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On the exterior steady problem

for the equations of a viscous isothermal gas

Mariarosaria Padula

Abstract. We prove existence and a representation formula for solutions to the equations
describing steady flows of an isothermal, viscous, compressible gas having a positive infi-
mum for the density ̺, moving in an exterior domain, when the speed of the obstacle and
the external forces are sufficiently small.

Keywords: compressible flows, existence of steady solutions, exterior domains

Classification: 76N, 35Q

1. Introduction.

In this paper we shall be concerned with well posedness questions for steady
flows of an ideal isothermal viscous compressible gas. In order of clarity, we shall
investigate, in detail, only the steady flows occurring at the exterior of a compact
set, moving at some constant speed. Here, we shall limit ourselves to sketch the full
lines of the proof, paying attention in outlining the main difficulties. However, more
complete and detailed proofs are provided in Novotný & Padula (forthcoming).
Introducing a reference system R : {0, e1, e2, e3}, with the origin 0 inside the
obstacle and setting mv∞ := ℓe1, with v∞ velocity of the fluid at infinity and m
a given constant value of the density, the above problem is governed by the following
system

(1.1)

µ △ v̂ + (λ+ µ)▽▽ · v̂ = ̺v̂ · ▽v̂ + ▽p̂− ̺f ,

▽ · (̺v̂) = 0, in Ω;

v̂ |Σ= 0

̺(x)→ m

v̂(x)→ (ℓ/m)e1 as |x| → ∞.

Here, ̺ and v̂ are the density and the velocity, the constants µ and λ denote the
shear and the bulk viscosities, furthermore, p := h̺, with h the square of the sound
speed, is the pressure, and Σ the boundary of Ω.

∗A part of this article was delivered as an invited lecture at the Summer School EVEQ 92
(Prague, June 29–July 3, 1992) organized jointly by the Department of Analysis, Faculty of Mathe-
matics and Physics, Charles University, and Mathematical Institute of Czech Academy of Sciences.
The Summer School was partially supported by Charter 77 Foundation.
The author thanks Professors G.P. Galdi, C. Pileckas and C. Simader for valuable comments

and remarks. She also thanks the MPI contract 40% and 60% at the University of Ferrara and
G.N.F.M. of the Italian C.N.R. for the financial support.
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In unbounded regions, the two classes of flows:

inf
x∈Ω

̺ ≥ a > 0;

inf
x∈Ω

̺ ≥ 0,

behave in a very different manner, cf. Padula (1992-a). The only existence results
known in this field have been given for strictly positive densities, i.e. when m 6= 0.
In this regard, we quote the paper of H. Fujita Yashima (1985) concerning the case
Ω = R

4 for p = h̺, and (λ+2µ) sufficiently large; that of Matsumura (1986) where
a representation for the solution of the linearized problem is given when v∞ 6= 0,
that of Matsumura & Nishida (1989) in which the full problem (1.1) is solved for
v∞ = 0; furthermore, Padula (1992-b), in the whole of R

3 proved existence, when
v∞ 6= 0 or v∞ = 0, and gave a representation formula, when v∞ = 0, for the
full nonlinear problem. Only very recently, Novotný and Padula solved also the
problem of existence of steady flows of viscous gases in domains which are exterior
to a compact, either fixed or slowly moving obstacle. This last proof is essentially
a consequence of a careful analysis of the difference between a compressible and
incompressible fluid. Here, for the same problem, we shall give a somewhat different
proof of existence and we shall provide a representation formula for the solutions
to (1.1) in Ω ⊆ R

3. This is achieved supposing m 6= 0 in (1.1)3, that is, strictly
positive densities, considering both the possibilities v∞ 6= 0 and v∞ = 0 in the
condition (1.1)4. With the exception of an additional lemma which allow us to
shorten the iterative procedure of Novotný & Padula (forthcoming), here we shall
strictly follow the lines proposed by these authors and refer to it for the more
extended proofs.
The plan of the paper is the following one. After introducing notations and re-

calling preliminary lemmas (Section 2), in a regular exterior domain Ω, in Section 3,
we shall prove existence in Sobolev spaces, when v∞ 6= 0 and in Section 4 we prove
existence in the class of physically reasonable solutions when v∞ = 0.
In order to state the results explicitly, it is better first to introduce some func-

tional spaces. Let
k = 0, 1, 2, . . . , 1 < q < 3/2, 3 < p.

We mean byWk,q the usual Sobolev space, with the norm

‖ϕ‖k,q :=
(

∫ k
∑

|α|=0

|Dαϕ|q
)1/q

, ‖ϕ‖q := ‖ϕ‖0,q .

Wk,q,p :=Wk,q ∩Wk,p represents the Banach space with the norm

(1.2) ‖ϕ‖k,q,p := ‖ϕ‖k,q + ‖ϕ‖k,p .

