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Bourbaki’s Fixpoint Lemma reconsidered

B. Banaschewski

Abstract. A constructively valid counterpart to Bourbaki’s Fixpoint Lemma for chain-
complete partially ordered sets is presented to obtain a condition for one closure system
in a complete lattice L to be stable under another closure operator of L. This is then used
to deal with coproducts and other aspects of frames.
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A preclosure operator on a complete lattice L is a map k0 : L → L which
preserves the partial order and is upward, that is, x ≤ k0(x) for all x ∈ L. For
such k0, Fix(k0) = {x ∈ L | k0(x) = x} is readily seen to be a closure system in L,
that is, closed under arbitrary meets in L, and we let k be the associated closure
operator. In various contexts, one would like to be able to conclude, for certain
subsets S ⊆ L, the following

Stability Lemma. S is k-stable whenever it is k0-stable.

Now, one way of describing k is as the stable transfinite iterate of k0: if one
defines, for any x ∈ L, any ordinal α and any limit ordinal λ,

k00(x) = x, kα+1
0 (x) = k0(k

α
0 (x)), kλ

0 (x) =
∨

{kα
0 (x) | α < λ},

then k = k
γ
0 for the first γ such that k

γ+1
0 = k

γ
0 . Here, one sees by induction that

any {kα
0 (x) | α < β} is a chain, and hence the desired result follows for any S ⊆ L

closed under taking joins, in L, of (non-void) chains.
The same conclusion can also be obtained, without the use of ordinals, as an

application of

Bourbaki’s Fixpoint Lemma. Any upward map of a chain-complete partially

ordered set into itself has a fixpoint.

For any S as above and a ∈ S,

P = {x ∈ S | a ≤ x ≤ k(a)}
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is chain-complete and is mapped into itself by k0. For the resulting fixpoint c = k0(c)
in P , a ≤ c ≤ k(a) implies c = k(a) and thus k(a) ∈ S.

It is an open problem precisely what rules of logic are needed to establish this
lemma, and specifically, whether it is constructively valid. The known proofs (for
instance, Witt [6]) use, for the partially ordered set in question, that x ≤ y implies
x < y or x = y for all elements x and y, and that, for certain subsets U , V , W , if
U ⊆ V ∪ W then U ⊆ V or there exist x ∈ U such that x ∈ W . These steps are
not constructively valid but they do hold in any Boolean topos (Johnstone [2]), and
hence so does the Stability Lemma, for any S closed under taking joins of chains.

The purpose of this note is to establish a constructively valid counterpart of
Bourbaki’s Fixpoint Lemma, to derive a form of the Stability Lemma from this, and
to apply the latter to certain considerations concerning the coproducts of frames.

I am much indebted to Japie Vermeulen for a stimulating correspondence on this
subject. For a slightly different treatment related to the Stability Lemma, see [4].

Consider, then, any preclosure operator k0 on a complete lattice L, with associ-
ated closure operator k. For any a ∈ L, letW be the smallest downset (= containing
all y ≤ x with any x) in ↑ a = {x ∈ L | x ≥ a} such that

(1) a ∈ W ,
(2) W is k0-stable, and
(3)

∨
D ∈ W for any updirected D ⊆ W .

Then we have

Lemma 1. W = {x ∈ L | a ≤ x ≤ k(a)}.

Proof: Let V = {x ∈ W | x ∨ y ∈ W for all y ∈ W}. This is a downset since
W is. Also, a ∈ V because a ∨ y = y for all y ∈ W . Further, for x ∈ V and
y ∈ W , k0(x) ∨ y ≤ k0(x ∨ y), and since k0(x ∨ y) ∈ W by (2) and the definition
of V it follows that k0(x) ∨ y ∈ W , showing that k0(x) ∈ V . Finally, if D ⊆ V

is updirected and y ∈ W then E = {t ∨ y | t ∈ D} is an updirected subset of W ,
hence

∨
E ∈ W by (3), but

∨
E = (

∨
D) ∨ y and therefore

∨
D ∈ V . It follows

now that V =W , thus x∨ y ∈ W , for any x, y ∈ W , making W itself updirected so
that s =

∨
W belongs to W . Consequently, by (2), k0(s) ≤ s and hence s = k0(s).

Now, W ⊆ {x ∈ L | a ≤ x ≤ k(a)} since its intersection with the latter still satisfies
the conditions (1)–(3), and therefore a ≤ s ≤ k(a). This implies s = k(a) which
proves the lemma. �

We now apply Lemma 1 to obtain a form of the Stability Lemma. For this,
a closure system S in a complete lattice L will be called finitary if it is closed under
taking joins, in L, of arbitrary updirected subsets. Note that, for the closure oper-
ator ℓ associated with S, this condition means that ℓ preserves joins of updirected
subsets of L.

