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CARDINAL INVARIANTS OF BITOPOLOGICAL SPACES

R. D. KopPERMAN, New York, P. R. MEYER, Bronx
(Received April 25, 1987)

Summary. A non-symmetric distance function (see [7]) or quasiuniformity (see [2]) on a set X
gives rise to two topologies on X; spaces with two topologies, called bitopological spaces, were
introduced in [6] and [9]. We seek to extend the theory of cardinal functions to bitopological
spaces, and obtain bounds on several of these functions involving the quasiuniform weight,
a non-symmetric analogue of Juhasz’s uniform weight (see [4]).

AMS (MOS) Numbers: Primary, 54A25 (Cardinality Properties); secondary, 54E15 (Uniform
structures and generalizations), 54E35 (Metrizability).

1. SOME CARDINAL FUNCTIONS ON BITOPOLOGICAL SPACES

If ¢ is a cardinal function on a topological space (X, T), we often abbreviate
(X, T) to ¢(X) or ¢(T) when no confusion can arise. We are primarily interested
in the following (standard) functions (from [5] unless otherwise indicated): w(T)
(weight of T) = least cardinality of a base for T, d(T) (density of T) = least cardi-
nality of a T-dense subsct of X, ¢(T) (cellularity of T) = sup of the cardinalities of
pairwise disjoint sets of open sets in T, s(T) (spread), L(T) (Lindelof degree), h(T)
(height), n(T) (net weight), z(T) (width), and e(T) (extent—see [1]) = sup {|C|:
C < X closed and discrete in T}. Those not defined in the previous sentence are
mentioned only in passing. If ¢ is any cardinal function on a topological space,
then her ¢(X, T) = sup {¢(Y, T| Y): Y = X} is called the hereditary ¢ of (X, T).

In addition to the above, we are interested in cardinal invariants related to metriza-
tion. Hodel’s metrization number is m(T) = smallest infinite cardinal m such that
there is a base for T which is the union of m discrete collections (see [3]). Other
invariants related to metrization have been defined externally to the topology:
the uniform weight u(T) of Juhasz [4] is the smallest possible cardinality of a base
of a uniformity from which T arises.

The Mrowka number M(T) (= the smallest cardinal of a set of pseudometrics
from which Tarises — see [ 10]) is essentially the same as the uniform weight (precise-
ly, u(T) @ = M(T) w). Another definition of the same cardinal may be made in terms
of continuity spaces (see [7]) since u(T) is the least cardinal of a base for the set of
positives in a symmetric continuity space from which T arises. An internal charac-
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terization of this invariant is given in [8]; m(T) < u(T), but it is not presently
known whether the two are always equal for completely regular spaces.

Theorem. If T is an arbitrary topology and ¢ is any of the cardinal invariants
in the first paragraph, then (T} A ¢(T) £ ¢(T) < w(T). If T is metrizable, then
@o(T) = w(T) for each ¢.

Note that if X, = (X, T}, T) is a bitopological space then the join Ty v T, is
a third topology on X determined by X . This topology is completely regular in the
case we consider below and plays a central role in our work.

Given a cardinal function ¢, the following considerations often lead to a definition
of a bitopological analogue for ¢, which we shall call bg. ¢ is called isotone if ¢(T) <
< ¢(T’) whenever T and T" are topologies on the same set and T = T'; anti-isotone
is defined correspondingly. For the functions listed above, ¢,d, ¢, L, n,s, h, and z
are isotone. If ¢ is isotone then so is her ¢. If ¢ is isotone and Ty, T, are topologies
on X then ¢(Ty) @(T,) £ ¢(T, v T,). We have found that for the cardinal functions
listed above, (T, v T,) and ¢(T;) ¢(T,) are both candidates for be(X,), and
since our objective is to find an upper bound for these invariants, it is appropriate
for our purposes to define: If ¢ is an isotone cardinal function and X = (X, Ty, T,)
a bitopological space then bo(Xp) = @(T; v Ty).

The weight is neither isotone nor anti-isotone, but satisfies the inequality
w(Ty) w(T,) = w(T; v T,). The same is true for the net weight. For these cardinal
invariants b is defined by bo(X, Ty, T,) = ¢(T,) @(T,). This corresponds to the fact
that a bibase for a bitopological space is a base for each topology, thus its cardinality
must be the sum of theirs.

We have now defined b for all the cardinal functions ¢ considered so far, except
for u, m, and M. The following properties are immediate for such ¢:

(1) bo(X, Ty, Ty) = ¢(X, Ty) o(X, T2) o(X, Ty v Ty).

(2) bo(X, T, T) = o(X, T).

(3) if 1 < @, then bo; = bg,.
From (l) it follows that the known partial ordering of those topological cardinal
functions and the results of the above theorem extend to the analogous bitopological
invariants.

