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TWO LOCAL PROPERTIES OF GRAPHS

BOHDAN ZELINKA, Liberec
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Summary. For a graph G and its vertex v the symbol Ng(v) denotes the subgraph of G induced
by the set of all vertices which are adjacent to v in G. We say that a graph G has locally the
property P, if Ng(v) has the property P for each v. Two local properties are studied: the local
disconnectedness (Ng(v) is disconnected for each v) and the local cyclicity (Ng(v) is a circuit
for each v).
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AMS classification: 05C40, 05C38.

Lately, various local properties of graphs have been studied by various authors.
The first impulse was the problem of A. A. Zykov at the symposium on the graph
theory in Smolenice in 1963 [1]. A survey on this topic is given in the paper [2]
by J. Sedldcek.

Let G be an undirected graph, let v be its vertex. The symbol Ng(v) denotes the
subgraph of G induced by the set of all vertices which are adjacent to v. L. Szam-
kotowicz [3] suggested to study graphs G in which NG(v) for each vertex v belongs
to a given class K of graphs. In particular, he mentioned the case when K is the class
of all circuits. This case will be studied in the second part of this paper; the first
concerns the case when K is the class of all disconnected graphs.

1. LOCAL DISCONNECTEDNESS

We say that a graph G is locally disconnected, if for each vertex v of G the graph
Ng(v) is disconnected.

Theorem 1. Let G be a finite planar locally disconnected graph, let n be its
number of vertices, n = 4. Then the number of edges of G is at most 3n — 6.

Remark. For n £ 3 locally disconnected graphs with »n vertices do not exist;
the proof of this assertion is left to the reader.

Proof. Consider a representation of G in the plane; then the faces of this repre-
sentation will be called faces of G. The symbols n, m, f, t will denote the numbers
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of vertices; edges, faces and triangular faces, respectively. Let ¢ be a vertex of G.
If all faces of G incident with v except at most one were triangular, then N G(u) would .
have a Hamiltonian path (the edges of this path are the edges of those triangulars
faces which are opposite to v) and therefore it would be connected. Hence, as G
is locally disconnected, each vertex v is incident with at least two non-triangular
faces. If 6(v) is the degree of v in G, then the number of all faces incident with v is 5(v)
and the number of the triangular ones is at most 6(v) — 2. As each triangular face
is incident with three vertices, the total number of triangular faces of G is at most

’}HE;G)(tS(v) — 2). We have
D CORIE %ue;a)é(v) — 2n.

veV (G)
As 1 Y 6(v) = m, we have
veV(G)
t<3(m—n).
From Euler’s Formula we have
f=2—-n+m.

The number of non-triangular faces of G is f — t and we have
(1) f—tz22—-n+m—-3%m-n)=2-4n+1im.

At each non-triangular face we may choose two non-adjacent vertices which are
both incident with this face, and join them by an edge (a diagonal of the face); the
resulting graph is also planar. Hence we may add f — ¢ edges to G without violating
its planarity. The resulting graph has n vertices and m + f — t edges. The upper
bound for the number of edges of a planar graph with n vertices is 3n — 6, hence

m+f—t=<3n—-6.
On the other hand, (1) yields
m+f—t=22—1in+ $m.
These two inequalities imply
2—-—in+4$m<3n-6,
which yields
mz=in—6,

which was to be proved. []
The following theorem will show that this upper bound cannot be improved.

Theorem 2. Let n be an even positive integer, n = 8. Then there exists a planar
locally disconnected graph with n vertices and $n — 6 edges.

Proof. If n = 8 and n =2 (mod 6), there exists a positive integer k such that

n =6k + 2.Let V(G) = {v(i,j)| L £ i £ k, 1 £j £ 6} U {x, y}.If for two vertices
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v(iy, 1), v(iy, j,) we have either i, = iy, lix = j2| =1 (mod 6), or |iy — iy| =1,
J1 = Ja2, then these two vertices are adjacent in G. Further, if i — j is even:and
i < k, then v(i, j) is adjacent to v{i + 1,j + 1), where the sum j + 1 is taken modulo
6. Finally, the vertex x is adjacent to the vertices v(1, 2), v(1, 3), v(1, 5), v(1, 6) and
the vertex y is adjacent to the vertices v{k, 2), v(k, 3), v(k, 5), v(k, 6). This graph G
has the required properties.