Also, for domains Ω ∈ C 2 we denote by W1−1/q,q(Σ) the usual Sobolev space
with fractional derivatives at the boundary Σ of Ω, the norm will be denoted by
|ϕ|1−1/q,q,Σ.
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Now, H
k,q
0 (resp. Hk,q) denotes the homogeneous space obtained by completion

of C∞0 (resp. C
∞
0 (Ω)) in the norm

(1.3) |ϕ|k,q :=
(

∫

∑

|α|=k

|Dαϕ|q
)1/q

,

furthermore, H−1,q is the dual space of H
1,q′

0 , q
′ = q/(q−1), and its norm is denoted

by | · |−1,q.
It turns useful, for sq = 4q/(4− q), to introduce the norm

(1.4)
-‖ϕ‖- ℓ,q := ‖▽ϕ‖q + |ℓ|1/4‖ϕ‖sq

-‖ϕ‖- ℓ,k,q,p := ‖▽ϕ‖k,q,p + |ℓ|1/4‖ϕ‖sq
.

The subspace of H1,q0 ∩ Hk+1,p constituted by solenoidal functions with the norm

(1.4)2 finite is denoted by V
k,q,p
ℓ .

The subspace of H1,q ∩ Hk+2,p constituted by the functions ϕ with △ ϕ |∂Ω= 0

is denoted by D
k,q,p
ℓ .

For any w with ▽w ∈Wk,q,p, we set

(1.5)
〈〈τ〉〉p := ‖τ‖p + ‖ div(τw)‖p

〈〈τ〉〉k,q,p := ‖τ‖k,q,p + ‖ div(τw)‖k,q,p .

Also, for sq = 4q/(4 − q), the space K
k,q,p
ℓ is defined as the completion of the

functions in C∞ × C∞0 in the norm

(1.6)
](σ,v)[ p := ‖σ‖p + -‖v‖- ℓ,p

](σ,v)[ ℓ,k,q,p := ‖σ‖k,q,p + -‖v‖- ℓ,k,q,p .

For v∞ = 0 we define by K
k,q,p
∗ the Banach space completion of C∞×C∞0 with

the norm

(1.7) ](σ,v)[ ∗k,q,p := ](σ,v)[ 0,k,q,p + ‖|x|σ(x)‖q + ‖|x|σ(x)‖p + ‖|x|v(x)‖∞

For the external forces it is useful to introduce the following two spaces. For
1 < q < p, L k,q,p := H−1,q ∩Wk,p ∩ Lq is the Banach space equipped with the
norm

(1.8) -|ϕ|- k,q,p := |ϕ|−1,q + ‖ϕ‖q + ‖ϕ‖k,p .

In the sequel we shall take q ≤ 6/5.

For 1 < q1 ≤ 3/2 ≤ q2 ≤ 3, L
k,p
q1,q2 is the Banach space of functions having finite

the following norm

(1.9) -|ϕ|-∗k,q1,q2,p
:= ‖|x|ϕ(x)‖q1 + ‖|x|ϕ(x)‖q2 + ‖ϕ‖k,p .
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After the introduction of these spaces, we are now in a position to explicit more
precisely the content of Sections 3 and 4.
Precisely, in Section 3, under suitable smallness assumptions on the force f ∈

L k,q,p, q < 6/5, and on ℓ, 1/µ and 1/h, we prove that there exists one and only

one solution ̺(= m+σ),v to (1.1) such that (σ,v−v∞) ∈ K
k,q,p
ℓ . Such a solution

has the norm controlled by the force and by ℓ.
Next, in Section 4, we consider the case ℓ = 0. Specifically, we prove that there

exists one and only one solution (σ,v − v∞) ∈ K
k,q,p
∗ corresponding to suitably

small f ∈ L
k,p
q1,q2 and 1/µ and 1/h.

The solutions are obtained as limit of a sequence of approximating solutions.
The novelty of the approach is due to a new iterative procedure which also allows
us to make some considerations on the mathematical structure of the system gov-
erning steady flows. In particular, we prove that the local and global regularity
and the asymptotic behavior, as well, of the solutions to (1.1) are exactly the same
as that enjoyed by the solutions {v, p} of the incompressible Navier-Stokes system.
Moreover, we provide for our solutions a representation formula which, as a con-
sequence, furnishes also interior regularity result for the solutions to the equations
of a compressible fluid. One main tool in our proof is an interior estimate for the
pressure field of the Stokes problem which improves those already known, cf. e.g.
Galdi (1992-c). The power of such approach finds its validity within the result of
Padula & Pileckas (1992) wherein there is proved the existence of a steady solution
also in domains with noncompact boundaries.

2. Auxiliary problems.

In this section we shall recall some basic lemmas concerning existence and a priori
estimate for solutions to some linear elliptic and symmetric systems. Bl will be any

ball of K
k,q,p
ℓ , K

k,q,p
0 respectively, centered at the origin of radius l, and SR will

be a ball of R
3 centered at the origin with radius R.

2.1. Generalized solutions for the Stokes and Oseen problems.

Consider the following nonhomogeneous linear problem, also known as Stokes,
for ℓ = 0, and Oseen, for ℓ 6= 0, the problem

(2.1)

△ u− ