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Summary. The paper deals with compact imbedding of the weighted Sobolev space Wé"’(Q, S)
(S is a collection of weight functions) defined on an unbounded domain in the space of functions
LP(2, 0) (¢ is a weight function). This imbedding is investigated as the limit case of the compact
imbeddings of Sobolev spaces defined on bounded domains.
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1. INTRODUCTORY REMARKS

Let Q be a domain in R". By the symbol #°(2) we denote the set of all measurable,
a.e. in Q positive and finite functions ¢ = ¢(x), x € Q. The elements of #(Q) will
be called the weight functions.

Let pe {1, ), ¢ € #(R). We define the space L"(Q 0) as the set of all measurable
functions u = u(x), x € Q, such that

(1) leleme = Llu(x)l” o) dx)w <o,

For ¢(x) = 1 we obtain the usual Lebesgue space I?(Q); in this case we write [|u, o
instead of ||u,.q,, Obvxously the space I7(2Q, o) with the norm (1.1) is a Banach
space.

Let k e N and let a collection of weight functions

S = {w, e #(Q); |o £k}

be given (here « is a multiindex). By the symbol W*?(Q, S) we denote the set of all
measurable functions u defined a.e. in Q which have on Q distributional derlvatlves
D°u, |a| £ k, such that

[Dull 500, < o0 -
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If
wyPe LI (Q), |of < k,¥)

loc

we can easily verify that the space W*?(Q, S) with the norm

(12) lelaras = (3 10500

is a Banach space.

Now, let us assume that

(1.3) w,e L (@), |of k.
Then the inclusion

C3(Q) = Whr(Q, S)
holds so we can introduce the so called “nulled space” W¢?(Q, S) as the closure of
the set Cg(2) with respect to the norm (1.2). The norm in this space is again given
by (1.2).

If M is a subspace of a linear space X, we write M = < X.

Let X and Y be normed linear spaces. The symbol [X, Y] will denote the space of
all bounded linear operators mapping X into Y. For A€ [X, Y] we define

[4] = sup [4x].
lIxll=1
Further, let Y be a Banach space. The operator 4 € [X, Y] is called compact if
A({x e X; ||x|| £ 1})is totally bounded in Y (i.e. if cl (A({x € X; | x|| £ 1})) is compact
in ). _

If X = Y and the natural injection of X into Y is compact we write X QQ Y. The
symbol X 2 Y denotes the fact that X and Y are isomorphic.

The aim of this paper is to derive conditions on the collection S of weight functions
and on the weight g, which guarantee that the natural injection of W§?(<, S) into
I7(, ¢) is compact if the domain  is unbounded. The method which was used
for a special weight function in [1] is generalized to suit our purpose.

2. PRELIMINARIES

In the subsequent sections we shall use these assertions:

2.1, Lemma. Let X be a normed linear space and let Y be a Banach space. Let
{4}, be a sequence of compact operators in [X, Y] such that

A4,—» A in [X,Y] (ie|Ad—-A4,)] -0 for n- o).

Then A is compact.
2.2. Lemma. Let Z be a normed linear space, X c < Z,X = Z. Let Y be a Banach

*) p* denotes the number p/(» — 1) with the convention s/0 = oo for s € R\ {0}.
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space and Ae[X, Y] a compact operator. Then there exists a unique operator
Ade [Z, Y] such that
a) A4 is compact,

b) Alx = 4.%)

2.3. Remark. If the operator 4 in Lemma 2.2 is the identical map from X into Y,
then A is the identical map from Z into Y.

2.4. Lemma. Let ae R, me N. Let us further suppose that fe C™((a, )) and
let supp f be a compact set. Then

(2.1) f(0) = iri———l):)'_'.:o(s — )" f(s)ds for te(a, ).

2.5. Remark. Lemma 2.1 is an easy modification of Lemma IIL1.5 in [2]. The
proofs of the other assertions in this section are left to the reader.

3. COMPACT IMBEDDING OF WEIGHTED SOBOLEV SPACES

3.1. Using the Cartesian coordinates

The points x = (xy, ..., xy) € RY will sometimes be written in the form x =
= (x’, xy), Where x" = (g, ..., xy_;) € RV "L If @ = R", then we denote by Py(Q)
the projection of the set Q into the hyperplane xy = 0.

