Cong Xin Wu; Qing Ying Bu
Köthe dual of Banach sequence spaces $\ell_p[X]$ ($1 \leq p < \infty$) and Grothendieck space

Persistent URL: http://dml.cz/dmlcz/118580

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1993

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz
Köthe dual of Banach sequence spaces
\(\ell_p[X]\) \((1 \leq p < \infty)\) and Grothendieck space

Wu Congxin, Bu Qingying

Abstract. In this paper, we show the representation of Köthe dual of Banach sequence spaces \(\ell_p[X]\) \((1 \leq p < \infty)\) and give a characterization of that the spaces \(\ell_p[X]\) \((1 < p < \infty)\) are Grothendieck spaces.

Keywords: vector-valued sequence space; Köthe dual; GAK-space; Grothendieck space
Classification: 46B16

Let \(X\) be a Banach space and \(X^*\) its topological dual, and let \(B_X\) denote the closed unit ball of \(X\). For \(1 \leq p < \infty\), let

\[\ell_p(X) = \{\overline{x} = (x_j) \in X^N : \|\overline{x}\|_{\ell_p} = \left(\sum_{i=1}^{\infty} \|x_i\|^p\right)^{1/p} < \infty\},\]

\[\ell_p[X] = \{\overline{x} = (x_j) \in X^N : \text{for each } f \in X^*, \sum_{i \geq 1} |f(x_i)|^p < \infty\}.\]

And for each \(\overline{x} \in \ell_p[X]\), let

\[\|\overline{x}\|_{(\ell_p)} = \sup\left\{\left(\sum_{i \geq 1} |f(x_i)|^p\right)^{1/p} : f \in B_{X^*}\right\}.\]

Then \((\ell_p(X), \| \cdot \|_{\ell_p})\) and \((\ell_p[X], \| \cdot \|_{(\ell_p)})\) are Banach spaces (see [1], [2], [3]). For \(\overline{x} \in X^N\), let

\[\overline{x} (i \leq n) = (x_1, \ldots, x_n, 0, 0, \ldots),\]

\[\overline{x} (i > n) = (0, \ldots, 0, x_{n+1}, x_{n+2}, \ldots).\]

And let

\[\ell_p[X]_r = \{\overline{x} \in \ell_p[X] : \lim_n \|\overline{x} (i > n)\|_{(\ell_p)} = 0\}.\]

If \(\ell_p[X]_r = \ell_p[X]\), then \(\ell_p[X]\) is said to be a GAK-space [4].

For a vector-valued sequence space \(S(X)\) from \(X\), define its Köthe dual with respect to the dual pair \((X, X^*)\) (see [4]) as follows:

\[S(X)\times |_{(X, X^*)} = \{\overline{f} = (f_j) \in X^N : \text{for each } \overline{x} = (x_j) \in S(X), \sum_{i \geq 1} |f_i(x_i)| < \infty\}.\]

We denote \(S(X)\times |_{(X, X^*)}\) by \(S(X)\times\) simply if the meaning is clear from the context.

*The authors are supported by The Scientific Fund of China for Ph.D. instructors in Universities.
Lemma 1. For $1 \leq p < \infty$, $(\ell_p[X],r) = \ell_p[X]$.

Proof: It is easy to see that $\ell_p[X] \subseteq (\ell_p[X])$. So we only need to prove that $(\ell_p[X],r) \subseteq \ell_p[X]$.

For $x = (x_j) \in \ell_p[X]$ and $t = (t_j) \in c_0$, let $t \bar{x} = (t_j x_j)$. Then $\|t \bar{x}\| (i > n) \leq \|x\| \sup_{i > n} \|t_i\|$ implies that $t \bar{x} \in \ell_p[X]$. So for $f = (f_j) \in (\ell_p[X])$, we have

$$\sum_{i \geq 1} |f_i(t_i x_i)| < \infty.$$

It follows from the fact that $t \in c_0$ was taken arbitrary that

$$\sum_{i \geq 1} |f_i(x_i)| < \infty.$$

Thus, $f \in \ell_p[X]$ and the proof is completed.

Lemma 2. (1) For $1 \leq p < \infty$, $\ell_p[X] \subseteq (\ell_p[X], \| \cdot \|_{(\ell_p)})$ and $(\ell_p[X], r) = (\ell_p[X], \| \cdot \|_{(\ell_p)})$.

