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NOTE ON CONTRACTIVITY OF THE NEUMANN OPERATOR
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Summary. The paper deals with the Neumann operator on the space of signed measures on
boundary, for which the measure of the whole space equals zero. An example of a set, the comple-
ment of which is a non-convex bounded set, and at the same time the corresponding Neumann
operator is contractive on this space, is shown.
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It was shown in [1] that the Neumann problem for the Laplace equation on an
open set G = R™ (m = 2) with compact boundary 6G = B can be investigated
without apriori smoothness restrictions on B. The corresponding generalized problem
leads to the operator equation
(1) I+U)v=2u

on ¢'(B), the linear space of all finite signed measures carried by B. Denote €4(B) :=
:= ¢'(B) n {v; ¥(B) = 0}. Both spaces are Banach spaces with respect to the norm
defined as the total variation.

Let us recall some facts: necessary and sufficient conditions to have (I + U)ve
€ ¢'(B) for every ve %'(B) were obtained by Krél (see [1], Theorem 1.13). If G is
unbounded, then [U[| < 1if and ond if C := R™ — G is convex. If C is convex then
[U]l = 1 and, moreover, necessary and sufficient conditions for contractivity of U
on the space €o(B) (which go back to C. Neumann) are known; see [1], Theorem 3.1,
Theorem 3.5. Thus the following two problems are of interest: Under which con-
ditions on G is it true that (I + U) v € ¥’(B) for each v € €5(B)? Is the convexity of C
also a necessary condition for U to be a contractive operator on %’,(B) provided G
is unbounded?

In our text we use the same notation as in [1], but for the sake of convenience
we recall some definitions.

Let us examine the Neumann problem for the Laplace equation on an open set
G = R™ (m 2 2) with a compact boundary B. We define the generalized normal
derivative of a function # harmonic in G as the distribution

{@, Nh) = ,[ grad ¢(x) grad h(x)dx, ¢e9
G
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provided |grad h] is integrable on every bounded open subset of G; as usual, 2 =
= 9(R™) stands for the class of all infinitely differentiable functions with compact
support in R™. Then Nh is a distribution with a support in B (see [1], Remark 1.2).
Given a finite signed measure p with a support in B we seek for a function h harmonic
in G, such that N°h = u. Suppose for a moment that G is bounded by a smooth
closed surface B with the area element ds and the exterior normal n = (n, ..., n,),
and that the partial derivatives with respect to the i-th variable 8;h (i = 1, ..., m)
extend from G to continuous functions on the whole G u B; the Gauss-Green
formula yields

{p, N°h) =I¢(Zni6ih)ds, 0eD.
B =1

Consequently, N°h is a natural weak characterization of the normal derivative
Y'n; ;h = 0h/on and the above problem is a generalization of the classical Neumann
problem.

We shall try to find the solution h(x) of the Neumann problem in the form of
a potential

U v(x) = J;... h.(x) dv(z),

where
hz(x)=m|x—z]2"" if m>2,
1
Ly it m=2;
Aog|x—z| nem

here A = A,, = 2n™2[I'(m|2) is the area of the unit sphere in R™ and v denotes
a finite signed measure with support in B. Since #v is a harmonic function on R™ — B,
our problem reduces to finding such v € ¢'(B) that

Nuv = yu.

We denote by ©,(y) the ball with radius r and centre y, and by 2, the k-dimensional
Hausdorff measure. It suffices to investigate our problem only for those sets G for
which the boundary B coincides with 3,G = {y € R™; Vr > 0: %,(2(y) n G) > 0,
%n(2/(y) — G) > 0}, the essential boundary of G (see [1], Remark 1.14). In what
follows we assume that B = 0,G.

For the investigation of N°% we shall introduce several useful concepts. A point
y € S = R™ will be termed a hit of S on G if for every r > 0both %,(2,(y) n S " G) >
> 0and %,(2,(y) N (S\ G)) > O0hold. (In our applications S will usually be a straight
line or a half-line.) Put

v5(y) = sup{J~ grad Y(x) . grad h(x)dx; ve2, |y =1,
G
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P
where spt ¥ denotes the support of Y and grad ¥ = (d,y, ..., 8,¥) is the gradient
of Y. According to [1], Corollary 1.11,
1

W(y) = 1 an(o, 3) dr-1(0),

A
where I' is the unit sphere and n%(0, y) is the number (possibly 0 or + c0) of all hits
of {y + 10;t > 0} = P(y, 0) on G, foreach 0 e I.
Theorem 1. N°% maps €'(B) into ¢'(B) if and only if

V¢ = supv%(y) < .

yeB

Proof. See [1], Theorem 1.13.