If n =4 (mod 6), we construct a graph G’ with n — 2 vertices which has the
required properties, and choose a face of G’ with four vertices. Into that face we add
two vertices and five edges as is shown in Fig. 1. The graph G thus obtained has the
required properties. If n = 0 (mod 6), we construct a graph G’ with n — 4 vertices
and with the required properties, and choose again a face of G’ with four vertices.
Into that face we add four vertices and ten edges as is shown in Fig. 2. The graph G
thus obtained has again the required properties. [J

Fig. 1

Fig. 2

For n odd the number $n — 6 is not aa integer, therefore there exists no graph
with this number of edges. Nonetheless, there exists a graph with n vertices and
[5n] — 6 edges. It suffices to construct a graph with n — 1 vertices and $(n — 1) — 6
edges according to the proof of Ti:eorem 2 and to add one vertex and two edges into
a face with four vertices as is shown in Fig. 3.

Fig. 3
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In Fig. 4 we see an example of a graph from Theorem 2 for n = 26. Instead of
(i, j) we write shortly ij.
We will study properties of locally cyclic graphs.

2. LOCAL CYCLICITY

If NG(v) is a circuit for each vertex v of a graph G, the graph G is called locally
cyclic.
The idea to study such graphs comes from [3].

Theorem 3. Let G be a finite undirected graph. Then the following two assertions
are equivalent:

(i) G is locally cyclic.

(ii) Each edge of G is contained in exactly two triangles and there are no two
distinct wheels in G with a common centre.

Proof. (i) = (ii). Let e be an edge of G, let u, v be its end vertices. Thus v is a vertex
of Ng(u). As Ng(u) is a circuit, there exist exactly two vertices x and y of Ng(u) which
are adjacent to v. The sets {u, v, x}, {u, v, y} induce two triangles in G which contain e.
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There exists no other triangle with this property; otherwise » would have a degree
greater than 2 in Ng(u) and Ng(«) would not be a circuit. If there were two distinct
wheels in G with a common centre u, then Ng(u) would contain two distinct circuits
and G would not be locally cyclic.

(ii) = (i). Let u be a vertex of G. If v is a vertex of Ng(u), then uv is an edge of G.
This edge belongs to exactly two triangles in G, therefore the degre of v in N4(u) is 2.
As v was chosen arbitrarily, the graph N, G(u) is regular of degree 2. If Ng(u) contained
two distinct circuits, then G would contain two distinct wheels with the common
centre u. Therefore NG(u) is a circuit. As u was chosen arbitrarily, G is locally
cyclic. O

This assertion enables us to generalize in a certain sense the concept of the dual
graph of a planar graph.

Let G be a finite connected locally cyclic graph. We assign a certain graph D(G)
to it. The vertex set of D(G) is the set of all triangles in G. Two vertices of D(G) are
adjacent if and only if they have an edge in common (as triangles). The graph D(G)
will be called the dual graph to G.

Let D be the class of finite connected graphs with the following properties:

(a) Each graph from D is regular of degree 3.

(b) In each graph H from D there exists a system € of circuits in H such that any
two of them have at most one edge in common and each edge of H is contained in
exactly two circuits of .

(c) If three circuits of % have the property that any two of them have a common
edge, then all three have a common vertex.

Theorem 4. Let G be a finite connected locally cyclic graph. Then its dual graph
D(G)eD.

