
Commentationes Mathematicae Universitatis Carolinae

Tomáš Kepka; K. K. Ščukin
Simple quasigroups whose inner permutations commute

Commentationes Mathematicae Universitatis Carolinae, Vol. 34 (1993), No. 2, 223--227

Persistent URL: http://dml.cz/dmlcz/118575

Terms of use:
© Charles University in Prague, Faculty of Mathematics and Physics, 1993

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/118575
http://project.dml.cz


Comment.Math.Univ.Carolin. 34,2 (1993)223–227 223

Simple quasigroups whose inner permutations commute

T. Kepka, K.K. Ščukin

Abstract. Simple quasigroups with commuting inner permutations are medial.

Keywords: quasigroup, inner permutation

Classification: 20N05

Inner permutation groups of medial quasigroups are two-generated abelian groups
and, conversely, quasigroups with at most two-element inner permutation groups
are medial (see [2] and [3]). On the other hand, there exist many non-medial
quasigroups possessing three-element inner permutation groups (see [4]) and the in-
ner permutation groups of non-commutative eight-element groups are four-element
groups (and hence two-generated abelian groups). We show in this short note that
a simple quasigroup is medial, provided that the inner permutation group is abelian.

1. Preliminaries.

Let G be a group. Then [a, b] = a−1b−1ab for all a, b ∈ G and [A, B] = {[a, b];
a ∈ A, b ∈ B} for subsets A, B of G.
Let H be a subgroup of G. Then CG(H), NG(H) and LG(H) denote the cen-

tralizer, the normalizer and the core of H in G, respectively.
The following lemma is obvious:

Lemma 1.1. Let H be an abelian subgroup of a group G such that NG(H) = H .
If x ∈ G and NG(T ) ⊆ H , where T = H ∩ x−1Hx, then x ∈ H and T = H .

A quasigroup satisfying the equation xa · by = xb · ay is called medial.
The following result is well known:

Lemma 1.2. A quasigroup Q is medial iff there exist an abelian group Q(+),
commuting automorphisms f, g of Q(+) and an element a ∈ Q such that xy =
f(x) + g(y) + a for all x, y ∈ Q.

2. Auxiliary results.

In this section, let G be a group such that G = KH , where both K and H are
abelian subgroups of G, H 6= G, K 6= 1 and K is normal in G.
The following four lemmas are obvious:

Lemma 2.1. (i) H ∩ K ⊆ H ∩ CG(K) = H ∩ Z(G) ⊆ LG(H).
(ii) Z(G) = (K ∩ Z(G))(H ∩ Z(G)).
(iii) If LG(H) = 1, then H ∩ K = 1 = H ∩ CG(K) and Z(G) ⊆ K.
(iv) If Z(G) = 1, then H ∩ K = 1 = H ∩ CG(K).
(v) If H ∩ K = 1, then LG(H) = H ∩ CG(K) = H ∩ Z(G).
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Lemma 2.2. (i) If E is a subgroup of G such thatH ⊆ E ⊆ G, then E = (E∩K)H
and E ∩ K is normal in G.

(ii) If no non-trivial proper subgroup of K is normal in G, then H ∩ K = 1 and
H is maximal in G.

Lemma 2.3. Suppose that H is a maximal subgroup of G.

(i) If L is a subgroup of K and L is normal in G, then either L ⊆ H ∩ K or
K = (H ∩ K)L.

(ii) If H ∩ K = 1, then no non-trivial proper subgroup of K is normal in G.
(iii) If H is not normal in G, then Z(G) ⊆ LG(H).

Lemma 2.4. the following conditions are equivalent:

(i) H is maximal in G and H ∩ K = 1.
(ii) No non-trivial proper subgroup of K is normal in G.

In the remaining part of this section, we shall assume that the equivalent condi-
tions of 2.4 are satisfied. By 2.1 (v), LG(H) = H ∩ CG(K) = H ∩ Z(G). If H is
not normal in G, then Z(G) ⊆ H and LG(H) = Z(G). If H is normal in G, then
G ∼= K × H is abelian and K is cyclic of prime order.

For every u ∈ H , the mapping qu : a → au = u−1au is an automorphism of K.
Now, we denote by F the subring generated by all these qu in the endomorphism
ring of K and we put q = −1F ∈ F ; we have q(a) = a−1 for every a ∈ K and
q2 = 1F = id K .

Lemma 2.5. (i) F is a field and the dimension of K as a vector space over F is 1;
in particular, the groups K and F (+) are isomorphic.