Now we prove a similar theorem for the space %;(B). We define the perimeter of
the set G by ‘

P(G) = supj div w(x) dx,
w Je

where w = (wy,...,w,) runs over all vector-valued functions with components
w; € @ such that |w|> = Yw} < 1, and where div w(x) = Y. 8,w,(x) is the divergence
of w: Denote

P(G) = sup {'[ y(x)dx; Y e 9, || < 1} for i=1,...,m.
G

Lemma 1.

sup P{(G) < P(G) = i‘;P;(G)

i=1,....m

and

Pi(G) =J PtG()’u e Yiets Vit oees ym) dy;...dy;_1dyisq ... dYm,
Rm-1

where pY(V1s...s Yie1s Vit 15 -+es V) is the number (possibly 0 or + ) of all hits
of {(¥1s s Yi=1s t, Yix1s -+o» Ym); tE€R} 00 G.

Proof. See [2], Definition 2, Definition 15, Lemma 11 and Lemma 17.

Lemma 2. If N°%v € %'(B) for each v e €y(B) then P(G) < .

Proof. We distinguish two cases:
1) For every x € B there are z', ..., z"*! € B — {x} such that the matrix
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(*)

is regular. ‘

2) There is an x € B such that the matrix (x) is singular for every z', ..., z"*' e
e B — {x}.

Let us consider the case 1. According to Lemma 1 it suffices to prove that P,(G) <
< oo forj = 1,..., m. Let, for example, j = 1. If x € B then there are z!, ..., z"*' €
€ B — {x} such that the determinant D(z',...,z™*!, x) of (x) is not 0. Since the
determinant D(z!,...,z"*%, ) is a continuous function on R™ — {z!,...,z""1},
there exists 7(x) > Osuch that ,,,(x) n {z', ..., z"*'} = Qand D(z', ..., ="+, y) %
+ 0 for each y € Q,(,)(x). Thus the vectors

e e e G ) A | P CA )Tl e
_ (zm+l _ y)/lzm+l _ y|m

are linearly independent for all y € Q,,(x); such a ball can be found for every x € B.
Since B is compact and B < U{Q,,(x); x € B}, there are x', ..., x" € B such that

2l — x Zmtl _ x ™ — x zmtl oy
m

lzl _ xlm - Izm+l _ x|m >t Izm _ xlm - lzm+1 . xl

B cylg,(,.)(xf),

where r(i) = r(x’). There are o, ....a,e C°(R™) such that 0 < o; < 1, Yo; = 1
on G, sptay = G and spt a; = Q,;(x’) for i = 1,..., n. Since

f 0 (x)dx =Y | afx)o(x)dx
G i=0 Jg
for any Y € 2 it suffices to prove that

sup{Lai(x) 0(x); ve, Y| £ 1} <

fori=0,...,n. Since 0,0y € 2 we have for i = 0

Lao(x) 0,(x) dx ijao(x)ﬁlw(x) dx| = l_ Lmlp(x) 0,00(x) dx | <

gj |0520(x)] dx < o0 .
Rm

Now let ie{l,...,n}, for éxample i = 1. There are z',...,z"*' e B such that
z' = x|z = X" = (2" = x)[z = x|, (2™ = ®)|2 = x|™ —

(z"** = x)[|z"** — x|™ are linearly independent vectors for all x € spt «,. Therefore,
there are a,(x) e C*(Q,1)(x")), the space of all infinitely differentiable functions
on Q,1)(x'), such that

(1,0,0,...,0) =k=§1 a®) ((* = N)||* = x|m = (@1 = 2|2 —x]").
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Denote by d, the Dirac measure with the support {x}. If Y € 2, [¥| < 1 then we have

J () 2u4() x| =

= JGal(x)é,:l((z" = x)f|F = x|" = (2"~ x)}lz’"+1 - x|") ay(x) . grad y(x) dx| <

m
=)
k=1

f (2% = x)[|2* = x|™ = (2! = x)]|]2"* 1 = x|™). grad (24(x) a,(x) Y(x)) dx —

= [ = == = = ).
- Y(x) grad (24(x) a,(x)) dx | £

Z 1<Noazz S = Syma)y aq(x) a(x) W(x)D| +

nMs

+3 I =Ml = = (& = ) el fgrad (o) ) e =

gél [NCU(S 5 — S.m+1)| sup |a(x)| +

xesptay

+ 3 (|2 = x|*™™ + |z"* = x|' ") |grad (a4(x) a(x))] dx < oo .

k=1 sptay

Remark that sice .« — 6,m+1 € G(B) we have N°%(6,x — 8,m+1) € €'(B), and that
(|2 = x|'=™ + [z"** — x|*~") |grad («,(x) a,(x)) is a finite continuous function
on spt a; and «,(x) a,(x) ¥(x) € 2. Thus the perimeter of G is finite.

Consider now the case 2. There is an x € B such that the matrix (x) is singular
for every z',...,z""' e B — {x}. To simplify the situation we may assume that
x = 0. Thus for all z € B ~ {0} the points z/|z|™ are located in a single hyperplane L.
We may select such a coordinate system preserving the origin that L = { ViYL = t}
for some ¢ = 0. Thus z; = t|z|" for every z € B and hence

)" -z =0.

M=

(2) e*(

j=1

If t = 0 then B = {z; z; = 0} and an easy calculation yields P(G) = 0. Let t > 0.
According to Lemma 1 it suffices to prove that P/G) <o fori=1,...,m. Fix i
Every hit z of {(y4, ..., Yi=1> &, Yit+1s ---» Ym); L € R} on G lies in B. Such z satisfies
(2)and z; = y;forj # i. Since (Y z7)" — z} is a nonzero polynomial in the variable
z; the order of which does not exceed 2m, for fixed z,, ..., z;_y, ..., z,, there exist
at most 2m different solutions of the equation (2). Thus
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PS(V1s coes Yiets Vit --os Ym) S 2m for any choice of yy, ..., Vicgs Viets-eor Vo

Since B is compact there is K > 0 such that B = Q(0). It follows from Lemma 1 that

P(G) = J.m]:[l«x g PEOL o Vicn Vivns ooy Y 1o dyic Ay dyn S
Jj=1

< 2m(2K)"! < oo
and hence P{G) < oo again.
Theorem 2. N°%v € ¢'(B) for each v € 64(B) if and only if V¢ < cc.

Proof. If V¥ < oo then N°%v € ¢’'(B) for each v € ¢'(B) according to Theorem 1.
Now let us suppose that N°%v e ¢'(B) for each v e %,(B). With any p €  we
associate the linear functional L, on %4(B) defined by

v, Ly = @, NUv), ve®yB).
If P, = G spte and ¢, = sup {|grad ¢(x)|; x € R}, we have

v, Lyy = j j grad ¢{x) . grad hy(x) dv(y)dx| <
GJ B

< LLJgrad o(x) . grad hy(x)| dx d]v] (y) <

I\

1 _ .
cq,J‘ ,[ Z |x - y|1 ™dx dlvl (») £ ¢, diam (P¢ U B) """ .
BJ P,

Thus L, is a bounded linear functional on the Banach space %4(B). If ve %(B)
then N9%ve @'(B). But N°%ve €'(B) if and only if sup {<{p, N°Uv); ¢e 2,
|o| £ 1} < . Hence

sup {<v, L,); 9 €9, |o| £ 1} = sup {Ko, N°Uv); 99, |p| S 1} < .
Applying the uniform boundedness principle we obtain

sup ||L,|| < w0

9e9,|lp| =1

Thus there exists an M such that 0 < M < oo and
3) [<o, N°uv)| < M|

for each ¢ € 2, |o| < 1, v e G5(B).
Now let x € B. Choose ye B — {x}, 0 < 6 < |x — y|/2. Since P(G) < oo,
PG — 2 ,(y)) < oo is valid. According to [1], Proposition 2.11 we have

o(y) giP(H) 5m < o,
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where H = G — Q,(y). If y € 2, || £ 1, spt y = ,(x) then

J grad yz) . grad h(z)dz
G

<

f grad Y(z) . (grad h,(z) — grad hy(z))dz

<M + <

+ J~ grad Y(z) . grad h,(z) dz

G

J. grad Y(z) . grad h(z) dz

< 2M + vH(y).

