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A NOTE ON WEAK HIDDEN VARIABLES
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Summary. We consider a g-additive version of ‘‘centrally additive’ hidden variables as intro-
duced in [9]. As the main result we construct a logic without sufficiently many centrally additive
dispersion free states. Consequently, this logic does not admit weak hidden variables.
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NOTIONS AND RESULTS

In the logico-algebraic approach to the foundations of quantum mechanics, the
hidden variables hypothesis expresses by the presence of ‘‘sufficiently many” two-
valued states (see [3], [5], [8], [11], etc.). Since many important logics have no
two-valued states (see [1], [2], [7]), it is natural that generalized types of hidden
variables have been considered ([6], [9]). In this note we introduce and shortly
analyse one such generalization. Although the main result is in fact negative (it
implies the absence of hidden variables), the investigation led us to a construction
of a logic having rather special central properties.

Let us review the basic notions as we shall use them in the sequel. By a logic
we mean a g-orthomodular partially ordered set (see e.g. [3]). If Lis a logic then
by C(L) we denote the set of all absolutely compatible elements of L (i.e. C(L) =
={aeL, a is compatible to each b € L}). The set C(L), which is known to be
a Boolean o-algebra (in L), is called the centre of L.

We say that a mapping h: L— {0, 1} is a central 0—1 state if
(i) h(1) =1,
(ii) h(a) + h(a’) = 1 for any a €L,
(iii) h(a) < h(b) whenever a,be Land a < b,
(iv) h(V a;) = Y h(a;) whenever a,e L (i€ N), a; < aj for any i + j and at most
on:3E I:>f a;’s (ieoh::s not belong to C(L).

Of course, if Lis Boolean the central 0—1 states coincide with the 0—1 states.
We have the following result:
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Theorem 1. Let L be a logic and let h be a (central) 0—1 state on C(L). Then
there is a central 0—1 state h on Lsuch that the restriction of h to C(L) is h.

Proof. We aply the following result [9]. For the logic L there exists a Boolean
algebra B and an injective mapping ¢: L — B such that the following conditions are
satisfied:

o(1) =1,

@(a') = ¢(a) for each aeL,

@(a) < @(b) whenever a,beL, a £ b,

o(a v b) = ¢(a) v ¢(b) whenver a,beL, a < b’, and ae C(L).

In particular, ¢ is a Boolean embedding of C(L) mto B. Now let h be a central 0—1
state on C(L). By the theorem of Horn and Tarski [4] & can be extended to a two-
valued finitely additive measure on B. Denote this measure by k and put ﬁ(a) =
= k(p(a)). We claim that / is the required extension. Inded, h|c., = h and if a;
is a sequence of mutually orthogonal elements of Land a;e C(L) for i > 1, then

RV ai) = Ko(V ) = kola,) v o( V a)) = Ko(ar)) + KV a) = ha,) +
+ h( V a;) ;v h(a,). The proof is complete.

We say that L possesses weak hidden variables, if for any pair a, be Lwitha £ b
there is a central 0—1 state h: L— {0, 1} such that s(a) = 1 and s(b) = 0. Similarly
as in the finitely additive case we have the following characterization.

Proposition 2. A logic L possesses weak hidden variables if and only if there is
an injective mapping Y: L— B into a Boolean o-algebra B of subsets of a set such
that

(i) (1) = 1,
(ii) y(a) < y(b) if and only if a < b(a, be L),
(iii) y(a’) = y(a)’ for any a€L,
(iv) ¥(V a;) = V ¥(a;) whenever a,eL(i€N),a; £ ajforany i % jand a;e C(L)
ieN ieN

for i > 1.

Proof. If y: L— B is a mapping with the properties (i)—(iv) and if a £ b then

w(a)\nﬁ(b) is nonvoid. If we take a point pey(a)\y(b) and consider the state
»: B = {0, 1} concentrated in {p} then s,V is a central 0—1 state on Land s, Y(a) =

= l s, ¥(b) = 0.

Conversely, if L possesses weak hidden variables and if we denote by Q the set
of all central 0—1 states, then a routine verification gives thatit suffices to take for B
the o-algebra generated by all sets Q, = {h, h(a) = 1} (a e L) and put y(a) = Q
This completes the proof.

