Casopis pro péstovani matematiky

Jiff Sedlacek
On generalized outerplanarity of line graphs
Casopis pro péstovdni matematiky, Vol. 115 (1990), No. 3, 273--277

Persistent URL: http://dml.cz/dmlcz/118405

Terms of use:

© Institute of Mathematics AS CR, 1990

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
O with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz


http://dml.cz/dmlcz/118405
http://project.dml.cz

115 (1990) CASOPIS PRO PESTOVANI MATEMATIKY No. 3, 273277

ON GENERALIZED OUTERPLANARITY OF LINE GRAPHS

Jiki SEDLACEK, Praha

(Received September 16, 1988)

Summary. A generalized outerplanar graph is a planar graph which can be embedded in the
plane in such a way that at least one end-vertex of each edge lies on the boundary of the same
face. Let &/ and &/, be the class of all outerplanar graphs and the class of all generalized outer-
planar graphs, respectively. Let L(G) stand for the line graph of a graph G. In this note we show
that the following three statements on G are equivalent:

(1) L(G)e #,,;

(2) G has no subgraph homeomorphic from one of the seven graphs shown in Fig. 2;

(3) the following two conditions hold:

(i) Gew(,
(ii) the degree of each vertex is at most four, each vertex ¢ of degree four is a cut-vertex, for
every c there are at least two bridges incident with ¢, and at least one of them is an end-bridge.
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In this paper all graphs are finite and simple. First, let us recall some concepts.

We follow Behzad and Chartrand [1] in saying that a graph H is homeomorphic
from G if either H =~ G or H is a subdivision of G. Further, a graph G, is homeo-
morphic with a graph G, if there is a graph G5 such that both &, and G, are homeo-
morphic from Gj.

A graph G is said to be outerplanar if it can be embedded in the plane so that all
vertices of G lie on the boundary of the same face, say ,(G). Let «, be the class of
all outerplanar graphs. Chartrand and Harary [2] showed that G belongs to &/, if
and only if it contains no subgraph homeomorphic from K, or K, ;.

In [5] the study of the neighborhoods of the second type motivated the following
generalization of outerplanar graphs: A generalized outerplanar graph G is a planar
graph which can be embedded in the plane in such a way that at least one end-vertex
of each edge lies on the boundary of the same face, say QZ(G). Let us always choose
2,(G) in such a way that the boundary of Q,(G) contains the maximum number of
vertices of G. In [5] the class of all generalized outerplanar graphs was denoted
by «7,. It was also shown that G belongs to &, if and only if no subgraph of G is
homeomorphic from one of the graphs in Fig. 1. Let these graphs be labeled by
1,2,...,12 asin Fig. 1.
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Let G be a graph with a nonempty edge set. The line graph L(G) of G is the graph
having vertex set E(G) such that two vertices in L(G) are adjacent if and only if their
corresponding edges in G are adjacent. For an edge e of G let A(e) mean the cor-
responding vertex of L(G). In [6] we characterized the planarity of a line graph L(G)
by using the planarity of G and its vertex degrees. Let us recall this result without
proof (A(G) means the maximum vertex degree in G).

Theorem 1. A graph G has a planar line graph L(G) if and only if G is planar,
A(G) £ 4, and every vertex of degree four is a cut-vertex.

Greenwell and Hemminger [3] gave a characterization of graphs with planar line
graphs in terms of forbidden subgraphs. Here we also present their result without
proof. For symbols used in Theorem 2 we refer to Harary [4].

Theorem 2. A graph has a planar line graph if and only if it has no subgraph
homeomorphic with K5 5, K, s, P, + K, or K, + Kj.

The aim of this note is to present two necessary and sufficient conditions for
a graph G to have a line graph L(G) belonging to «,. One of them is analogous to
Theorem 1, the other to Theorem 2, and both are presented in Theorem 3. First of
all let us formulate an auxiliary statement without proof.

Lemma 1. If Ge o/, and AG < 3 then L(G) € o/,.