Therefore, for every x € B there are r(x) > 0 and 0 < K(x) < oo such that

J grad y(z) . grad h,(2) dz‘ < K(x)

for each Yy € 2, |y| < L, spty < Q,(x)(x) Since U Q,(,)(x) o> B and B is a compact
set, there are x, ..., x" € B such that U Q,(,)(x) > B, where r(i) = r(x’). Further,

for i = 1,..., n there exist ;€ 9, 0 § oc, £ 1, spto; © Q,(x%) such that & = Yo
coincides with 1 on the neighbourhood of B.

Let xe B, Y € 9, |y| < 1. Since ¥ . « = ¢ on the neighbourhood of B, it is true,
according to [1], Remark 1.2, that

f grad Y(z) . grad h(z) dz

G

grad (¥(2) . o(z)) . grad h(z) dz| <

< z grad (2(2) ¥(2)) . grad h(z) dz | £

n
<y
i=1

Ggrad (2d(2) ¥(2)) - (grad h(z) — grad h.{(z)) dz | +

=

+2
i=1

Ggrad (2d2) ¥(2)) . grad h.(z) dz

< 2Mn + Y K(x)
i1

Hence v%(x) < 2Mn + Y K(x') and V¢ = 2Mn + YK(x%) < 0.

It is possible to verify that if V¢ < co then N°%v e %;(B) for each v e %y(B).
(See [1], Proposition 2.8 and Proposition 2.20.) Now we shall investigate N°% as
an operator on the space ¢’(B) under the assumption V¢ < 0. If we suppose V¢ < oo
then the operator N°% is even a bounded linear operator on %’(B). But the inves-
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tigation of the operator U = 2N°% — I is more convenient than the investigation
of the operator N°%. Thus our problem is reduced to the study of the equation (1)
For every v e ¢'(B) and for every f € $(B) we have

S, Uvy = j B '[ ) de() ),

where 7, is for every x € B a finite signed measure on B and dr(z) = [2dg(x) — 1] .
.dd(z) — 2n%(2) . grad h,(z) dx,,—(2) (see [1], pp. 72, 73 and Proposition 2.20).
We denote by
dg(z) = lim %,(2,(2) N G)[%.(2(2))
r—04

the density of G at z and by n%(z) Federer’s normal of G at z. A vector n%(z) eI is
termed Federer’s normal of G at z € R™, if the symmetric difference of G and the
half-space {x e R™; (x — z).n%=z) > 0} has the m-dimensional density equal to
zero at z; otherwise we put n%(z) = 0.1If there is such a vector n%z), then it is unique
and thus the ordinary interior normal of G at z and Federer’s normal of G at z
coincide, provided the former exists. The measure 7, is supported by B = {z € R™;
|n%(z)| > 0}, the reduced boundary of G.

The operator U is a dual operator to the Neumann operator of the arithmetical
mean (see [1], Proposition 2.20, and the notation on p. 72) which acts on %(B),
the space of continuous functions on B with the usual sup norm. But the Neumann
operator can be defined as an operator on %(B) not only for any open G but even
for any Borel set G with compact boundary B provided 0B = ,B and V¢ < o
(V€ is defined in the same manner as in the case of an open G) (see [1], Chapter 2).
Moreover, T® = —T€, where T¢ is the Neumann operator corresponding to G
and C is the complement of G (see [1], p. 73). Thus we may examine the Neumann
operator corresponding to C instead of that corresponding to G, and hence to restrict
ourselves e.g. to unbounded sets.

If the operator U were a contractive operator on %’(B) the solution of (1) would
have a form v = 2 Y(—1)* U*u. If G is unbounded then ||U| < 1 if and only if C
is convex (see [1], Theorem 3.1). If C is convex then |U|| = 1 (see [1], Remark 3.2),
so that U cannot be contractive on %’'(B); fortunately, there is just one ¢ € %'(B)
such that Ug = ¢ and ¢(B) = 1. If U is contractive as an operator on %4(B) then we
can find the solution of the equation (1) in the form

v = pu(B)o + ZkZO(—l)" UX(n — u(B) @)
for each p € %'(B). Indeed, since (1 — u(B) o) € €,(B) and U is contractive on €(B)
we have YUk — u(B)o)] = X||U[s |1 — w(B)e| < o, where [Uf, is the
norm of U on %g(B), and the series Y (—1)* UX(u — u(B) ¢) converges in %'(B).