Lemma 2. Any finitary closure system in L which is k0-stable is also k-stable.

Proof: Let S be the finitary closure system, with associated closure operator ℓ.
Then, for all x ∈ L, k0(ℓ(x)) ∈ S, hence ℓk0ℓ(x) = k0ℓ(x), and consequently
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ℓk0(x) ≤ k0ℓ(x). Now for any a ∈ S, let

U = {x ∈ L | a ≤ x, ℓ(x) ≤ k(a)}.

Then U is a downset in ↑ a. Also, a ∈ U since a = ℓ(a). Further, for any
x ∈ U , ℓ(x) ≤ k(a) implies k0ℓ(x) ≤ k0(k(a)) = k(a) and hence ℓ(k0(x)) ≤ k(a),
showing that k0(x) ∈ U . Finally, for any updirected D ⊆ U , ℓ[D] ⊆↓ k(a), hence
t =

∨
ℓ[D] ≤ k(a); further, t ∈ S since S is finitary, and from

∨
D ≤ t it then

follows that ℓ(
∨

D) ≤ t ≤ k(a). This shows
∨

D ∈ U . As a result, U satisfies the
conditions (1)–(3) stated above, henceW ⊆ U and therefore k(a) ∈ U by Lemma 1.
This means that ℓ(k(a)) ≤ k(a), showing that k(a) ∈ S. �

As an application of Lemma 2, we now give an improved version of the description
of frame coproducts presented in Banaschewski [1]. For general facts concerning
frames we refer to Johnstone [3].
Recall that, on a frame L, a nucleus is a closure operator such that k(x ∧ y) =

k(x) ∧ k(y), and a prenucleus is a preclosure operator k0 for which k0(x) ∧ y ≤
k0(x ∧ y). The significance of these notions lies in the fact that, for any nucleus
k on L, Fix(k) is a frame such that the map L → Fix(k) given by k is a frame
homomorphism, and for any prenucleus on L, the associated closure operator is
a nucleus.
Now, for any family (Li)i∈I of frames, the coproduct may be obtained by suitable

constructs originating from the weak product A of the (Li)i∈I as meet-semilattices.
The first stage in this is the lattice D of all downsets of A; being closed under
arbitrary unions and intersections, D is certainly a topology and hence a frame.
Now, A is not only a meet-semilattice but also has joins, taken componentwise, for
arbitrary updirected subsets. This suggests the consideration of the Scott-closed
subsets of A, that is, the downsets closed under taking joins of arbitrary updirected
subsets. These form a closure system S inD, obviously determined by the preclosure
operator σ0 such that, for any U ∈ D,

σ0(U) = {
∨

D | D ⊆ U, updirected}.

Moreover, σ0 is a prenucleus, and hence S is a frame, with frame homomorphism
D → S induced by the associated nucleus σ.
For each i ∈ I we have a map ki : Li → A such that ki(x) has component x for

the index i and the unit of Lj for each index j 6= i. Then, the map Li → S taking
x to ↓ ki(x) preserves all finite meets and updirected joins.
Now, consider a further operator τ0 : D → D such that, for each U ∈ D, τ0(U)

consists of all a ∧ ki(
∨

Z) for any a ∈ A, i ∈ I and finite Z ⊆ Li for which all
a∧ki(t) ∈ U , t ∈ Z. This is obviously a preclosure operator, but also easily checked
to be a prenucleus. Let T = Fix(τ0) and τ be the associated nucleus. Note that the
maps Li → T taking x ∈ Li to τ(↓ ki(x)) preserve all finite meets and joins.
We are interested in the relationship between the two nuclei σ and τ . Since the

definition of τ0 makes it obvious that T is a finitary closure system in D, we can
conclude by Lemma 2 that T is σ-stable provided we show that it is σ0-stable. For
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this, we first note that the closure condition defining T can be checked by just taking
the cases Z = ⊘ and Z = {s, t} for the finite set Z involved — the general case
then resulting by obvious induction. Here, the condition for Z = ⊘ requires that all
a ∈ A for which some component is zero belong to the U ∈ T, and since U ⊆ σ0(U)
this also holds for σ0(U). Hence, in order to see that σ0(U) ∈ T for any U ∈ T it
remains to deal with the case Z = {s, t}. Let, then, a ∧ ki(s) and a ∧ ki(t) belong
to σ0(U) for some a ∈ A, i ∈ I, and s, t ∈ Li, and take, accordingly, updirected
D, E ⊆ U such that a∧ ki(s) =