(ii) If H is finitely generated, then F and K are finite. If, moreover, LG(H) = 1,
then H is finite and cyclic and G is finite.

Proof: (i) Since H is abelian, F is a commutative ring. If f ∈ F , f 6= 0F , then
both f(K) and Ker (f) are subgroups of K and they are normal in G, and hence
f(K) = K and Ker (f) = 1, i.e. f is an automorphism of K.

Now, let a ∈ K, a 6= 1. Then F (a) is a subgroup of K (use the fact that q ∈ F )
and F (a) is normal in G. Since a ∈ F (a), we have F (a) = K. If f ∈ F , f 6= 0F ,
then f−1(a) = g(a) for some g ∈ F , a = fg(a) and the equality F (a) = K yields
fg = id K = 1F . Consequently, f

−1 = g ∈ F .

(ii) As is well known, any field, finitely generated as a ring, is finite. Now, if
LG(H) = 1, then the mapping u → q−1u is an injective homomorphism of H into
the multiplicative group F ∗ of non-zero elements of F . However, this group is cyclic.

�

Lemma 2.6. Let A be a subset of G such that G = AH and [A, A] = 1. Then:

(i) A ⊆ KL, L = LG(H).
(ii) If L = 1, then A = K.
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Proof: There is a uniquely determined subset S ofK×H such thatA = {au; (a, u) ∈
S}. Further, fix an element r ∈ K, r 6= 1. For every a ∈ K, there is a unique pa ∈ F
with a = pa(r); we have pa 6= 0F iff a 6= 1.
Now, assume that there exists a pair (b, u) ∈ S such that b 6= 1 and u /∈ L.

Put p = (q + q−1u )p
−1
b

∈ F . Since u /∈ L = H ∩ CG(K), we have u /∈ CG(K)

and q + q−1u 6= 0F . Thus p 6= 0F and there exists e ∈ K with e 6= 1 and e−1 =
p−1(r). Now, pe(r) = e = p−1(r)−1 = p−1(r−1) = p−1q(r), and so pe = p−1q and
p−1e = q−1p = qp. On the other hand, G = AH , and hence (e, v) ∈ S for some
v ∈ H . The equality [A, A] = 1 implies bueu−1uv = buev = evbu = evbv−1uv
and bueu−1 = evbv−1. From this, (q + q−1v )pb(r) = b−1vbv−1 = e−1ueu−1 =

(q + q−1u )pe(r) and (q + q−1v )pb = (q + q−1u )pe, p = (q + q−1u )p
−1
b
= (q + q−1v )p

−1
e =

(q + q−1v )qp, 1F = (q + q−1v )q = 1F + q−1v q and 0F = q−1v q, a contradiction.
We have proved that A ⊆ H ∪ KL. However, if w ∈ A ∩ H and c ∈ K, then

cz ∈ A for some z ∈ H and wcz = czw = cwz, wc = cw and w ∈ L ⊆ KL. Thus
A ⊆ KL and the rest is clear. �

Lemma 2.7. (i) G′ ⊆ K.
(ii) If H is not normal in G, then G′ = K.

Proof: (i) G/K = H .

(ii) Since H is not normal in G, we must have G′ 6= 1. But G′ is normal in G
and G′ ⊆ K. �

Corollary 2.8. Suppose that LG(H) = 1 6= H . If A is a subset of G such that
G = AH and [A, A] = 1, then A = G′.

3. Connected transversals to maximal abelian subgroups.

Throughout this section, let H be a proper maximal subgroup of a group G such
that H is abelian and not normal in G. Further, let A, B be subsets of G such that
G = AH = BH and [A, B] ⊆ H .

Lemma 3.1. (i) NG(H) = H and Z(G) ⊆ LG(H) 6= H .
(ii) If T is a subgroup of H such that NG(T ) * H , then T ⊆ Z(G).

Proof: Obvious. �

Lemma 3.2. (i) A ∩ H ⊆ LG(H) and B ∩ H ⊆ LG(H).
(ii) If LG(H) = 1, then A ∩ H = {1} = B ∩ H .

Proof: Easy. �

Lemma 3.3. (i) ALG(H) = BLG(H) is a subgroup of G.
(ii) If LG(H) = 1, then A = B is an abelian subgroup of G.

Proof: We can assume without loss of generality that LG(H) = 1 (consider the
factor group G/LG(H)).
First, let a ∈ A. Then b−1a ∈ H for some b ∈ B, and hence b−1a ∈ H∩aHb−1 =

H ∩ bHb−1 = T . If NG(T ) ⊆ H , then b ∈ H by 1.1, and so a = b = 1 by 3.2 (ii).
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If NG(T ) * H , then T = 1 by 3.1 (ii), and so a = b. We have proved that A ⊆ B.
Similarly, B ⊆ A and we get A = B.
Now, let a, b ∈ A. Then c−1ab ∈ H for some c ∈ A and c−1ab ∈ H∩aHa−1 = T .