Let us suppose the following two conditions:

Cl1. Qis an unbounded domain in RV, Q < (—a, a)"~! x (—a, ) where a > 0.

C2. W*(Q,, S) QQ (2., 0) Vn € N,**) where Q, = {x€ Q; xy < n} for neN.
We shall investigate under what additional assumptions

(3.1.1) wEr(2, S) CQ X(2, 0)
holds.

Let us define the operators
(3.1.2) L: WeP(2,8) » I2(2,0), neN,
by

*) A|x denotes the restriction of the operator 4 to X.
**) It is sufficient to assume

M,CQ L7, o) VneN,

where
M,={mu=vlg, ve WEP(2, )} .
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u(x), xeQ,

(3.13) (1) () = <

0, xe@\Q,.

3.1.1. Lemma. The operators I,, ne N, defined by means of (3.1.2) and (3.1.3)
are compact.

Proof. As the space I7(@, ) is complete, it is sufficient to prove that the set
M, = {Lu; ue W&, S), || pos = 1}
is totally bounded in I7(<, @), i.c. that for each ¢ > 0 the set M, has a finite &-net
in I7(Q, 0).
The condition C2 implies that the set

1, = (55 5€ W22, 5), [0l s < 1)

is totally bounded in I?(2,, ¢) and therefore this set has a finite e-net in I(2,, o)
for each ¢ > 0.
Let ¢ > 0 and let

{v},..., 0]}
be a finite e-net of the set M,. Then the set
{w}, ... Wi},
where

vi(x), xeQ,, j=1,...,1i,

i) = (

0, xe R\ Q,
is a finite e-net of M, because for u € WgP(Q, S), [|ull;.p.0.s < 1, we have

min "I,,u - w;”p,ﬂ,e = min ”u - v;"p.ﬂmo <e
1<j<i 1<jsi

as ulg, € M,

Further, by the symbol X let us denote the set C3(2) with the norm |+|x =
= ||*|lt.»,a,s and let us consider the operator

(3.1.4) I: X > (2, 0)
defined by
(3.1.5) Iu=u, ueX.

In virtue of Lemma 2.2 and Remark 2.3 one can show that (3.1.1) holds if and only
if the operator I is compact. To investigate the compactness of I we shall use Lemma
2.1. Therefore we shall try to approximate the operator I by the compact operators
J, = L|x (I, are the operators defined by means of (3.1.2) and (3.1.3)).
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Let us investigate when

(3.1.6) J,—»1I in [X,Y]

holds, where we take for the sake of simplicity Y = I7(Q, o).
We easily get

1= 2l = sup lfu = Jaufy = sup u = Luly =
X

= sup [u, .00, = S“P "u"PD"o’
llulxs1 llullx =

where Q" = {x € Q; xy > n}. This yields: (3.1.6) holds if and only if

(3.1.7) sup |uf|, g, =0 for n— .
flullx=1

In addition to C1, C2 we shall suppose that the following condition is fulfilled:

C3. There exist numbers C > 0, m,n, €N, 1 < m < k, and nonnegative
measurable functions p:(ne, ©) = R, v:(ng, ©) = R, & Py(Q™)—> R such that

(3.1.8) o(x) £ Cpuxy) &(x') for ae. xeQ™;
(3.1.9) v(xy) E(x) £ Cwe,..om(x) for ae xeQ™;
(3.1.10) h(n) = h(n; p, v, p, m) =

- j (D) (s = " v V($)|2u .y dt > O for 1> o

We shall investigate the validity of (3.1.7). Let u € X and n = n,, where n, is the
number from the condition C3. We extend the function u outside Q by zero (then,
clearly, u € C3(R")) and put ¢(x) = 1 for x’ € RN~ \ Py(Q™). Using the Fubini
theorem, in view of (3.1.8), we get for n 2 n,

(3.1.11). Julgme = | el ole)ax

< cLN_‘U:’Mx', x)|? 1(xx) de] H(x') d’ .

For a fixed x’ € RN~ ! we denote
(3.1.12) f)=ux,1), teR.