(2) Let $\| \cdot \|_{(\ell_p)}$ denote the dual norm of $\| \cdot \|_{(\ell_p)}$ on the dual space $(\ell_p[X], \| \cdot \|_{(\ell_p)})$. Then for each $f \in \ell_p[X]$, we have

$$\|f\|_{(\ell_p)} = \sup \{|f(x)| : f \in \ell_p[X], \|f\|_{(\ell_p)} \leq 1\},$$

where $\langle f, \bar{x} \rangle = \sum_{i \geq 1} f_i(x_i)$.

Proof: See Theorem 2.3 in [3].

Lemma 3. Every weak* unconditionally Cauchy series in X^* is weak unconditionally Cauchy series.

Proof: See the proof of p. 49, Corollary 11 in [5].

Lemma 4. For $1 \leq p < \infty$,

$$\ell_p[X^*] = \left\{ f = (f_j) \in X^* : \text{for each } x \in X, \sum_{i \geq 1} |f_i(x)| < \infty \right\}.$$

Proof: Let

$$\Delta = \left\{ f = (f_j) \in X^* : \text{for each } x \in X, \sum_{i \geq 1} |f_i(x)| < \infty \right\}.$$

By definition, we only need to prove that $\Delta \subseteq \ell_p[X^*]$.

Let $f \in \Delta$ and $t_j \in \ell_q(1/p + 1/q = 1)$. Then $\sum_{i \geq 1} |f_i(t_i x)| < \infty$ for each $x \in X$. So the series $\sum_{j} t_j f_j$ is weak* unconditionally Cauchy in X^* and hence, it is weak unconditionally Cauchy by Lemma 3. That is, $\sum_{i \geq 1} |F(t_i f_i)| < \infty$ for each $F \in X^{**}$. Since (t_j) is arbitrary in ℓ_q, $\sum_{i \geq 1} |F(f_i)| < \infty$ and $f = (f_j) \in \ell_p[X^*].$ The proof is completed.
Lemma 5 (the principle of local reflexivity, [6]). Let X be a normed space and Z^{**} a finite dimensional subspace of X^{**}. For $\{F_i\}_1^n \subseteq Z^{**}$, $\{f_i\}_1^n \subseteq X^*$ and $\varepsilon > 0$, there exists a linear map $T : Z^{**} \to X$ such that $\|T\| \leq 1$ and

$$|f_i(TF_i) - F_i(f_i)| < \varepsilon, \quad i = 1, 2, \ldots, n.$$

Proposition 6. $\ell_p[X^{**}]_1 \cap (X^*,X^*) = \ell_p[X]_1 \cap (X,X^*)$ (1 $\leq p < \infty$).

Proof: It is easy to see that $\ell_p[X]_1 \subseteq \ell_p[X^{**}]$ implies that

$$\ell_p[X^{**}]_1 \cap (X^*,X^*) \subseteq \ell_p[X]_1 \cap (X,X^*).$$

So we only need to prove that

$$\ell_p[X]_1 \cap (X,X^*) \subseteq \ell_p[X^{**}]_1 \cap (X^*,X^*).$$

Let $\bar{f} = (f_j) \in \ell_p[X]_1 \cap (X,X^*)$ and $\bar{F} = (F_j) \in \ell_p[X^{**}]$. For a fixed $n \in \mathbb{N}$, by Lemma 5, there exists a linear map $T_n : \text{span} \{F_i\}_1^n \to X$ such that $\|T_n\| \leq 1$ and

$$|F_i(f_i)| \leq |f_i(T_nF_i)| + 1/n, \quad i = 1, 2, \ldots, n.$$

Now we prove that $\{(T_nF_1, \ldots, T_nF_n, 0, 0, \ldots)\}_{n=1}^\infty$ is a bounded subset of $\ell_p[X]$. By Theorem 1.5 in [2], we have

$$\|(T_nF_1, \ldots, T_nF_n, 0, 0, \ldots)\|_{\ell_p(|X^*,X^*)}) = \sup\left\{\left\|\sum_{i=1}^n s_iT_nF_i\right\| : s = (s_j) \in B_{\ell_q}\right\} (1/p + 1/q) = 1$$

$$\leq \sup\left\{\|T_n\|\left\|\sum_{i=1}^n s_iF_i\right\| : s \in B_{\ell_q}\right\}$$

$$\leq \sup\left\{\left\|\sum_{i=1}^\infty s_iF_i\right\| : s \in B_{\ell_q}\right\} = \|\bar{F}\|_{\ell_p(|X^*,X^*)}).$$