A bisubspace of a bitopological space is defined in the obvious way. For X =
=(X,T,,T,), S X, let Sg= (S, T, |S, T,|S). For any bitopological invariant
be we define her bg by analogy with the usual topological definitions of hereditary

cardinal invariants: her bp(X ) = sup {bp(Sp): S = X}. Here are some immediate
consequences:

(4) her by = be; if ¢ < ¢’ then her be < her bo’,
(5) if @ satisfies (1) then her by = b(her @) (the proof uses (T, v T,)|S =
= (T} [S) v (T, | 5)).
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We find it appropriate to define bitopological cardinal invariants related to M and u
as follows: bg(Xp) = least cardinality of a base for a quasiuniform space (X, %)
such that Ty = To (%) (= {P: if x € P then for some Ue %, {Y:(x,y)eU} < P})
and T, = To (¥*) (¥* = (U™': U e} — see [2] for more details). This is also the
least cardinality of a base of a set of positives in a continuity space X = (X, d, A, P)
for which T, = To(X) (= {P: if x€ P then for some re P, N,(x) = P}, where
N(x) = {y:d(x,y) £ r}) and T, = To (X*) (X* = (X, d*, 4, P) is the dual of X,
where d*(x, y) = d(y, x); see [7]). Q(Xp) = least cardinality of a set of quasi-
metrics D such that To (D) = T;. Note that {S, (x): xe X, r > 0, d € D} is an open
subbase for To (D), where S, [(x) = {rid(x, y) <r}; thus if let 27V =
={27% k =1,2,..} and for F = 27" x D finite, x € X define S¢(x) = N{S, J(x):
(r,d) e F}. then {Si(x): F = 27" x D finite, x € X} is a base for To (D). We also
use the notation, {d*:de D} = D* (again d*(x, y) = d(y, x)), and notice that
To (D*) = T,. It is simple to show that these numbers are related in the same way
as their topological (symmetric) analogues.

As is well known, Ty v T, is a completely regular topology when X is obtained
from a quasiuniformity, continuity space, or set of quasimetrics, due to the following
considerations: With notation as in the last paragraph, let #° = {V < X x X: for
some Ue#, UnU™"' < V}, (a uniformity) and d° = d + d* for quasimetrics or
continuity functions, X* = (X, d*, A, P) (a symmetric continuity space), D’ =
= {d*: d e D} (a set of pseudometrics). If K denotes U, X, or D, then To (K®) =
= To (K) v To (K*)(for continuity spaces simply note that for each r € P, Ni(x) =
< N/(x) n Nf(x) = N3,(x); the other arguments are similar). Thus T; v T, is
completely regular since it arises from a uniformity, symmetric continuity space,
or set of pseudometrics.

2. THE MAIN RESULTS

Recall that if f: X =Y, Xp = (X, Ty, T,), Y3 = (X, Ty, T,), then fis pairwise
continuous iff for each i € {1, 2}, f is continuous from T; to T;. A bitopological space
(x, 1y, T,) is pairwise completely regular if whenever x € P € T; there is an f: X —
— [0, 1] such that f(x) =1, f = 0 off P, and f is pairwise continuous from
(X, T;, T5-;) to [0,1]5 = ([0, 1], LO, UP), where LO = {(a, ©): ae[—o, o],
and UP = {(—,4a): ae[—o0, ]} (see [6] or [9]). A bitopological space is
pairwise T, if for each pair x,, x, of distinct points in X there is an i e {1,2} and
aPe T, uT,suchthat x; € Pand x;_; ¢ P. Thus if X is pairwise completely regular
then T, v T, is completely regular, and if X is also pairwise T, then T; v T, is
Tychonoff. We now state the result mentioned in the introduction and give an
example which shows that it cannot be sharpened. Proof of the result is given at the
end of the paper.
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1. Theorem. If ¢ is any of the listed functions except M, m, u:

(a) b + bg = bw for pairwise Ty, pairwise completely regular bitopological
spaces;

(b) @ + u = w for Tychonoff topological spaces.

Example. The Sorgenfrey line (the reals, R, topologized with base {(a, b]:
a,beR})hasw=u=n=|B >w,c=d=e=L=h=s=z= w;this topo-
logy arises from the quasimetric So (x, y) = x — yif x = y, = 1if x < y. From the
dual quasimetric So* comes the other Sorgenfrey topology with base {[a, b): a, be R}.
Since this is a quasimetric space, bg = w as well. The join of these topologies isthe
discrete topology, so bc is the cardinality of the continuum. Thus for the Sorgenfrey
line, bc + bg = ¢ + u, but bc > ¢ and bg < u. The latter inequality shows that
the Sorgenfrey topology, while normal and quasimetrizable, is not metrizable.

