-1)* U*+*(/* - /<_?) .) = 2 ,_(_.) e + 2(/i - K^) (?) = 2^ 
Jc = 0 

and thus v is the solution of the equation (l). Denote by QX(C) the smallest closed 
cone with vertex x containing C. If C is convex then U is contractive on ̂ 0(B) if and 
only if QX(C) n Qy(C) + C for every couple of points x, y e B (see [1], Theorem 3.5). 

Example 1. Let us consider G = R2 — cl _2_(0). Since cl Q^(0) is a convex set, 
we have ||U|| = 1. Now we are going to examine U on ^0(B). If x, z e 2?, x =f= z 
we denote 
(4) e(*, z) = nG(z) . grad hx(z) . 

Since dG(x) = _• and nG(z) = z we have 

. v 1 x — z 1 — 1 - f z . x 
e(x'z) = z-Aj7T7p = Airqr- = 

1 - |x|2 + 2z.x - |z|2 _ - 1 
~ 2A |x - z|2 ~ 2A * 

If/eV(B), veV'0(B) then 

<ft!v>= 1* í/(z)dTJC(z)dv(x) = 
J B J B 

- f j* 2É?(x,z)/(z)d;ím_1(z)dv(x) = 
J BJ B 

- f f ^/(z)dxm_1(z)dv(x) = 0. 
JB J B I B J B A 

As a consequence we can easily derive that ||U||0 = 0 < 1 = \\U\\. 

We need C convex only for [|l7|| __ 1. We know, however, that it may happen 
that || 171| 0 < || 171|. In fact, inequality ||U||0 < ||U|| = 1 holds for all convex C with 
the only exception described above, and for all such cases U is contractive. In the 
second part of this note we shall present an example showing that the condition "C is 
convex" is not necessary for the contractivity of U on ^0(B). 

In R2 consider C = cl J2_(0) u cl -2_(a), where 0 < a < 1/18 is fixed. It follows 
from [1], p. 77 that U is contractive on %>'0(B) if and only if there is a q < 1 such that 

(5) fa ~ h\\ = 2<Z 

for each x, ye B. For every x, y e B we shall prove the inequalities 
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(6) IK - T J = ||T,|| + | T , | - 2/3 , 

(7) I T , ! £ 1 + 1 / 4 

from which we shall obtain 

1 ^ - ^ = 2 . 1 1 / 1 2 

and eventually, with the help of (5), the required contractivity of U on %>'0(B). 
For every x, y e B, x + y (cf. notation (4)) we have 

K - T,|| = \2 dG(x) - 1| + |2 dG(y) - 1| + f 2|C(x, z) - ,(y , z)| dx.fz) . 

If z = (z1? z.2) does not coincide with x, y and zx < 0 or zt > a then x, y belong 
to the same halfplane determined by the tangent line to B at z and Q(X, Z), Q[y, z) are 
of the same sign. Hence for x, y e B, x 4= y we have 

| | T J C - T , | | ^ | 2 d G ( x ) - l | + | 2 d G ( j ; ) - l | + 

+ 2 [max (\Q(X, Z)\, \Q(y, z)\) - min (\Q(X, Z)\, \Q(y, z)|)] dxx(z) + 
J{zeB;z,*<0,«>} 

+ 2 \Q(X, Z) - Q(y, z)\ dxx(z) . 
J{zeB;zie(0,fl)} 

The estimate of the integrand in the second integral from above by \Q(X, z)\ + 
+ \Q(y, z)\ and the relation \Q(X, Z)\ + \Q(y, z)\ = max (\Q(X, Z)\, \Q(y, z)\) + 

+ min (\Q(X, z)\, \Q(y, z)\) give after an easy calculation the inequality 

(8) ||TX - T J = |T, |1 + | | T , | - 4 f min (\e(x, z)\, \Q(y, z)\) dx.(z) . 
J{zeB;Zl£<0,a>} 

To obtain (6) we need a lower estimate for the integral in (8). Since for every x, z e B, 
zY < 0 

2|б(x,z)| = l | 2 2 . ( Z - x ) / | z - x | 2 | = l 
zҡ Zҡ 

1 ________! 
Iz - xV 

one gets for x e dQt(0) immediately 2\Q(X, Z)\ = l/(2ix); for x e B — dQ^O), \z2\ £ 
£ V^/- ( s e e ^ e figure) with the help of \x — z\ ^ sin ix/6 = 1/2 we obtain (|x|2 — 
- l)/|z - x|2 £ 1/2 and thus 

