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Periodic solutions for third order

ordinary differential equations*

Juan J. Nieto

Abstract. In this paper, we introduce the concept of upper and lower solutions for third
order periodic boundary value problems. We show that the monotone iterative technique

is valid and obtain the extremal solutions as limits of monotone sequences. We first
present a new maximum principle for ordinary differential inequalities of third order that
is interesting by itself.

Keywords: periodic solution, maximum principle, upper and lower solutions, monotone
method

Classification: 34B15, 34C25

1. Introduction.

The existence of solutions for third order ordinary differential equations has been
widely studied in the last years and applications of third order differential equations
are encountered in physics, engineering and mathematical biology. See, for instance,
[1]–[6], [9] and the references therein. Recently has been considered the existence
of periodic solutions of third order ordinary differential equations [2], [3], [4], [8].

In this paper, we study the existence of solutions for the following periodic bound-
ary value problem (PBVP) for a third order ordinary differential equation

(1.1) u′′′ = f(t, u), u(0) = u(2π), u′(0) = u′(2π), u′′(0) = u′′(2π).

We first present a new maximum principle for third order ordinary differential
inequalities. As it is well known, the maximum principles have applications to the
question of uniqueness and continuous dependence on the boundary values for linear
equations and, also, to the question of existence for nonlinear equations by means
of the monotone iterative method. We apply the maximum principle to the study
of the existence of periodic solutions for the periodic boundary value problem (1.1).
To this purpose, we introduce a new concept of upper and lower solutions as limits
of monotone iterates.

Finally, we mention some open problems and questions relative to the periodic
boundary value problem and questions relative to the periodic boundary value prob-
lem (1.1) for further research.
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2. Maximum principle.

Let m > 0, M = m2, and for u ∈ C1(I), v ∈ C2(I), define the operators L1u =
u′ − mu, and L2v = v′′ − mv, respectively. Relative to L1 and L2, we have the
following comparison results.

Lemma 2.1. Suppose that L1u ≥ 0 on I and u(0) ≥ u(2π), then u ≤ 0 on I.

Lemma 2.2. If L2u ≥ 0 on I, u(0) = u(2π), and u′(0) ≥ u′(2π), then u ≤ 0 on I.

For the proofs of these results see Lemma 1.2.2 and Lemma 2.1.1 in [10], respec-
tively. They are utilized to generate monotone sequences that converge to extremal
solutions of first and second order PBVP, respectively.
Now, for u ∈ C3(I), let L = L1◦L2, that is, Lu = u′′′−mu′′−mu′+Mu. We are

in a position to prove the following maximum principle for third order differential
inequalities.

Theorem 2.3. Suppose that Lu ≥ 0 on I and u(0) = u(2π), u′(0) ≤ u′(2π) and
u′′(0) ≥ u′′(2π). Then we have that u ≤ 0 on I.

Proof: Let v = L2u. Thus, L1v ≥ 0 and v(0) ≥ v(2π). In consequence, we get
that v ≤ 0 on I, that is, L2(−u) ≥ 0. Now, by Lemma 2.2, we conclude that −u ≤ 0
on I. �

3. Upper and lower solutions.

We say that α ∈ C3(I) is a lower solution of (1.1) if there exists m > 0 such that

α′′′(t)− mα′′(t)− mα′(t) ≤ f(t, α(t)), t ∈ I,(3.1)

α(0) = α(2π), α′(0) ≥ α′(2π), α′′(0) ≤ α′′(2π).(3.2)

Analogously, we say that β ∈ C3(I) is an upper solution of (1.1) if there exists
n > 0 with

β′′′(t)− nβ′′(t)− nβ′(t) ≥ f(t, β(t)), t ∈ I,(3.3)

β(0) = β(2π), β′(0) ≤ β′(2π), β′′(0) ≥ β′′(2π).(3.4)

Conditions (3.1) and (3.3) may seem very artificial, but in practice we have some
general situations, where they are satisfied. Indeed, we have the following two cases
for α ∈ C3(I). Obviously, similar situations are valid for β.

Case I. Suppose that α ∈ C3(I) and α′′′(t) < f(t, α(t)), t ∈ I. Then we can choose
k, m > 0, such that α′′′(t)+k ≤ f(t, α(t)), t ∈ I and m|α′′(t)|+m|α′(t)| ≤ k, t ∈ I.
Therefore, Condition (3.1) holds.

Case II. Suppose that a ∈ R is such that 0 ≤ f(t, a), t ∈ I. Thus, defining α(t) = a,
t ∈ I, we have that (3.1) is satisfied for any m > 0.
Now, let us assume that there exist α, β lower and upper solutions of (1.1),

respectively, such that

(3.5) α(t) ≤ β(t), t ∈ I.
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Suppose that m = n and assume that f satisfies the following condition for
α(t) ≤ v ≤ u ≤ β(t), t ∈ I,

(3.6) f(t, u)− f(t, v) ≥ −M(u − v).

Let E = {u ∈ C3(I) : u(0) = u(2π), u′(0) = u′(2π), u′′(0) = u′′(2π)}, F = C(I),
and consider the linear operator L : E → F . The analysis of this differential
operator [3] shows that KerL = {0} sincem > 0. Thus, L−1 : F → E is continuous.
For η ∈ F , let us solve the following PBVP

(3.7) Lv = f(t, η) +Mη, v ∈ E.