Evidently f € C3(R). Let the number m be from the condition C3. Applying Lemma
2.4 we obtain

G113  lls

_am=1]£(m)
= 1)'I (s t) |f™(s)| ds, teR.
First, let p € (1, o). Then using the Hélder inequality we get for t € (n; o)
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VOl s Gty ([ ds)
(I (s —- ,)((m-l)/(p-l))p [v(s)]'”"“” ds)(p—l)/p <

: 1)-! (J.:olf “(s)[P v(s) ds)llp
| ('r(s — )T RIET R s)] e dS)‘p—n/p :

Raising this inequality to the p-th power, multiplying by the function u(f) and in-
tegrating by ¢ from n to co we obtain

i1 [or s ] e [Ireoro s,

where the function h is defined in (3.1.10). The relations (3.1.11), (3.1.12), (3.1.14)
and (3.1.9) imply

(3.1.15) [u]|? gn, <

e KL N
<c? [(m i 1)!],, h(n) J.mlbz u(x)|? wy(x) dx,

where o = (0, ..., 0, m). From (3.1.15) we conclude

=

(o) ds] {(x) dx' <

(3.1.16) sup ], ny < CHP— 2 nir(n).

llullx 1 T (m = 1)

Now létp=1. Then from(3113) for t € (n, ) we have
esssu s — )" tyTi(s) ™ (s)| v(s) ds .
0] 8 o Dessum s = 0= 0] [ 19] )

Multiplying this inequality by the function p(f) and integrating by ¢ from n to oo we
obtain

<3:.17) [rnmyae < D) [t as.
(3.1.18) h(n) = h(n; p, v, 1, m) =

B f () ess sup (s = 9~ v i =
B I ") (5 = O v eyl
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From (3.1.17) we again get (3.1.16).

We have just proved:

3.1.2. Theorem. Let the conditions C1—C3 be fulfilled. Then
(3.1.19) Wi (2, S) QQ (2, o) -

3.1.3. Remark. If the condition (3.1.10) in C3 is replaced by the assumption
(3.1.10%) g(n) = g(n; u, v, p, m) =

v(s)

and if we suppose that, in addition to all the assumptions of Theorem 3.1.2,

p
dt—>0 for n—>
p*,(t,0)

(3.1.20) the function p is nondecreasing on (ng, ),
then (3.1.19) holds again.*)

3.1.4. Example. Let Q satisfy the condition C1. Let further pe (‘1, ©), k=1,
B >0, a < f. For x e Q we define

(3.1.21) wy(x)=1 for |y| =1, y=*(0,...,0,1),
(3.1.22) Weo,...onx) =€, ofx) = .
Let S = {w,; || £ 1}. Because
Wh(Q,, S) e W(Q,), IX(Q,0) = I(2,), neN,
we obtain from the well-known (unweighted) imbedding theorem
win(Q, S)QQ (. 0), neN *¥

and so the condition C2 is satisfied. If we choose m = 1, C = 1, n,eN, &(x') =1
for x’" € Py(Q"),
u(s) = e, ws)=¢é*, se(ny, o),
we can see that (3.1.8) and (3.1.9) from C3 are satisfied, too.
Let us investigate the validity of (3.1.10). We easily get that

— p—1 .
h(n)=(p 1> 1 P, pedl,®), nzn,,

B B—a
and therefore h(n) — 0 for n —» co. Then Theorem 3.1.2 implies
(3.1.23) WoP(Q, S) QQ 2(2, o) -

*) Let us remark that 0 < h(n) < g(n)— 0, n— .
**) As we work with the ,,nulled space’ W '5"’(!2, S), we can assume without loss of generality
that 2, C%! for each ne N.
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3.1.5. Remark. In Example 3.1.4 we do not have to choose the weight functions w,
for [y| = 1,9 #(0,...,0, 1) by (3.1.21). It is sufficient that

whr(Q,, S) =2 W'(Q,), neN.
From this relation we see that (3.1.21) can be replaced by
(3.1.24) w(x) =e"", xeQ, |1, y+(0,...,0,1),
where 6, are some real numbers.

3.1.6. Example. Let Q satisfy the condition Cl, pe(l, ), k,meN, k= 1’
1=m<z=k f>0,a<pf. For x e Q we define

(3.1.25) wy(x) = e, |v| <k, y*(0,...,0,m),
where J, are some real numbers,
(3.1.26) Weo, ... o.mi(X) = ¥, o(x) = €™~

LetS = {w,; Iy] < k}. Analogously as in Example 3.1.4 we can verify that the con-
ditions C2 and (3.1.8), (3.1.9) are satisfied (we choose pu(s) = €*, v(s) = e and
&x) =1).