So $\{(T_nF_1, \ldots, T_nF_n, 0, 0, \ldots)\}_{n=1}^\infty$ is a bounded subset of $\ell_p[X]$ and hence, $\sigma(\ell_p[X], \ell_p[X]_1 \cap (X,X^*))$-bounded. Thus, we have

$$\sum_{i=1}^n |F_i(f_i)| \leq \sum_{i=1}^n |f_i(T_nF_i)| + 1 \leq \sup_{n \geq 1}\left\{\sum_{i=1}^n |f_i(T_nF_i)|\right\} + 1.$$

Because $n \in \mathbb{N}$ is arbitrary, it follows that

$$\sum_{i=1}^\infty |F_i(f_i)| < \infty.$$

So we prove that $\bar{f} = (f_j) \in \ell_p[X^{**}]_1 \cap (X^{**},X^*)$ and this completes the proof. \hfill \square
Proposition 7. \((\ell_p[X]^\times |_ {(X,X^*)})^\times |_ {(X^*,X^{**})} = \ell_p[X^{**}] (1 \leq p < \infty)\).

Proof: By Proposition 6, it is easy to see that

\[
\ell_p[X^{**}] \subseteq (\ell_p[X^{**}]^\times |_ {(X^{**},X^*)})^\times |_ {(X^*,X^{**})} = (\ell_p[X]^\times |_ {(X,X^*)})^\times |_ {(X^*,X^{**})}.
\]

So we only need to prove that

\[
(\ell_p[X^{**}]^\times |_ {(X^{**},X^*)})^\times |_ {(X^*,X^{**})} \subseteq \ell_p[X^{**}].
\]

Let \(F = (F_j) \in (\ell_p[X^{**}]^\times |_ {(X^{**},X^*)})^\times |_ {(X^*,X^{**})}\). Since \(f \in X^*\) and \(t = (t_j) \in \ell_q (1/p + 1/q = 1)\) implies that \((t_j f) \in \ell_p[X^{**}]^\times |_ {(X^{**},X^*)}, \sum_{i \geq 1} |F_i(t_i f)| < \infty\). Thus, \(\sum_{i \geq 1} F_i(f)^p < \infty\) and hence, \(F \in \ell_p[X^{**}]\) by Lemma 4. The proof is completed.

Theorem 8. For \(1 \leq p < \infty\), \(\ell_p \overset{\sim}{\otimes} X\), the injective tensor product of \(\ell_p\) and \(X\), is isometrically isomorphic to the space \((\ell_p[X]^r, \| \cdot \|_{(\ell_p)})\).

Proof: For each \(u = \sum_{i=1}^n \frac{t(i)}{q} x_i \in \ell_p \otimes X\) \((t(i) \in \ell_p, x_i \in X)\), define \(\overline{u} = (\sum_{i=1}^n \frac{t(i)}{q} x_i, \sum_{i=1}^n \frac{t(i)}{q} x_i, \ldots)\). Then

\[
\|\overline{u}\|_{(\ell_p)} = \sup \left\{ \sum_{k \geq 1} s_k f \left(\sum_{i=1}^n t^{(i)} k x_i \right) : f \in B_{X^*}, s \in B_{\ell_q} \right\}
\]

\[
= \sup \left\{ \sum_{i=1}^n f(x_i) \langle t^{(i)}, s \rangle : f \in B_{X^*}, s \in B_{\ell_q} \right\}
\]

\[
= \lambda(u) \quad \text{(see [7, p. 223])} \quad (1/p + 1/q = 1).
\]

Let \(M = \sup_{1 \leq i \leq n} \|x_i\|\). It follows from the above equality that

\[
\|\overline{u} (j > k)\|_{(\ell_p)} = \sup \left\{ \sum_{i=1}^n f(x_i) \langle t(i), s (j > k) \rangle : f \in B_{X^*}, s \in B_{\ell_q} \right\}
\]

\[
\leq M \sup \left\{ \sum_{i=1}^n |(t^{(i)}, s (j > k))| : s \in B_{\ell_q} \right\}.
\]

Since \(B_{\ell_q}\) is weak* compact, Theorem 6.11 in [8] implies that

\[
\lim_k \|\overline{u} (j > k)\|_{(\ell_p)} = 0.
\]