Further, we have
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(1 +U)y = (1 + U) (B + 20 + V) (1} U = u(B) @) =
=2u(B)o + 2k§0(—1)“ UYu ~ u(B) o) +

+ 23 (=11 U = u(B)¢) = 2 (B) 0 + 2 — u(B)¢) = 21

and thus v is the solution of the equation (1) Denote by Q,(C) the smallest closed
cone with vertex x containing C. If C is convex then U is contractive on %y(B) if and
only if Q,(C) n Q,(C) # C for every couple of points x, y € B (see [1], Theorem 3.5).

Example 1. Let us consider G = R? — ¢l Q,(0). Since cl 2,(0) is a convex set,
we have |U| = 1. Now we are going to examine U on %4(B). If x,z€ B, x + z
we denote

(4) o(x, z) = n%z) . grad h(z).
Since dg(x) = ¥ and n%(z) = z we have

1 x—z 1-1+z.x

Q(x’z)=z.2|x—z|2=2 |x — z|? N
=_1_—]x|2+2z.x—|z|2=:l
24 |x — z|? 24

If fe4(B), ve %y(B) then
S, Uy = f ff(z) de () dvix) =
BJB

- _ J' B ‘[ 20, 2) 1) i (2) () =
- LLif(z) dt—1(2) d¥(x) = 0.

As a consequence we can easily derive that [[U[, = 0 < 1 = |U].

We need C convex only for |U| < 1. We know, however, that it may happen
that |U|, < |U]. In fact, inequality U], < |U|| = 1 holds for all convex C with
the only exception described above, and for all such cases U is contractive. In the
second part of this note we shall present an example showing that the condition “C is
convex” is not necessary for the contractivity of U on %4(B).

In R? consider C = ¢l 2,(0) U c1 Q,(a), where 0 < a < 1[18 is fixed. It follows
from [1], p. 77 that U is contractive on %,(B) if and only if there is a ¢ < 1 such that

(5) i “tx - Ty” =29

for each x, y € B. For every x, y € B we shall prove the inequalities
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(6) lee = ol = el + 1=l = 213,

(7 Il = 1+ 1/4
from which we shall obtain
It = ] £ 2.11/12

and eventually, with the help of (5), the required contractivity of U on %;(B).
For every x, y € B, x # y (cf. notation (4)) we have
e = 5 = [2) = 1]+ [2dels) = 1]+ [ 2l ) = ol )] ).
B

If z = (z,, z,) does not coincide with x, y and z; < 0 or z; > a then x, y belong
to the same halfplane determined by the tangent line to B at z and ¢(x, z), ¢y, z) are
of the same sign. Hence for x, y € B, x = y we have

e = 5]l = [2de(x) = 1] + [2do(y) - 1] +

r2 j [max (jo(x, 2, |e(y, ) = min (le(x, 2)}, le(s, 2] ds(2) +
{zeB;z1¢<0,a)}

+ 2J‘ le(x, z) — oly, z)l dxy(z) .
{zeB;z1€(0,a)}

The estimate of the integrand in the second integral from above by IQ(x, z)‘ +
+ |e(y, z)| and the relation |o(x, z)| + |e(y, z)] = max (Jo(x, z)|, |e(y, 2)|) +
+ min (|o(x, )|, e(y, z)|) give after an easy calculation the inequality

® le=slslal+lol=4] minletx 2] Jen 2 anto).

To obtain (6) we need a lower estimate for the integral in (8). Since for every x, z € B,
z, <0

2lo(x, 2)| = ipz.(z — x|z = x?| = 51; ’1 _ ||);|2—_XI1

one gets for x € 9Q,(0) immediately 2|o(x, z)| = 1/(2n); for x € B — 82,(0), |z,| =
< /3/2 (see the figure) with the help of |x — z| 2 sin n/6 = 1/2 we obtain (|x]|* —
— 1)/|z — x|* £ 1/2 and thus

©) 2lo(x. 9| 2 - -

Symmetry of C allows us to conclude that for z e B, z, ¢ €0, a) and |22| < \/3/2
we can use (9) to estimate the integral in (8). Since the length of the corresponding
part of B equals 27/3 we easily obtain (6).
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To prove (7) we can restrict ourselves to those x € B for which |x| = 1. Since
1, = US,, it may be easily verified that the function x — [|z,[| is a lower semiconti-
nuous function on B. Thus it suffices to prove (7) only for x € B such that x, €
e (—1,0) U (0, a/2). [1], Proposition 2.8 yields

e = 2 def) — 1] + 2 Llaoc, 2)| dr(2) = 20%(%) =

1

-1 f (0, %) 0.