Proof. Each triangle in G has three edges and thus it has common edges with
exactly three other triangles and (a) holds. Now for each vertex u of G let C(u)
be the subgraph of D(G) induced by the set of all vertices corresponding to triangles
of G which contain u; it is evidently a circuit. By C let us denote the set of all C(u)
for vertices u of G. If u, v are two adjacent vertices of G, then there exist exactly
two triangles in G containing both u and v (and obviously also the edge uv). These
triangles form a pair of adjacent vertices in D(G). The edge joining them is the
unique common edge of C(u) and C(v) in D(G). If u and v are not adjacent in G,
then there is no triangle in G containing both u and v and the circuits C(u) and C(v)
are edge-disjoint. Now let e be an edge of D(G), let its end vertices be x and y. These
two vertices are triangles in G with a common edge f. Let a and b be the end vertices
of fin G. Then e is a common edge of C(a) and C(b), and (b) holds. Now let Cy, C,,
C; be three circuits of C and let any two of them have a common edge. Let ¢y, ¢;, ¢3
be vertices of G such that C; = C(cl), C, = C(c;), C3 = C(c3). Then any two of
the vertices ¢y, ¢,, c; are adjacent and thus the set {c,, ¢z, c3} induces a triangle
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in G. Let x be the vertex of D(G) corresponding to this triangle; then x is the common
vertex of C;, C, and C; and (c) holds.

Theorem 5. Let H be a graph contained in ®. Then there exists a finite connected
locally cyclic graph G such that D(G) =~ H.

Proof. Let € be a system of circuits in H satisfying (b) and (c). We shall construct
the graph G. The vertex set of G is €; two vertices are adjacent in G if and only if
they have a common edge (as circuits in H). The graph H is regular of degree 3 and
therefore for each vertex u of H there exist exactly three circuits of ¥ containing u.
Any two of them are adjacent and thus they form a triangle T(u) in G. Hence to
each vertex u of H a certain triangle T(u) in G is assigned. Two triangles T(u), T(v)
have a common edge if and only if u and v are adjacent in H. Now let T be a triangle
in G, let u, v, w be its vertices. These three vertices are circuits of H with the property
that any two of them have a common edge. According to (c) there exists a vertex u
of G contained in all three circuits; evidently T(u) = T. Hence we have a one-to-one
correspondence between the vertices of H and the triangles of G with the property
that two vertices of H are adjacent if and only if the corresponding triangles of G
have a common edge; this implies D(G) = H.

Now we recall the concept of an independent system of circuits in a graph. Let G
be a graph, let & be a certain set of subgraphs of G. Then the composition of graphs
from & is a subgraph of G whose edge set consists of all edges e with the property
that the number of graphs from & containing e is odd, and whose vertex set is the
set of the end vertices of these edges. If & is a system of circuits in G with the property
that no circuit C € & is the composition of circuits from a subset of & — {C}, the
system & is called independent. The maximum number of independent circuits in
a graph G is called the cyclomatic number of G and denoted by c(G). The equality
c(G) = m — n 4+ p holds, where m, n, p are respectively the numbers of edges,
vertices and connected components of G.

Theorem 6. Let He D, let € be a system of circuits from the definition of D.
Let Cy be an arbitrary circuit of €. Then € — {Co} is an independent system
of circuits in H.

Proof. Let Ce % — {C,}. Suppose there exists a subset ¢’ = ¥ — {C,} such that
the composition of all circuits of ¢’ is C. Then the composition of ¢’ U {C} is the
empty graph and thus any edge of H is in an even number of circuits of ¢’ U {C}.
As €' U {C} = %, this number is 0 or 2. If ¥’ U {C} = ¢ — {C,}, then we have
a contradiction, because any edge of C, lies exactly in one circuit of this set. If
%' U {C} is a proper subset of ¥ — {C,}, then there exists a circuit C; belonging
to € — {Co} and not belonging to' ¢’ L {C}, and having a common edge with
a circuit of ¢’ L {C}. Then this common edge is contained in exactly one circuit
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of ¢’ U {C}, which is again a contradiction. Hence the system € — {C,} is in-
dependent. '

Theorem 7. Let G be a finite connected locally cyclic graph with n vertices and m
edges. Let D(G) have n’ vertices and m’ edges. Then

n' %m , B

Il

3
It

m,
m =3n—-6.

Proof. The number n’ of vertices of D(G) is equal to the number of triangles in G.
If u is a vertex of G and d(u) its degree, it follows from Theorem 1 that the number
of triangles containing u is equal to d(u). As each triangle has three vertices, we have

n=1%Y du).
ueV(G)
On the other hand,
m=% 3 du);
ueV(G)
this implies

4

n' =%m.