The following lemma helps us to establish some properties of bg:

2. Lemma. (a) If 4 is any set of subsets of X, T, is the topology generated by %,
and T, the topology generated by #° = {X — B: Be B}, then X, is pairwise com-
pletely regular. In particular, if # is a base for a topology T, on X there is a topo-
logy T, on X such that Xy is pairwise completely regular. If the topology T,
satisfies the T,-separation property, then T, can be taken to be the discrete topology
on X. ‘

(b) The following are equivalent:

(i) (X, T) is completely regular,
(i1) (X, T, T) is pairwise completely regular.

(c) If To(X) = To(X*) then To(X) = To(X*).

Proof. (a) For any finite F < B define f, g5 by fi(y) = 1 if y e NF, = 0 other-
wise, g(y) = 0if y e UF, = 1 otherwise. Then f5 '[(a, + )] = X ifa <0, = NF
if0=<a<1, =0ifa =1, sofris continuous from T, to LO; similarly fr is con-
tinuous from T, to UP, gy from T, to LO and from T; to UP. If x € P € T, then for
some finite subset F of B, xe N\F = P, so fz: X - [0, 1] is continuous from T to
LO and from T, to UP, fF(x) = 1 and fr = 0 off NF, thus off P; g works similarly
for T;.

The proof of (b) is straightforward, and (c) is immediate from our observation
that To(X*) = To(X) v To(X*).

Let x denote the ncighborhood character (= sup {inf {|B,|: B, a neighborhood
base about x}: x € X}; see [5]). The proof of 3(a) was suggested by a proof due to
Engelking ([1], p. 115). Also we define g(X, T) to be the least cardinality of a base
of a quasiuniformity % such that T = To(%).

3. Theorem. (a) bq < bw for pairwise completely regular bitopological spaces.
(b) For any topology T, bq(T, T) = u(T).
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(¢) x = q £ w for arbitrary topological spaces.
(d) x £ g < u < w holds for completely regular topologies.

Proof. (a) We give our proof essentially in terms of quasimetrics; it could easily
be reformulated in terms of quasiuniformities or continuity spaces. Thus we find a set
D of quasimetrics such that To(D) = Ty, To(D*) = T, and |D| £ w(T;) w(T%).

For i = 1,2, let B; be a base for T; of minimal cardinality. Let E = {(R, S, i):
i=1,2, R,SeB,;, and for some pairwise continuous f:(X, T;, T5_;) - [0, 1]5,
SfIR] = (.5,1] and f[X — S] = {0}}. For each k € E choose such an f;, and define
di(x, y) = max {f,(x) — fi(»), 0} if i = 1, = max {f,(y) — fu(x), 0} if i = 2. Finally,
let D = {d,: k € E}; this choice of D requires |D| < |B,||B,| = w(Ty) w(T3).

We now check that Ty = To(D), T, = To(D*):if xe Qe Ty let Se By, x€ S < Q,
and by pairwise complete regularity find f: X — [0, 1] pairwise continuous and
such that f(x) = 1 and f = 0 off S. Since x e f7![(0,1]] e Ty let Re By, xe R <
e f7Y(.5,1]]); clearly f[R] =(.5,1], f[X — S] ={0}, so ¢ =(R,S,1)€E,
d=d,eD. Thus S 5 (x) = {y:d(x,y) < .5} = {y: fey) > .5} = S = Q. This
shows T, = To(D), and a very similar proof shows T, = To(D*). Next suppose
x € Q e To(D); we find Q, € T, such that xe Q, = Q, showing Q to be a T;-neigh-
borhood of each of its points, thus open in T;. By definition of To(D) we have some
finite F = 27" x D such that Si(x) = Q. Since this Sg(x) satisfies our conditions,
To(D) = Ty, and again To(D*) < T, is shown similarly.

Proof of the converse, and proofs of (b), (c), (d) are clear.

Proof of 1: It suffices to prove (a) since (b) then follows from'3 (b). For (a) it
suffices to show that bw < bc + bq and bw < be + bq. In the following lemma we
show that bd < bc + bq and bd £ be + bq, and we now show that bw < bd + bg,
completing the proof. It remains to note that w(T;) < bq(Xp) bd(Xp). Let Y be
bidense in Xy (dense in X with respect to the topology Ty v T3), and let Ty =
= To(D), T, = To(D*), |Y| = bd(Xp), D of minimal possible cardinality. Let
B, = {Si{y): F<=2™¥ x D finite, yeY}, B, = {SHy): F =27 x D* finite,
ye Y}, where SF(y) is defined as in the next-to-last paragraph of Section 1. Then
[Bi| £ w|D| |Y] £ bd(Xp) bg(Xp), so it will do to show that B, is a base for T;,
i.e., for each x € X, F finite as above, there is a y € Y such that x € Sg),(y) = Sg(x),
where let F[2 = {(r[2, d): (r,d) e F}. Since Y is bidense and To(D*) =Ty v T,
given x € X there is a y € Y such that for each (r,d)eF, d*(x, y) < r[2, thus x €
€ Sp2(y) and if ze Sp;y(y), (r,d)eF then d(x,z) < d¥(x,y) + d(y,z) <r, so
Se0) < S¥(x).