∨
D and a∧ ki(t) =

∨
E. Now, for any x = (xi)i∈I

in A, define x̄ =
∧
{kj(xj) | j 6= i} and note that x = x̄ ∧ ki(xi). Then, for each

x ∈ D and y ∈ E,
x̄ ∧ ȳ ∧ ki(xi) and x̄ ∧ ȳ ∧ ki(yi)

belong to U so that
x̄ ∧ ȳ ∧ ki(xi ∨ yi) ∈ U

since U ∈ T. Now, the set of these elements is again updirected and hence

b =
∨

{x̄ ∧ ȳ ∧ ki(xi ∨ yi) | x ∈ D, y ∈ E} ∈ σ0(U).

Finally, since directed joins in A are taken componentwise,

b =
∨

{x̄ ∧ ȳ | x ∈ D, y ∈ E} ∧ ki(
∨

{xi ∨ yi | x ∈ D, y ∈ E})

= ā ∧ ki(ai ∧ (s ∨ t)) = a ∧ ki(s ∨ t),

showing that the latter elements also belongs to σ0(U), as desired.
The result thus obtained shows that τστ = στ , which in turn implies that στ

is idempotent and therefore a nucleus on D. Now, Banaschewski [1] describes the
coproduct of a family (Li)i∈I of frames as the closure system L in S given by the
condition that corresponds to the definition of τ0. It follows that L = S∩ T, and in
all this proves:

Proposition. στ is a nucleus onD such that Fix(στ) is the coproduct of the family
(Li)i∈I of frames, with coproduct maps Li → Fix(στ) taking x to στ(↓ ki(x)), for
each x ∈ Li and i ∈ I.

Remark. A crucial stage in the proof in [1] of the localic Tychonoff Theorem that
the coproduct of compact frames is compact was the result that, for any family of
frames, the nucleus on S determining L = S ∩ T is finitary. Here, this follows from
the trivial fact that the nucleus τ on D is finitary, given that, by the proposition,
the nucleus in question is the restriction of στ . We note that it was at this stage
that Bourbaki’s Fixpoint Lemma was used in [1]. The argument here replaces this
by Lemma 1 and hence is constructively valid. This amendment makes the results
of [1] concerning frame coproducts valid in any topos, provided the family (Li)i∈I

has decidable index set I. The latter restriction enters because the arguments
involved here do make use of the condition that i 6= j or i = j for any i, j ∈ I.
As a further application of Lemma 1 we derive an important lemma due to

Vermeulen [5].
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For any frames L and M , let D be the frame of all downsets of L × M , σ and τ

the nuclei considered earlier, ̺ = στ , and K = Fix(̺). Thus K is the coproduct of
L and M , with coproduct maps L → K and M → K given, respectively, by

x ̺(↓ (x, e)) and y  ̺(↓ (e, y)).

We put

x ⊕ y = ̺(↓ (x, e)) ∩ ̺(↓ (e, y))

and note that, for any U ∈ D,

∨
{x ⊕ y | (x, y) ∈ U} = ̺(U).

Further, U ∈ D will be called closed under first (or second) slice joins whenever
X × {b} ⊆ U implies (

∨
X, b) ∈ U , for any X ⊆ L and b ∈ M (or {a} × Y ⊆ U

implies (a,
∨

Y ) ∈ U , for any a ∈ L and Y ⊆ M). If X or Y in this condition are
restricted to finite sets, we refer to finitary slice joins.
The result to be proved now is

Vermeulen’s Lemma. For any compact frame L and arbitrary frameM , if S ∈ D

is closed under finitary first and arbitrary second slice joins then e⊕ a ≤
∨
{x⊕ y |

(x, y) ∈ S} implies (e, a) ∈ S.

Proof: Consider the set M of all U ∈ D such that S ⊆ U and (e, z) ∈ U implies
(e, z) ∈ S, for all z ∈ M . Clearly,M is a downset in ↑ S and S ∈ M. Further, for any
U ∈ M, let (e, z) ∈ σ0(U). Then, (e, z) =

∨
D for some updirected D ⊆ U , hence

by compactness there exists (e, t0) ∈ D, and then z =
∨
{t ∈ M | (e, t0) ∈ D}.