Now we define a mapping ¢ of the edge set E(G) of G onto the edge set E(D(G))
of D(G). Let e € E(G). Then e is contained in exactly two triangles; these triangles
are adjacent vertices of D(G). The edge of D(G) joining these vertices will be ¢(e).
It is easy to prove that the mapping ¢ is a one-to-one mapping of E(G) onto E(D(G))
and thus

m =m.
The number n of vertices of G is equal to the number of circuits in €. Theorem 4
implies
n—1=Zc¢D@G)=m —n"+1.
If we substitute n’ = $m, m’ = m, we obtain
n—1=<m-%m+1,
which implies
m=3n-6.

Theorem 8. Let H € D, let € be the system of circuits from the definition of D.
Let C € %. Then the edge set of C is not an edge cut of H.

Proof. Suppose that the vertex set of C is an edge cut of H. The graph H' obtained
from H by deleting the edges of C is disconnected. There exist two adjacent vertices
uy, u, of C which lie in distinct connected components of H'. Let e, (or e,) be the
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edge of H not belonging to C and incident to u, (or u,, respectively). Let e be the
edge joining u, and u,. Let C, be the (uniquely determined) circuit of € which has
the common edge e with C. As C, cannot have more than one common edge with C,
it must contain e, and e,. Let P be the path obtained from C, by deleting e. Then P
is a path in H connecting the vertices u,, u, from distinct connected components
of H'. Thus it must contain an edge e, of C distinct from e. The edges e, e, are distinct
common edges of C and C,, which is a contradiction.

The results which were presented here enable us to construct locally cyclic graphs,
outgoing from their dual graphs. If we find a graph H € D, we can construct the
locally cyclic graph whose dual graph is H.

In the end we prove a theorem showing a recurrent method of constructing graphs
from D.

Theorem 9. Let Hy € ©. Choose a circuit C € € and two edges e,, e, of C. Replace
the edge e, (or e,) by a path of the length 2 with the inner vertex u (or u,, respec-
tively). Join u, and u, by an edge. The graph thus constructed belongs to .

Proof. By this transformation the circuit C is replaced by two new circuits C,, C,
with the common edge u,u,. It is easy to prove that the new graph is again regular
of degree 3 and that the set (¢ — {C}) U {C,, C,] satisfies (b) and (c).

In Fig. 5 we see a graph which satisfies (a) and (b), but not (c). Any two of the
circuits C,, C,, C3 have a common edge, but there is no vertex belonging to all
three.
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Souhrn

DVE LOKALN{ VLASTNOSTI GRAFU

BOHDAN ZELINKA

Symbolem Ng(v) se oznauje podgraf grafu G indukovany mnoZinou uzll spojenych hranami
s uzlem v. Je-li Ng(v) nesouvisly graf pro kazdy uzel v, graf G se nazyva lokdlné nesouvisly. Je-li
Ng(v) kruZnice pro kaZdy uzel v, graf G se nazyv4 lokalné cyklicky. Zkoumaji se lok4ln€ nesou-
vislé grafy a lokalné cyklické grafy.
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Pe3lome

JBA JIOKAJIbHBIX CBOVICTBA I'PA®OB

BOHDAN ZELINKA

ITycte Ng(v) obo3navaer noarpad rpada G, NOPOXAEHHBIH MHONKECTBOM BEPIIMH CMEXHBIX
¢ BepmnHOli v. I'pad) G Ha3BIBAETCA JIOKAIBHO HECBA3HBIM, €Cii Ipad Ng(v) HecBsA3eH s Kaxaok
€ro BEPIIMHBI ¥, H JIOKAIBHO LHKIMYECKHM, €Cli N (v) SBIAETCA KOHTYPOM UL KaXIOH ero Bep-
IIMHBI v. B CTAThe M3y4YaroTCs JIOKAJNBHO HECBS3HBIE M JIOKAJbHO LMKIHYECKHe rpadsi.
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