For any x € B, x; < 0 the ray P(x, 0) intersects B if and only if x. 0 < 0. Let us
investigate n%(0, x) in this case. Clearly 1 < n%(6, x) < 3, and convexity of circles
gives n%0, x) = 1 for the corresponding 6’s and y = (yy, y,) € 992,(0) such that
y;y < 0or y, > a2 (see again the figure). Thus

Il £ iJ.Mll dx,(0) + %J‘M 2 dx,(0) ,

where M; = {6el; x.0 <0}, M, ={0el; P(x,0)n {yed2,0); 0=y, <
< af2} + 0}.

(0,-1)

For the first integral, the »,-measure of the set M, is obviously equal to © and an
elementary geometrical reasoning gives in the second case the value 2w, where w is
the magnitude of the angle K KXE (for the chords we have KE = LF), where
E = (0, 1), F = (0, —1). Hence |[r,| < 1 + 1/8. The same estimate can be established
for x € B with x; > a.

Using the symmetry of B it is enough to proceed by analogy for x € B with 0 <
< xy < af2 and x, > 0. It is easily seen that for such x e B for which P(x, )
contains y € 324(0), y + x, we have n%0, x) = 1 unless y = (v, y,) is such that
x; < yy <af2,y,>0.For0el, 6.x > 0 we have n%, x) < 2. Recall that the
vector (/(1 — a*[4), a[2) is a tangent vector of 6Q,(a) at the point (a[2, /(1 — a?[4)).
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It is easily seen that n%0, x) = 0 unless 0, > 0, 0, < a/2. Since n%(0, x) < 3 for

all 0 e I" we have
1 1
e < J 1d,(0) + 1 J' 2 dsg(0) + 1 f 2d,(0),
n M, T M T M;

where M, = {0el; x.0 <0}, M, = {0el; P(x,0)n {yedQ,0); y, >0, x, <
<y, <af2}*0, My={0el; 0.x>0, 0, >0, 0, <af2}. Recall that
(\/(1 — a?/4), —a/2) is a tangent vector of 8Q,(0) at the point (a/2, /(1 — a?/4)).
We have

le] <1 + %xl({()el‘; 0, >0, 0,e(—af2, a2)}) = 1 + %? <143,

I would like to call reader’s attention to the reprint by W. Winzell [3] that reached
me after the completion of the present paper. B. Winzell characterized the domains
with a smooth boundary (of class C?), for which the operator U is contractive on
%o(B).
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Souhrn

POZNAMKA O KONTRAKTIVITE NEUMANNOVA OPERATORU

DAGMAR MEDKOVA

V ¢&lanku se zkouma Neumanniv operator na prostoru znaménkovych mér na hranici, pro
néZ je mira prostoru rovna nule. Ukazuje se ptiklad mnoZiny, jeji? dopln&k je nekonvexni omeze-
nd mnoZina a pfritom pfisluSny Neumannuv operator je na tomto prostoru kontraktivni.

Pesome

3AMETKA O KOHTPAKTHUBHOCTU OITEPATOPA HEMMAHA

DAGMAR MEDKOVA
B cratbe m3yyaercsa oneparop HeliMana Ha IMpOCTPAHCTBE 3apsAOB HAa TPAHHLE, AJIS KOTOPHIX
Mepa MPOCTPAHCTBA pPaBHACTCA Hysro. IIpHBOAMTCS IpPHUMEP MHOXECTBA, JONOJHEHHE KOTOPOTO

SIBIAETCS OIrPAHWYCHHBIM HEBBINIYKJIBIM MHOXECTBOM M INPHTOM COOTBETCTBYIOIUMH onepaTop
Heiimana ABnsieTCS CKMMAIOIMEM Ha 3TOM NPOCTPAHCTBE.
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