The unique solution of this PBVP is denoted by Kη, and we can define the
operator K : F → E. For u ∈ F , we say that u ∈ [α, β] if α ≤ u ≤ β on I.

Theorem 3.1. The operatorK has the following two properties in the sector [α, β].

(P1) If η ∈ [α, β], then Kη ∈ [α, β], and
(P2) if η1, η2 ∈ [α, β] and η1 ≤ η2 on I, then Kη1 ≤ Kη2 on I.

Proof: To show (P1), let v = Kη and u = v − α. Thus, on using (3.1) and (3.6),
we get

Lu = f(t, η) +Mη − α′′′ +mα′′ +mα′ − Mα ≥ f(t, η) +Mη − f(t, α)− Mα ≥ 0.

Now, taking into account (3.2) and Theorem 2.3, we obtain that v ≥ 0 on I, that
is, v ≥ α on I. Similarly we obtain that v ≤ β on I holds. In order to prove (P2),
note that

L(Kη2 − Kη1) = f(t, η2) +Mη2 − f(t, η1)− Mη1 ≥ 0.

This allows us to conclude that u ≥ 0 on I. �

Next, we present the monotone iterative technique which yields monotone se-
quences that converge to the extremal solutions between the lower and upper solu-
tions.

Theorem 3.2. Suppose that there exist α and β lower and upper solutions of (1.1),
respectively, satisfying (3.5) and (3.6). Then there exist monotone sequences {αn} ↑
r and {βn} ↓ s such that

α = α0 ≤ α1 ≤ · · · ≤ αn ≤ βm ≤ · · · ≤ β1 ≤ β0 = β, for every n, m ∈ N.

Here, r, s are the minimal and maximal solutions of (1.1) in the sector [α, β], re-
spectively, that is, any solution u ∈ [α, β] of (1.1) is such that u ∈ [r, s].

Proof: Let α0 = α and α1 = Kα0. Thus α1 ∈ [α, β] by the property (P1). Now,
by induction, it is easy to prove that the sequence {αn} defined by αn+1 = Kαn,
is such that α ≤ αn ≤ αn+1 ≤ β, n ∈ N. Moreover, {αn} is bounded and, for every
t ∈ I, we have that {αn(t)} ↑ r(t). On the other hand, we have that there exists
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a constant C > 0 with |f(t, αn(t)) +Mαn(t)| ≤ C for every n ∈ N and t ∈ I since
{αn} is bounded in F and f is continuous. In consequence, ‖αn+1‖E ≤ ‖L−1‖ · C
and {αn} is bounded in C3(I). This implies that {αn} converges to r uniformly
on I. Using standard arguments, we obtain that r is actually a solution of (1.1).
Analogously, we obtain a sequence {βn} ↓ s, where s is a solution of (1.1).
To show that r ≤ s are the minimal and maximal solutions of (1.1) in [α, β], let

u be a solution of (1.1) in [α, β]. Thus, α1 = Kα ≤ Ku = u ⊂ Kβ = β1, and by
induction we get that αn ≤ u ≤ βn for every n ∈ N. Passing to the limit, we see
that r ≤ u ≤ s on I. �

As an important and practical case we obtain the following result.

Corollary 3.3. Suppose that there exist constants a ≤ b and M > 0 such that

f(t, a) ≤ 0 ≤ f(t, b), t ∈ I and

f(t, u)− f(t, v) ≥ −M(u − v), for a ≤ v ≤ u ≤ b, t ∈ I.

Then there exist r and s minimal and maximal solutions of (1.1), respectively, with
a ≤ r(t) ≤ s(t) ≤ b, t ∈ I.

4. Open problems.

It is interesting to investigate the existence of solutions of the PBVP when some
or all of the inequalities that appear in the definition of lower and upper solutions
are not satisfied. Some results in this direction for second order PBVP are given
in [7], [10], [11].
Suppose that we have that α ≥ β on I instead of (3.5). Is it possible to ensure the

existence of solution for the PBVP (1.1)? For second order differential equations
with periodic boundary conditions, this question is solved in [12].
If r = s in Theorem 3.2, then the problem (1.1) has a unique solution in the

sector [α, β]. On the other hand, if r 6= s, then it would be interesting to study
the structure of the set of solutions of (1.1) between α and β. Following the ideas
of [12] and [13], we conjecture that under the conditions of Theorem 3.2, the set
of solutions of (1.1) is compact and connected provided that f is monotone in u

(either increasing or decreasing) for every t ∈ I and there exists a sufficiently small
constant k > 0 with |f(t, u)− f(t, v)| ≤ k|u − v| for every t ∈ I, u, v ∈ R.
For η ∈ [α, β], we can define η1 = Kη, ηn+1 = Kηn, n ≥ 1. Thus, we have

a discrete dynamical system and obviously r and s are fixed points for K. For some
general properties on dynamical systems see, for instance, [14]. What is the global
attractor J for this discrete dynamical system? Is J stable in any sense? These
questions are considered for second order PBVP in [7]. It is easy to see that any
solution u ∈ [α, β] of (1.1) is such that u ∈ J .
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