4. Lemma. For any pairwose T, bitopological space Xp we have: bd(Xj) <
< bq(X3) + be(Xp), and bd(X ) < bq(Xp) + be(Xp).

Proof. For both inequalities, let D be a set of quasimetrics of minimal cardinality
such that X = (X, To(D), To(D*)) (if there is no such D then bg(Xp) = oo, so there
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is nothing to show), and for each finite F = 2™V x D* let Y, = X be maximal for
which S(F) = {Si(y): y € Y;} is a set of disjoint sets and if y, y’ € Y and Si(y) =
= S¢(y’) then y = y'. Next let S = U{S(F): F =27" x D* finite}, Y = U{¥:
F < 27V x D* finite}.

The first inequality now follows from the following two facts: (1) choice requires
that |Y| < |S| = |D| we(To(D) v To(D*)) < bg(Xg) + be(Xp). (2) Y is bidense: if
Q € To(D) v To(D*) is non-empty, we must show that Y @ is non-empty. Choose
x € Q; then for some finite F = 27V x D%, S(x) = Q. If ye Y then Sg;(x)n
N S[-‘/z(y) = 0 since if z is in their intersection and (r,d)e F then since d e D*,
d(x,y) £ d(x,z) + d(z, ) £r[2 + r[2 = r. But this contradicts the maximality
of S(r) or our choice of Y.

The second inequality follows from these facts: (1) each Yj is discrete in To(D) v
Vv To(D*). (2) Y is closed in To(D) v To(D*); first notice that if z € X then Sg(z)
contains at most one of the y € Yz: by symmetry if y, )’ € S{(z) then z e Si(y) n
N Sg(y'), contradicting the discreteness of Sy and choice of Y. Since X is pairwise Ty,
To(D) v To(D*) is Tychonoff, so there is a join-open set Q containing z but not
this y, and Q N Si(z) does not intersect Y. (3) Thus |Y,| < e(To(D) v To(D*)) <
< be(Xp) for each finite F < 27" x D. But Y is bidense so bd(X ) = d(To(D) v
v To(D*)) £ |Y| £ |D| wsup {|Y¢|: F = 27" x D’ finite} < bq(Xp) + be(Xp).
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Souhrn

KARDINALN{ INVARIANTY BITOPOLOGICKYCH PROSTORU

R. D. KorPERMAN, P. R. MEYER

Nesymetricka vzdalenost (viz [7]) nebo kvaziuniformita (viz [2]) na mnoZin& X generuje dvé
topologie na X. Prostory se dv€ma topologiemi, tzv. bitopologické prostory, byly zavedeny v [6]
a [9]. Cilem autort je roz§itit teorii kardinalnich funkci na tyto prostory a stanovit meze pro
n&€kolik takovych funkci pomoci kvaziuniformni vahy, jeZ je nesymetrickou analogii Juhaszovy
uniformni vahy (viz [4]).

Pesome

KAPOMHAJIBHBIE MHBAPUAHTBI BUTOITOJIOTMYECKUX ITPOCTPAHCTB
R. D. KopPPERMAN, P. R. MEYER

HecummeTpnunoe paccrosuue (cM. [7]) MM KkBasupaBHOMeEpHas CTPykTypa (cM. [2]) Ha MHO-
2KECTBC X mopoxkaaeT Ase Tonojorun Ha X. ITpocTpaHcTBa ¢ ABYMES! TONOJIOTMAMMH, T.H. OUTONOJIO-
TUYeCKHe NPOCTpaHCTBAa ObLTH BBeAcHbI B [6] M [9]. Llenpro aBTOPOB SBNSAETCS PACHPOCTPAHCHHE
TeopuM KapAHWHAIBHLIX (DYHKLHMA HA 31 MPOCTPAHCTBA M YCTAHOBJIEHHE OLEHOK ISl HECKOMBKHX
TakuxX QYHKIMIL NPH NOMOINY KBa3WPaBHOMEPHOTO BeCa, KOTOPHBIK SBIAETCA HECAMMETPHYECKUM
aHanoroM pasHomepHoro Beca FOxaca (cm. [4]).
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