So, \(\overline{u} \in \ell_p[X]^r\), and we can define a map \(\varphi : \ell_p \otimes X \to \ell_p[X]^r\) by \(\varphi(u) = \overline{u}\). It is easy to see that \(\varphi\) is a linear isometrically isomorphic map from \(\ell_p \otimes X\) to \(\ell_p[X]^r\). Next, we only need to prove that \(\varphi\) is surjective.
For $\varphi = (x_1, \ldots, x_n, 0, 0, \ldots)$, if we let $u = \sum_{i=1}^{n} e_i \otimes x_i$ (where $e_i = (0, \ldots, 0, 1^{(i)}, 0, 0, \ldots)$), then $\varphi = \varphi(u)$. Notice that $\lim_n \varphi(j \leq n) = \varphi$ for each $\varphi \in \ell_p[X]_r$. So φ is surjective and the proof is completed. □

For two Banach spaces X and Y, let $B^\wedge(X,Y)$, $I(X,Y)$ and $N(X,Y)$ denote the class of integral bilinear functionals on $X \times Y$, the class of integral operators from X to Y and the class of nuclear operators from X to Y respectively (see p. 232 and p. 170 in [7]).

Theorem 9. Let $1 \leq p < \infty$ and $1/p + 1/q = 1$. Then $\overline{f} = (f_j) \in \ell_p[X]^\times \mid_{(X,X^*)}$ if and only if there exist an $r = (r_j) \in \ell_1$ a bounded sequence $\{s^{(n)}\}_{n=1}^\infty$ of ℓ_q and a bounded sequence $\{h_n\}_{n=1}^\infty$ of X^* such that

$$f_i = \sum_{n \geq 1} r_n s_i^{(n)} h_n, \quad i = 1, 2, \ldots.$$

Proof: Necessity. Let $\overline{f} = (f_j) \in \ell_p[X]^\times$. By Lemma 1 and Lemma 2, $\overline{f} \in (\ell_p[X], \| \cdot \|_{(\ell_p)}^\times)$. So Theorem 8 implies that there is an $\psi^* \in (\ell_p \overset{\vee}{\times} X)^*$ corresponding to \overline{f}. By Definition 6 in [7, p. 232], there is an $\psi \in B^\wedge(\ell_p, X)$ corresponding to ψ^*. Furthermore, by Corollary 12 in [7, p. 237], there exists a $T_\psi \in I(\ell_p, X^*)$ corresponding to ψ. Since Corollary 10 in [7, p. 235] and Theorem 6 in [7, p.248] guarantee that $I(\ell_p, X^*) = N(\ell_p, X^*)$, there are an $r = (r_j) \in \ell_1$, a bounded sequence $\{s^{(n)}\}_{n=1}^\infty$ of ℓ_q and a bounded sequence $\{h_n\}_{n=1}^\infty$ of X^* such that

$$T_\psi(t) = \sum_{n \geq 1} r_n \langle t, s^{(n)} \rangle h_n, \quad \text{for } t \in \ell_p.$$

Now for each $i \geq 1$ and each $x \in X$, by the above corresponding relations, we have

$$T_\psi(e_i)(x) = \psi(e_i, x) = \psi^*(e_i \otimes x) = \langle \varphi(e_i \otimes x), \overline{f} \rangle = f_i(x).$$

Thus

$$f_i = T_\psi(e_i) = \sum_{n \geq 1} r_n s_i^{(n)} h_n, \quad i = 1, 2, \ldots.$$

Sufficiency. Let $M = \sup_{n \geq 1} \| s^{(n)} \|_q$ and $N = \sup_{n \geq 1} \| h_n \|$. Then, for each $x = (x_j) \in \ell_p[X]$, we have

$$\sum_{i \geq 1} |s_i^{(n)} h_n(x_i)| \leq MN \| \varphi \|_{(\ell_p)}, \quad \text{for } n \geq 1.$$

And so

$$\sum_{i \geq 1} |f_i(x_i)| \leq \sum_{n \geq 1} |r_n| \sum_{i \geq 1} |s_i^{(n)} h_n(x_i)| < \infty.$$

Therefore, $\overline{f} \in \ell_p[X]^\times$ and the proof is completed. □
Theorem 10. For $1 < p < \infty$, $(\ell_p[X]^\times, \| \cdot \|^*_p)$ is a GAK-space.