In Theorem 3 we need the concept of an end-bridge. By an end-bridge of a graph G
we mean a bridge uv of G where one of the vertices u and v, say u, has degree 1. The
removal of an end-bridge uv is understood to be the removal of both uv and u.
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Theorem 3. The following three statements on a graph G are equivalent:
(1) L(G) e o ;

(2) G has no subgraph homeomorphic from one of the seven graphs I 11, ..., VII
shown in Fig. 2;

% Vi vil

Fig. 2

(3) the following two conditions hold:
(i) Ge w4,
(il) the degree of each vertex is at most four, each vertex c of degree four is

a cut-vertex, for every c there are at least two bridges incident with c, and at least
one of them is an end-bridge.

Proof. (1) = (2). It is sufficient to show that the line graph of each graph homeo-
morphic from a graph in Fig. 2 contains a subgraph homeomorphic from a graph
in Fig. 1. Indeed, if we go through the graphs I, I1, I11, IV, V, VI, VII in Fig. 2 then
the corresponding graphs in Fig. 1 are successively 11, 11, 10, 5, 10, 8, 9.

(2) = (3). Assume that (2) holds and proceed as follows:

(i) If G ¢ o/, then (due to the theorem of Chartrand and Harary [2]) G contains
a subgraph homeomorphic from I or I (Fig. 2), which is a contradiction.

(ii) If A(G) = 5 then G contains a subgraph homeomorphic from III, a contra-
diction. Let v be a vertex of degree four in G and let v; (1 < i < 4) be the vertices
adjacent to v.

If v is not a cut-vertex then we denote by C;; a circuit containing the edges vv;
and vv; in G. If C,, and C;, had no common vertex but v it would be a contradiction
with I'V. The same contradiction would be obtained if both v, and v, belonged to Cy,.
If v, belongs to C,, and v, does not we have a contradiction with V. Let neither
v, nor v, belong to C,, and let w, w ¥ v, be a vertex belonging to both C,, and Cj,.
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The vertices v and w divide C,, into two parts. We may assume that no vertex of C,,
lies inside one of them, say P. Without loss of generality we can assume that v; is
inside P. If we now add the path P, the edge vv,, and the vertex v, to the circuit C,,
we get a subgraph contradicting the graph V. :

Let v be a cut-vertex of G. If there is at most one bridge incident with v then we
have a contradiction with I'V or V. If there are at least two bridges incident with v
and none of them is an end-bridge then we get a contradiction with VI or VII.

(3) = (1). If Ge o, and, in addition, A(G) < 3 then according to Lemma 1 the
statement (1) holds. If A(G) = 4, let us go through all vertices v of degree four.
Let vv, be an end-bridge and let vv; (2 < i < 4) be the other edges incident with v.
Let us remove vv, for every v. Let G* be the graph resulting from G. Let us draw the
graph L(G*)e &, in the plane and construct a planar representation of L(G) as
follows: For every v place a planar representation of A(vv,) inside the triangle whose
vertices are images of the vertices A(vv;) (2 < i < 4) of L(G*) and join v with the
vertices of the triangle. This drawing shows that L(G) e o/,. [
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Souhrn

O ZOBECNENE VNEJSKOVE ROVINNOSTI HRANOVYCH GRAFU

Jikf SEDLACEK

Zobecnény vn&jskove rovinny graf je takovy graf G, ktery je moZno vnorit do roviny tak, Ze
existuje oblast vymezena grafem G, na jejiZ hranici ma kaZzda hrana grafu G obraz aspoii jednoho
svého koncového uzlu. Tridu vn&j§kové rovinnych grafa resp. tfidu zobecn&nych vnéj§kové
rovinnych grafi ozname &/, resp. &/,. Hranovy graf grafu G, oznaeny L(G), je prunikovy
graf hranové mnoZiny grafu G.

V této poznamce se ukazuje, Ze tyto tfi vyroky o grafu G jsou ekvivalentni:

(1) L(G) € o ;
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(2) G neobsahuje Zadny podgraf homeomorfni z nékterého ze sedmi grafu znazornénych
na obr. 2;

(3) soudasné plati:

() Ge Ay,
(ii) maximalni uzlovy stupeii grafu G je nejvySe 4, kazdy uzel stupné 4 je artikulace grafu G,
inciduji s nim aspoii dva mosty a aspoii jeden z nich je koncovy.
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