Pavel Pták; Josef Tkadlec
A note on determinacy of measures

Časopis pro pěstování matematiky, Vol. 113 (1988), No. 4, 435--436

Persistent URL: http://dml.cz/dmlcz/118349
A NOTE ON DETERMINACY OF MEASURES

Pavel Pták, Josef Tkadlec, Praha
(Received October 23, 1986)

Summary. In the article it is shown that the Cramér-Wold theorem implies a stronger form of the Christensen theorem.

Keywords: determining set, probability measure.

AMS Classification: 28A05.

Let \(\mathcal{B}(\mathbb{R}^n) \) denote the collection of all Borel subsets of \(\mathbb{R}^n \) and let \(\mathcal{C} \) be a subset of \(\mathcal{B}(\mathbb{R}^n) \). Let \(\mathcal{C} \) be called determining when the following statement holds: If \(\mu_1, \mu_2 \) are two probability measures on \(\mathcal{B}(\mathbb{R}^n) \) which agree on \(\mathcal{C} \) then they are necessarily identical. The theorem of Christensen ([3]) says that the collection of all open balls is determining and the theorem of Cramér and Wold ([2]) says that the collection of all open half-spaces is determining. In this note we observe that the Cramér-Wold theorem implies a stronger form of the Christensen theorem. (As a by-product we obtain another proof of the Christensen theorem. For further discussion on the determinacy of measures, the reader is referred to [1], [4], [5], [6] and [7].)

Theorem. Let \(p \) be a point in \(\mathbb{R}^n \) \((n \in \mathbb{N}) \) and let \(\mathcal{C} \) denote the collection of all open balls having \(p \) on the boundary. Then \(\mathcal{C} \) is determining.

Proof. Let \(\mu_1, \mu_2 \) agree on \(\mathcal{C} \). Applying a suitable transformation and multiple if necessary, we may assume that \(p = 0 \in \mathbb{R}^n \) and \(\mu_1\{0\} = \mu_2\{0\} = 0 \). Let \(\mathcal{C}_1 \) denote the collection of all open half-spaces which have 0 on the boundary. Put \(\mathcal{D} = \mathcal{C} \cup \mathcal{C}_1 \). Then \(\mu_1, \mu_2 \) agree on \(\mathcal{D} \). Indeed, each open half-space in \(\mathcal{C}_1 \) can be obtained as a union of an increasing sequence of balls in \(\mathcal{C} \). Hence \(\mu_1, \mu_2 \) have to agree on \(\mathcal{C}_1 \) in view of their monotone continuity.

Let now \(\varphi: \mathbb{R}^n \to \mathbb{R}^n \) be a mapping such that \(\varphi(0) = 0 \) and \(\varphi(x) = x/\|x\|^2 \) otherwise. Then \(\varphi \) is obviously a Borel isomorphism. One can easily show that \(\varphi(\mathcal{D}) \) is exactly the collection of all open half-spaces in \(\mathbb{R}^n \). By our assumption, the measures \(\mu_1 \varphi^{-1}, \mu_2 \varphi^{-1} \) agree on \(\varphi(\mathcal{D}) \) and therefore \(\mu_1 \varphi^{-1} = \mu_2 \varphi^{-1} \) (the Cramér-Wold theorem). This means that \(\mu_1 = \mu_2 \) and the proof is complete.
References

Souhrn
POZNÁMKA O URČENOSTI MĚR
PAVEL PTÁK, JOSEF TKADLEC

V článku je ukázáno, že Cramérova-Woldova věta implikuje silnější verzi Christensenovy věty.

Резюме
ЗАМЕЧАНИЕ ОБ ОПРЕДЕЛЕННОСТИ МЕР
PAVEL PTÁK, JOSEF TKADLEC

В работе показано, что теорема Крамера-Волда влечет за собой более сильный вариант теоремы Христенсена.

Authors' address: Katedra matematiky FEL ČVUT, Suchbátarova 2, 166 27 Praha 6.

436