Here all (e, t) ∈ U but since U ∈ M also (e, t) ∈ S, and therefore (e, z) ∈ S by
hypothesis on S. This shows that σ0(U) ∈ M for all U ∈ M. Finally,

⋃
A ∈ M

for any updirected A ⊆ M, immediately from the definition of M. It now follows
by Lemma 1 that σ(S) ∈ M. Moreover, since S is closed under finitary first and
second slice joins, τ(S) = S and hence ̺(S) = σ(S) so that, in fact, ̺(S) ∈ M. Now
e ⊕ a ≤

∨
{x ⊕ y | (x, y) ∈ S} means (e, a) ∈ ̺(S), and we conclude (e, a) ∈ S, as

desired. �

Remark. It might be worth noting that the above proof does not use the full force
of the hypothesis on S. It is actually sufficient to have that S = τ(S), that is, S is
closed under all finitary slice joins, and that {e} × Y ⊆ S implies (e,

∨
Y ) ∈ S.

We conclude with a presentation, in slightly different language, of two applica-
tions Vermeulen [5] makes of his lemma.
For this, recall that the frame version of the Hausdorff separation axiom for

topological spaces is the condition that the codiagonal map ∇ : L ⊕ L → L, given
by ∇(x ⊕ y) = x ∧ y be closed, that is, induce an isomorphism ↑ s → L where

s =
∨

{U ∈ L ⊕ L | ∇(U) = 0} =
∨

{x ⊕ y | x ∧ y = 0}.
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We shall call a frame L separated if it satisfies this (although elsewhere such L

are also called strongly Hausdorff). It is easy to see that a frame L is separated iff
(e ⊕ a) ∨ s = (a ⊕ e) ∨ s for all a ∈ L.
Now, the results in question are as follows, with emphasis on the fact that their

proofs are constructively valid [5]:

(R) Every compact separated frame is regular.
(I) Any dense homomorphism from a separated frame onto a compact frame is
an isomorphism.

Proof of (R): Since (e ⊕ a) ∨ s = (a ⊕ e) ∨ s one has, for any a ∈ L,

e ⊕ a ≤
∨

{x ⊕ y | x ≤ a or x ∧ y = 0}

≤
∨

{x ⊕ y | x ≤ a ∨ y∗} ≤
∨

{x ⊕ y | (x, y) ∈ S}

where ( )∗ stands for pseudocomplement and

S = {(x, y) | y ≤
∨

{t | x ≤ a ∨ t∗}}.

Now, S is clearly a downset, closed under arbitrary second slice joins. Moreover
it obviously contains (0, e), and if (x, y), (z, y) ∈ S then

y ≤
∨

{u ∧ v | x ≤ a ∨ u∗} ≤
∨

{t | x ∨ z ≤ a ∨ t∗}

since u∗ ∨ v∗ ≤ (u ∧ v)∗, and hence (x ∨ z, y) ∈ S. This shows S is also closed
under finitary first slice joins, and Vermeulen’s Lemma then implies that (e, a) ∈ S,
meaning

a =
∨

{t | e = a ∨ t∗},

which just expresses the regularity of L. �

Proof of (I): For separated L and compact M , let h : L → M be dense onto.
Further, let k : L ⊕ L → L ⊕ M be the homomorphism determined by idL and h,
and s =

∨
{x ⊕ y | x ∧ y = 0} in L ⊕ L. Then, for any a, b ∈ L,

a ⊕ e ≤ (e ⊕ a) ∨ s and (e ⊕ b) ≤ (b ⊕ e) ∨ s

in L ⊕ L since L is separated. Now, let h(a) = h(b). Acting k on these two
inequalities, one obtains

a ⊕ e ≤ (e ⊕ h(a)) ∨ k(s) = (e ⊕ h(b)) ∨ k(s) ≤ (b ⊕ e) ∨ k(s)

in L ⊕ M , and therefore

a ⊕ e ≤
∨

{x ⊕ h(y) | x ≤ b or x ∧ y = 0} ≤
∨

{x ⊕ h(y) | x ≤ b ∨ y∗},
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where y∗ is the pseudocomplement of y. Here, S = {(x, h(y)) | x ≤ b ∨ y∗} is
a downset in L×M , closed under arbitrary first and finitary second slice joins, the
latter since (e, o) clearly belongs to S, and if x ≤ b ∨ y∗ and x ≤ b ∨ z∗ then

x ≤ (b ∨ y∗) ∧ (b ∨ z∗) = b ∨ (y ∨ z)∗.

Hence Vermeulen’s Lemma implies that (a, e) ∈ S, meaning there exist y ∈ L such
that h(y) = e and a ≤ b ∨ y∗. Now

0 = h(y ∧ y∗) = h(y) ∧ h(y∗) = h(y∗)

shows y∗ = 0 since h is dense, hence a ≤ b, and thus a = b by symmetry, as desired.
�
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