Now a natural question arises, whether each L possesses weak hidden variables
(provided, of course, that C(L) possesses weak hidden variables, which obviously
requires C(L) to have a set representation). The answer is in the negative.
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Example 3. There exists a logic L such that
(i) C(L) is o-isomorphic to a g-algebra of subsets of a set,
(ii) there exists e € Lsuch that s(e) = 1 for no central 0— 1 state.

The construction. Let M be a six element logic M = {0, 1,a,a', b, b'} and let S
be a set with card S = 2". Put L, = M for any x € S and consider the logic product
P =[] L, (the domain of P is the usual cartesian product and the partial ordering

xeS .
and the orthocomplement are taken ‘‘coordinatewise™). Let us define a relation ~

on P by putting f ~ g if and only if the following conditions are satisfied (elements
of P are considered as mappings from S into L):

(i) f71(b) = g~ '(b), S7(b)) = g~ '(b"),

(i) /(1) v S (@) = g~ '(1)) U g~ (a'),
(i) {xeS, f(x) * g(x)} is at most countable.

Further, put N, , = {x€ S, f(x) £ g(x)} and define another relation < on P by
setting f < g <> N, is at most countable and N, , = (f~'(a) u g~ '(a’)). The rela-
tion ~ on P is an equivalence and the factor P = L/~ becomes a logic when endowed
with the partial ordering and the orthocomplement induced by < and ’, respectively
(the verification of these facts is rather lengthy but essentially simple and is left to
the reader).

Now we have to show that C(L) is isomorphic to a o-algebra of subsets of a set.
In order to do so, observe that [ f] e C(L) (f € P) exactly in the case when the set
{xeS, f(x)¢ {0, 1}} is countable. It immediately follows that the mappings s,, r,
(x€S): C(L) - {0, 1} defined by the requirements

s{[f]) =1 ifand onlyif f(x)e{l,a’, b},
r{[f]) =1 ifandonlyif f(x)e{l,a’, b’}

are 0— 1 measures on C(L). This implies that for any [f]e C(L) there is a 0—1
measure t on C(L) with ([ f]) = 1. Therefore, C(L) has a set representation.

Finally, put e = [f,], where f,(x) = a for any x € S. We have to show that there
is no central 0— I state h on Lwith h(e) = 1. Assume that such an h exists and proceed
by way of contradiction. For each K < S, let fx be the characteristic function of K
(with 0, 1 taken from M). The mapping ¢: K - [fx] is an isomorphism of the
Boolean algebra exp S (of all subsets of S) onto a sub-c-algebra of C(L). Therefore
m = ho ¢ is a probability measure on exp S. Obviously, if Keexp S and S\K
is countable, then [fx] = [/f.] and therefore m(K) = h([fx]) = h([f.]) = 1. This
implies that m is a two-valued probability measure on exp S such that m(J) = 0
for each countable set J € exp S. We have reached a contradiction (see [10]). The
proof is complete.

In the conclusion of this note let us observe that the above example has the fol-
lowing central properties potentially applicable also elsewhere:

(i) We have A{[fk], K = expS, K countable} = 0 in C(L) but 0 = [f,] £ fx
for any K countable.
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(ii) C(L) is atomic, the intersection of [f,] with every atom in C(L) equals 0 but
[f] + 0. .
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Souhrn

Jiki BINDER

POZNAMKA O SLABYCH SKRYTYCH PARAMETRECH

Clanek se zabyva o-aditivni verzi centrdlng aditivnich skrytych parametr@ zavedenych v [9].
Je nalezena logika, ktera nemda uplnou mnozZinu centralné aditivnich bezdisperznich stavu.

Pe3rome

JiRf BINDER

3AMEYAHUME O CJIABBIX CKPBITBIX ITAPAMETPAX

PaccMaTpuBaroTCs LIEHTPaJIbHbIE COCTOSHUS Ha JIOTHKE, BBEIEHBIE B CBS3H C IPOGIEMOii CKPBITHIX
napameTpoB. ITocTpoeHa JIOrMKa, He MMeEIoMIas MOJIHOE CeMEACTBO LieHTpanbHbiX 0— 1 coCTOsIHMIA.
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