Proof: Let $\mathcal{T} = (f_j) \in \ell_p[X]^\times$. Then by Theorem 9, there exist an $r = (r_j) \in \ell_1$, a bounded sequence $\{s^{(n)}\}_1^n$ of ℓ_q and a bounded sequence $\{h_n\}_1^\infty$ of X^* such that

$$f_i = \sum_{n \geq 1} r_n s^{(n)}_i h_n, \quad i = 1, 2, \ldots.$$

Without loss of generality, we can assume that $\|s^{(n)}\|_q \leq 1$ and $\|h_n\| \leq 1$ for $n \geq 1$. Thus, for $x \in \ell_p[X]$ with $\|x\|_p \leq 1$, we have

$$\sum_{i \geq 1} |s^{(n)}_i h_n(x_i)| \leq \|x\|_p \leq 1 \quad \text{for } n \geq 1.$$

So

$$\left\{ \left(\sum_{i \geq 1} |s^{(n)}_i h_n(x_i)| \right)_{n \geq 1} : \|x\|_p \leq 1 \right\} \subseteq B_{\ell_\infty}.$$

Let $\varepsilon > 0$. Then B_{ℓ_∞} is weak* compact implies that there exists an $n_0 \in \mathbb{N}$ such that

$$\sum_{n > n_0} |r_n| \sum_{i \geq 1} |s^{(n)}_i h_n(x_i)| < \varepsilon/2, \quad x \in \ell_p[X], \quad \|x\|_p \leq 1.$$

Since B_{ℓ_p} is weakly compact set and

$$\left\{ (h_n(x_i))_{i \geq 1} : x \in \ell_p[X], \quad \|x\|_p \leq 1, \quad n \geq 1 \right\} \subseteq B_{\ell_p},$$

there is a $k_0 \in \mathbb{N}$ such that for each $k > k_0$,

$$\sum_{i > k} |s^{(n)}_i h_n(x_i)| < \varepsilon/2 \|r\|_1$$

for $x \in \ell_p[X]$ with $\|x\|_p \leq 1$ and $n = 1, 2, \ldots, n_0$. Thus, for each $x \in \ell_p[X]$ with $\|x\|_p \leq 1$ and each $k > k_0$, we have

$$\sum_{i > k} |f_i(x_i)| \leq \sum_{n = 1}^{n_0} |r_n| \sum_{i > k} |s^{(n)}_i h_n(x_i)| + \sum_{n > n_0} |r_n| \sum_{i > k} |s^{(n)}_i h_n(x_i)|$$

$$\leq \left(\sum_{n = 1}^{\infty} |r_n| \right) \varepsilon/2 \|r\|_1 + \sum_{n > n_0} |r_n| \sum_{i \geq 1} |s^{(n)}_i h_n(x_i)| < \varepsilon.$$

So for $k > k_0$,

$$\|\mathcal{T} (j > k)\|^*_p \leq \sup \left\{ |\langle x, \mathcal{T} (j > k) \rangle| : x \in \ell_p[X], \quad \|x\|_p \leq 1 \right\}$$

$$= \sup \left\{ |\sum_{i > k} f_i(x_i)| : \|x\|_p \leq 1 \right\} < \varepsilon.$$
Therefore, \(\lim_k \| \mathbf{f} \|_{(\ell_p^*)} = 0 \) and \(\mathbf{f} \in (\ell_p[X], \| \cdot \|_{(\ell_p^*)})_r \).

For \(1 < p < \infty \), by Theorem 10 and [4, Proposition 4.9], we have

\[
(\ell_p[X]^\infty \mid (X,X^*)^\infty \mid (X^*,X^{**}) = (\ell_p[X]^\infty \mid (X,X^*)^\infty \mid (X^*,X^{**})) - \lim_n f(n) = 0
\]

is equivalent to

(a) \(\sigma(X^*, X^{**}) - \lim_n f_i(n) = 0 \) for \(i \geq 1 \); and

(b) \(\sup_{n \geq 1} \| f(n) \|_{(\ell_p^*)} < \infty \)

if and only if \(((\ell_p[X]^\infty \mid (X,X^*)^\infty \mid (X^*,X^{**}), \| \cdot \|_{(\ell_p^*)}) \) is a GAK-space.

Proposition 12. Let \(\mathbf{f}(n) \in (\ell_p[X])^* \) (\(1 \leq p < \infty \)). Then

\[
\sigma((\ell_p[X]^r)^*, \ell_p[X^r]) - \lim_n \mathbf{f}(n) = 0
\]

if and only if \(\sigma(X^*, X) - \lim_n f_i(n) = 0 \) for \(i \geq 1 \) and \(\sup_{n \geq 1} \| f(n) \|_{(\ell_p^*)} < \infty \).