We shall investigate the validity of (3.1.10) from C3. We choose ¢ in such a way
that 0 < ¢ < min (B, B — «). Evidently, there exists a number n, € N such that

(3.1.27) smTVP < e for s>y, %)

so that for n = max (no, n,) (the number n, is from the condition C3) we have

W) = j “u(0) s = £yt ()

P
p*,(t,0) dt <

< Jweasllels/Pe"ﬁS/P”:.'("w) dt =

B—c¢ —a—¢

From Theorem 3.1.2 we obtain (3.1.19).

— 1\7!
= (p 1) . ;}——~1——~ e@*emBn 50 for n— .

For x € RY and ¢ € R let us define

Xy, xXy>1,
Zt(x)=<

1, xy=1.

3.1.7. Example. Let Q saiisfy the condition C1, pe{l, ©), k,meN, k=1,

*) Example 3.1.6 generalizes Example 3.1.4. If m = 1, then it is possible to choose ¢ = 0.
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1=mz=k,B>mp—1,0a<p — mp. For xe Q we put

(3.1.28) w(x)=1z(x), | <k, v*(0,...,0,m),
where §, € R,
(3.1.29) Weo, ... o.m(X) = zp(x), o(x) = z(x).

Let S = {w,,; |y| < k}. Analogously as in Example 3.1.4 we can verify that the con-
dition C2 is satisfied. If we choose C = 1, ny € N, &(x’) = 1 for x’ € Py(Q™),

u(s) =s*, w(s) =5, se(no, ),

we can see that {3.1.8) and (3.1.9) from C3 are satisfied, too.
Let us investigate the validity of (3.1.10). We easily obtain

h(n) = j u(t) (s = £ v RS2y wy At <
éJ‘ p(t) ™ v P(8) |2,y dE =

o]
) J N R

—_ p-1
=(ﬂ P 1+ 1) '3 1 n*f*mr 0 for n—- .
— mp — o — mp

From Theorem 3.1.2 the imbeding (3.1.19) follows.

3.1.8. Remark. (i) If Q is an unbounded domain, @ = (—a, a)¥" ! x (-, a),
where a > 0, then it is possible to reduce this case to that investigated in Theorem
3.1.2 by a transformation of variables

y=x', yn=—xy.
(i) The case when Q is an unbounded domain,
Qc(—a,a)" "' x R(a>0) and inf{xy; xeQ} = —o0, sup{xy;xeQ} = +o0,

can be investigated analogously as in Theorem 3.1.2 with the only difference of
cutting the domain Q at both ends, i.e. for n € N we define

Q,={xeQ |xy| <n}, @ ={xeQ;|xy]>n}.

(iii) Theorem 3.1.2 describes thesituation when the weight function @ or wo, ..., 0,m)
can be bounded from above or from below, respectively, by the product of a positive
constant and two nonnegative measurable functions one of which depends on the
variable xy only while the other depends only on x’ and the domain is unbounded
in the direction of the xy axis. Let us remark that any of the variables x, x,, ..., xy
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can play the role of the variable x,. It is even possible to study the case when some
curvilinear coordinate takes the role of the variable x,. In Section 3.2 we shall
discuss the case of spherical coordinates.

3.2. USING THE SPHERICAL COORDINATES

We shall consider spherical coordinates (r, ©) in R¥, where r = |x| is the distance
from the point x to the origin and @ = x |x| is a point on the unit sphere E =
= {xeR"; x| =1}.1fQ = RY, then P(Q) will denote the projection of the set Q
into the unit sphere E, i.e.

P{(Q)={@€E; 3r> 0, (r,0)e 0} .

Let WhP(Q, S), (2, ¢) and X be as in Section 3.1. Throughout this section we
consider the following two conditions:

C1*. Q is an unbounded domain in R".

c2*. WhP(Q,, S) QQ (2., 0) YneN, where @, = {x€Q; |x| < n} for neN.
Again, we shall look for additional assumptions implying

(3.2.1) Wer(Q, S) CQ (@, o) -
Denote Q" = {x e Q; lxl > n} for n € N. Analogously as in Section 3.1 we can prove:

If
(3.2.2) sup [uf,gn,— 0 for n— oo,

llullx=1
then (3.2.1) holds.
Moreover, suppose that the following condition is fulfilled:

C3*, There exist numbers C > 0, m,naeN, 1 <m =< k and nonnegative
measurable functions u: (n,, ) > R,

v:(ng, 0) > R, & Py(Q™) >R

such that ,

(3.2.3) o(x) = C u(]x|) é(l |> for ae. xeQ™;
(3.2.4) v(|x]) & (I I) C mm wy(x) for ae. xeQ™;
(329 ) = K 3 ) -

ey dr =0 for n— oo.