(9) 2 | , ( * , z ) | =
1 

4к 

Symmetry of C allows us to conclude that for zeB, zy $ <0, a> and | z 2 | ^ \]^j2 
we can use (9) to estimate the integral in (8). Since the length of the corresponding 
part of B equals 2TC/3 we easily obtain (6). 
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To prove (7) we can restrict ourselves to those x e B for which |x| = 1. Since 
xx = Udx, it may be easily verified that the function x -» \\zx\\ is a lower semiconti-
nuous function on B. Thus it suffices to prove (7) only for xeB such that xL e 
e < - l , 0) u (0, a/2). [1], Proposition 2.8 yields 

|HI = |2 dG(x) - 1| + 2 J \Q(X, Z)| dx,(z) = 2 vG(x) = 

= - f nG(0, x) dx^O). 
njr 

For any xeB, x t < 0 the ray P(x, 0) intersects B if and only if x . 0 < 0. Let us 
investigate rcG(0, x) in this case. Clearly 1 g nG(0, x) _ 3, and convexity of circles 
gives nG(0,x) = 1 for the corresponding 0's and y = (yu y2) e dQ^O) such that 
yj < 0 or yx > a/2 (see again the figure). Thus 

-[ 1 dx.(0) + i f 2dx.(0)! 

where M . = { 0 6 r ; x . 0 < 0}, M2 = {0eT; P(x, 0) n {>> e dG.(O); O ^ j ^ 
g a/2} 4= 0}. 

(0 ,1 ) 

(o.-D 

For the first integral, the ^-measure of the set Mj is obviously equal to n and an 
elementary geometrical reasoning gives in the second case the value 2co, where co is 
the magnitude of the angle -K KXE (for the chords we have KE = LF), where 
E = (0, 1),F = (0, -1 ) . Hence Ĥ U = 1 + 1/8. The same estimate can be established 
for x e B with xt > a. 

Using the symmetry of B it is enough to proceed by analogy for x e B with 0 < 
< xx < a/2 and x2 > 0. It is easily seen that for such xeB for which P(x, 0) 
contains y e dQ^O), y 4= x, we have nG(0, x) = 1 unless y = (yl9 y2) is such that 
*i < yi < a/2, yi > 0. For 0 e P, 0 . x > 0 we have nG(0, x) = 2. Recall that the 
vector (^/(l — a2/4), a/2) is a tangent vector of dQt(a) at the point (a/2, ̂ /(l - a2/4)). 
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It is easily seen that nG(0, x) = 0 unless 0Y > 0, 02 = a/2. Since nG(0, x) = 3 for 
all 0 G r we have 

- f ldx^fl) + - [ 2 dx.(fl) + - [ 2 dx.(fl), 
яjltf, ^JA/З ^ J M З 

where Mt = {0 e F; x . 0 < 0}, M2 = {0 e F; P(x, 0) n {y e 30.(0); y2 > 0, xx < 
< yt < a/2} + 0 , M3 = {0 e F; 0 . x > 0, 0t > 0, 02 = a/2}. Recall that 
(7(1 - a2/4), -tf/2) is a tangent vector of dOx(0) at the point (a/2, y/(l - a2/4))-
We have 

| |TX | | = 1 +-:^({0GF; 0 X > O , 026(-a/2,a/2)})= 1 + — ^ 1 + i . 
71 71 

I would like to call reader's attention to the reprint by W. Winzell [3] that reached 
me after the completion of the present paper. B. Winzell characterized the domains 
with a smooth boundary (of class C2), for which the operator U is contractive on 
r0(B). 
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Souhrn 

POZNÁMKA O KONTRAKTIVITĚ NEUMANNOVA OPERÁTORU 

DAGMAR MEDKOVÁ 

V článku se zkoumá Neumannův operátor na prostoru znaménkových měr na hranici, pro 
něž je míra prostoru rovna nule. Ukazuje se příklad množiny, jejíž doplněk je nekonvexní omeze­
ná množina a přitom příslušný Neumannův operátor je na tomto prostoru kontraktivní. 

Резюме 

ЗАМЕТКА О КОНТРАКТИВНОСТИ ОПЕРАТОРА НЕЙМАНА 

DAGMAR MEDKOVÁ 

В статье изучается оператор Неймана на пространстве зарядов на границе, для которых 
мера пространства равняется нулю. Приводится пример множества, дополнение которого 
является ограниченным невыпуклым множеством и притом соответствующий оператор 
Неймана является сжимающим на этом пространстве. 

Authoťs address: SVÚSS, 250 97 Praha 9 — Běchovice. 
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