We say a Banach space \(X \) to be a Grothendieck space if every weak* null sequence on \(X^* \) is weak null sequence (see [7, p. 179]). Leonard [1] has proved that \(\ell_p(X) \) (\(1 < p < \infty \)) is a Grothendieck space if and only if \(X \) is a Grothendieck space. Now we have

Theorem 13. For \(1 < p < \infty \). The Banach space \((\ell_p[X]^r, \| \cdot \|_{(\ell_p)}) \) is a Grothendieck space if and only if

(i) \(X \) is a Grothendieck space; and

(ii) \((\ell_p[X^{**}], \| \cdot \|_{(\ell_p)}) \) is a GAK-space.

Proof: Sufficiency. By (ii), \((\ell_p[X], \| \cdot \|_{(\ell_p)}) \) is a GAK-space, i.e. \(\ell_p[X^r] = \ell_p[X] \).

Let \(\mathbf{f}(n) \in (\ell_p[X], \| \cdot \|_{(\ell_p)})^* \) such that

\[
\sigma(\ell_p[X]^*, \ell_p[X]) - \lim_n \mathbf{f}(n) = 0.
\]
By Proposition 12, we have
\[\sigma(X^*, X) - \lim_{n} f^{(n)}_i = 0, \quad i = 1, 2, \ldots \]
and
\[\sup_{n \geq 1} \|f^{(n)}_i\|_{(\ell_p)} < \infty. \]
By (i), we have
\[\sigma(X^*, X^{**}) - \lim_{n} f^{(n)}_i = 0, \quad i = 1, 2, \ldots, \]
By (ii) and Propositions 2, 6, 7, the space \((\ell_p[X]^* \times (X^*, X^{**}), \|\cdot\|_{(\ell_p)})\) is a GAK-space. So Proposition 11 guarantees that
\[\sigma(\ell_p[X]^*, (\ell_p[X]^*)^\times) - \lim_{n} f^{(n)} = 0. \]
It follows from (*) that
\[\sigma(\ell_p[X]^*, \ell_p[X]^{**}) - \lim_{n} f^{(n)} = 0. \]
and completes the sufficiency.

Necessity. To prove (i), let \(f_n \in X^* \ (n \geq 1)\) such that
\[\sigma(X^*, X) - \lim_{n} f_n = 0. \]
Let \(f^{(n)} = (f_n, 0, 0, \ldots)\) for \(n \geq 1\). Then \(f^{(n)} \in (\ell_p[X]_r)^*\) and
\[\sigma((\ell_p[X]_r)^*, \ell_p[X]_r) - \lim_{n} f^{(n)} = 0. \]
So
\[\sigma((\ell_p[X]_r)^*, (\ell_p[X]_r)^{**}) - \lim_{n} f^{(n)} = 0 \]
and hence, \(\sigma(X^*, X^{**}) - \lim_n f_n = 0\). (i) follows.

For (ii), let \(f^{(n)} \in \ell_p[X]^* \times (X^*, X^*)\) such that
\[\sigma(X^*, X^{**}) - \lim_{n} f^{(n)}_i = 0, \quad i = 1, 2, \ldots, \]
and
\[\sup_{n \geq 1} \|f^{(n)}_i\|_{(\ell_p)} < \infty. \]
By Lemmas 1, 2 and Proposition 12, we have
\[\sigma((\ell_p[X]_r)^*, \ell_p[X]_r) - \lim_{n} f^{(n)} = 0. \]
And hence,
\[\sigma((\ell_p[X]_r)^*, (\ell_p[X]_r)^{**}) - \lim_{n} f^{(n)} = 0. \]
It follows from (*) that
\[\sigma(\ell_p[X]^* \times (X^*, X^*)^\times) - \lim_{n} f^{(n)} = 0. \]
So Propositions 6, 7, 11 imply that \((\ell_p[X]^{**}, \|\cdot\|_{(\ell_p)})\) is a GAK-space and (ii) follows.
The proof is completed.
Corollary 14. If $\ell_p[X]_r$ (1 < $p < \infty$) is a Grothendieck space, then $\ell_p[X]$ is a GAK-space.

References

Department of Mathematics, Harbin Institute of Technology, Harbin, 150006 China

(Received September 23, 1992)