= [(H) s = e
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Now we shall investigate the validity of (3.2.2). Let u € X and n = n,, where n, .
is the number from the condition C3*. We extend the function u outside Q by zero -
(then, clearly, u € C3(R")) and take £(0) = 1 for @ € E\ P5(Q™). In view of (3.2.3),

(629 [ol2me = [l ol x <
< cLUmp(r, O)|P u(r) r¥ -1 dr] §©@)dO for n=n,.

For a fixed © € E we denote
(3.27) f(r)=u(r,0), r>0.

Evidently fe C*((0, c0)), and supp f is a compact set. Let the number m be from
the condition C3*. Applying Lemma 2.4 we obtain

(3.2.8) f(r) = (—,El:_!)Tm)EJ‘rw(s — r)m—lf(M)(s) ds, r>0,
which implies

(3.2.9) If(r)l ﬂ“"(r) FN-1/p < (m i 1)!

) s =t s,
Analogously as in Section 3.1 we obtain from (3.2.9)

(3.2.10) r| SO pr)r-1dr <

<[] o [ -,

where the function h is defined in (3.2.5). The relations (3.2.4), (3.2.6), (3.2.7) and
(3.2.10) imply

”u ”;»9"& é

(o] am
—u(s, @
or" (s )

’ v(s) M1 ds] ¢)do <

< c? [ o l)!]" o) ¥ J' JLECICLE
s &t ] o s,

(m = 1)

hence
(3.2.11) sup [uf|,.n, S C** 1 h'"(n), n2zn,.
llullxs1 (m = 1)

70



This and (3.2.5) yield (3.2.2).
From the above consideration we have

3.2.1. Theorem. Let the conditions C1* —C3* be fulfilled. Then
(3.1.12) w§r(2,S) CQ (2, 0) -

3.2.2. Remark. (i) The function & from (3.2.5) coincides with the function h from
(3.1.10). Therefore we get analogous results here as in Section 3.1. Especially, if
m =1, u(r) = 1, v(r) = r# for r € (ny, ), then h(n) > 0forn - w0 if > p — 1,
a < B — p (cf. Example 3.1.7). Consequently, the number B is always positive
(because p e (1, 00)). If we assume in addition that

(3.2.13) the function u(r)rN~' is nondecreasing on (n,, o)

we get a larger interval for f — see Example 3.2.3.
(ii) If the condition (3.2.5) in C3* is replaced by the assumption

(3.2.5%) g(n) = g(n; p, v, p, m) =

L)

and if suppose that, in addition to all the assumptions of Theorem 3.2.1, (3.2.13)
is fulfilled, then (3.2.12) holds again.

Really, let us suppose (3.2.13). Then from (3.2.8) we obtain

P
dr—->0 for n—>

p*,(r,»)

1prr(N—1)/p<,-__1___ ws._rm—l m(g 1/p(g) N=1/p 4
5 e [ = A ] )

and further we get

(3.2.14) Jm\f(r)“’ p(r)y N =tdr <

< [(_1—77] () [ )57 s

The relations (3.2.4), (3.2.6), (3.2.7) and (3.2.14) imply
)4 < C? 1 ? 14
lulf.en, = € (m — 1)L g(n) Juk

hence

(3.2.15) up ] ang < €77 g1n().
lullx=1 ’ (m — 1)

This and (3.2.5*) yield the desired assertion.
(iii) Let us remark that while the functions i and g in Section 3.1 (see (3.1.10)
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and (3.1.10%)) satisfied
(3.2.16) h(n) £ g(n) for n = n,,

the functions h and g given by (3.2.5) and (3.2.5*) need not generally satisfy the
inequality (3.2.16) (here, the function u(r) r¥~' is nondecreasing in contradiction
to Section 3.1, where u(r) was nondecreasing).

For x € R" and ¢ € R let us take
s x> 1,

(3.2.17) | ox) = <

1, |x=s1.