Again, if NG(T ) ⊆ H , then a ∈ H , a = 1 and c = b = ab. If NG(T ) * H , then

T = 1, c−1ab = 1 and c = ab. We have proved that AA ⊆ A. Similarly, A−1A ⊆ A
and AA−1 ⊆ A. This shows that A is a subgroup of G. Finally, [A, A] ⊆ A∩H = 1
and we see that A is abelian. �

Proposition 3.4. If LG(H) = 1, then A = B = G′ is a normal abelian subgroup
of G.

Proof: By 3.3 (ii), A is an abelian subgroup of G and consequently G′′ = 1 by [1].
Since H is not normal in G, we have G′ * H and G = HG′. Now, A = G′ by 2.9.

�

Corollary 3.5. G′′′ = 1 and ALG(H) = BLG(H) = G′LG(H) is a normal sub-
group of G.

Proposition 3.6. If H is finitely generated, then G/LG(H) is finite.

Proof: See 2.5 (ii) and the proof of 3.4. �

4. Quasigroups with commuting inner permutations.

In this section, let Q be a non-trivial quasigroup. If a ∈ Q, then we can define
permutations L(a) and R(a) of Q by L(a)(x) = ax and R(a)(x) = xa for every
x ∈ Q. The permutation groupM(Q) generated by all these L(a) and R(a), a ∈ Q,
is called the multiplication group of Q. The stabilizer I(Q, a) ⊆ M(Q) of a ∈ Q is
called the inner permutation group (with respect to a). Since M(Q) is transitive,
the inner permutation groups are conjugate, and hence isomorphic.
The following lemma is well known and easy.

Lemma 4.1. The following conditions are equivalent:

(i) Q is c-simple, i.e. idQ and Q×Q are the only cancellative congruences of Q.
(ii) M(Q) is a primitive permutation group on Q.
(iii) I(Q, a) is a maximal subgroup ofM(Q) for at least one (and then for every)

a ∈ Q.

Theorem 4.2. Suppose that Q is c-simple and that the inner permutation group
I(Q, a) is abelian. Then Q is a finite medial quasigroup.

Proof: Let a, b ∈ Q be such that a = ba. Put G = M(Q), H = I(Q, a), A =
{R(x)R(a)−1;x ∈ Q} and B = {L(x)L(b)−1;x ∈ Q}. Then H is a proper maximal
subgroup of G, H is abelian, LG(H) = 1, G = AH = BH and [A, B] ⊆ H . If H is
normal in G, then H = 1 and G = Q is a cyclic group of prime order. Hence, assume
that H is not normal in G. By 3.4, A = B = G′ is a normal abelian subgroup of G.
Now, define a binary operation + on Q by x+y = f−1(x)g−1(y) where f = R(a)

and g = L(b). Then Q(+) is a loop and a = 0, i.e. a is the neutral element of Q(+).
Moreover, xy = f(x)+g(y), L(x,+) = L(f−1(x))g−1 andR(y,+) = R(g−1(y))f−1.
From this, it is easy to see that M(Q(+)) = A = B = G′. In particular, M(Q(+))
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is an abelian group, and hence Q(+) =M(Q(+)) is also an abelian group. Further,
put c = aa and f1 = R(c,+)−1f . Then f1(a) = a, f1 ∈ H and f(x) = f1(x) + c.
Similarly, if g1 = R(a,+)−1g, then g1 ∈ H and g(y) = g1(y) + a. Now, xy =
f1(x) + g1(y) + d, d = a + c. Since f1, g1 ∈ H , we have f1g1 = g1f1. If h ∈ H
and u ∈ Q, then hL(u,+)h−1 = L(v,+) for some v ∈ Q and h(u + x) = v + h(x)
for every x ∈ Q. In particular, h(u) = h(u + 0) = v + h(0) = v, and therefore
h(u+ x) = h(u)+ h(x). We have proved that h is an automorphism of Q(+). Thus
f1, g1 are automorphisms of Q(+) and it follows that Q is a medial quasigroup.
Finally, H is generated by f1, g1 and G is finite by 3.6. �

Remark 4.3. All c-simple medial quasigroups are described in [2]. Especially,
every such a quasigroup is finite and of prime power order.
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