3.2.3. Example. Let Q be an unbounded domain in RY, pe {1, o), k =1, eeR
(3.2.18) f>1—-N+p, aedl =N, f—p).

For x € Q we define

e(x) = 0 (x), Weo,...,0(x) = @x),
wy(x) = wy(x) for [y| =
Let S = {w,; |y| = 1}.

We can easily verify that the conditions C1*, C2*, and (3.2.3), (3.2.4) from the
condition C3* are satisfied (in the condition C3* we take m =1, C =1, nyeN,
(@) = 1 for @ € PE(Q™), u(r) = % v(r) = r? for r e (no, )).

Let us now investigate the validity of (3.2.5%). For ne N, n 2 n,, we have

dr =

[l T

= <___P__1_~->p R n*B+p
B—a—p+1 B—a—p

hence g(n) - 0 for n —» 0. One can easily verify that (3.2.13) is satisfied as well.
Therefore, from Remark 3.2.2 (i) we get

p

(3.2.19) WeP(2, S) QQ IX(Q, ) -
If we use Theorem 3.2.1, we o‘ptain (3.2.19) for
(3.2.20) B>p—1, a<f—p.

Let us compare (3.2.18) with (3.2.20). In contrast to (3.2.18) where the interval
for B is larger for N > 2, the interval for o in (3.2.18) is smaller. The interval for « can,
of course, be extended by means of the fo]lowing remark.

3.2.4. Remark. Let Q be an unbounded domain in R¥, a4, 2, € R, a; = a,. For
x € Q let us take

oi(x) = w0, (%), i=1,2.
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Then

(3.2.21) 12(2, 02) G I2(Q, 01) -

The proof is easy: For |x| = 1 we have | x| = |x|** and hence 22(x) Z ey(x) for
x € Q'. Consequently, for u e I7(£2; 02) We have

”u“;ﬂ.m = "u”;fh,al + ”u"p:m.en = ”“";,91,02 + "u”;,ﬂ‘,m =

= "”"5,91.02 + "u”:.ﬂ‘.oz = "u]l;.ﬂyez N
This yields (3.2.21).

3.2.5. Remarks. From Example 3.2.3 and Remark 3.2.4 we get:
(3.2.19) holds if
B>min(l—-N+p p—1), a«<pf—p.

References

[1] R. A. Adams: Compact imbeddings of weighted Sobolev space on unbounded domains. J.
Differential Equations 9 (1971), 325— 334,

[2] S. Goldberg: Unbounded linear operators. Mc Graw-Hill, New York 1966.

[3] A. Kufner, B. Opic: How to define reasonably weighted Sobolev spaces. Comment. Math.
Univ. Carolinae, 25 (3) (1984), 537— 554, '

Souhrn
KOMPAKTNOST VNORENi VAHOVEHO SOBOLEVOVA PROSTORU
DEFINOVANEHO NA NEOMEZENE OBLASTI I
Bonumir OPIC
Clanek se zabyva kompaktnim vnotenim vihového Sobolevova prostoru Wé'P(Q, S) (S je
systém vahovych funkci) definovaného na neomezené oblasti do prostoru funkci LP(£2, ¢) (¢ je

vahova funkce).- Dané vnoreni je vySetfovano jako limitni pfipad kompaktnich vnoteni Sobole-
vovych prostor definovanych na omezenych oblastech.

Pe3rome

KOMITAKTHOE BJIOXXEHHME BECOBOI'O ITPOCTPAHCTBA COBOJIEBA,
OINPEJEJIEHHOI'O B HEOTPAHUYEHHO¥ OBJIACTU

BoHUMIR OpIC

B paGore uccreayeTcss KOMIIAKTHOCTB BJIOXKEHMs BeCOBOro npocrpancrsa Cobosnesa W'(‘,'P(Q, S)
(S — cucrema BecOBBIX (yHKLMIL), ONPENEICHHOrO B HEOTPAHUYEHHON OGJIACTH, B NPOCTPAHCTBO
dbyuxumiz LP (2, 0) (¢-BecoBas GyHKUES). DTO BIOXKEHME PACCMATPHUBAETCSA KaK NpPeAENbHBIA Ciyyai
KOMIIAKTHBIX BIOXeHH npocTpaHcTB CoGoneBa, Onpee/ieHHBIX B OTPAaHMYEHHBIX 00NacTsX.
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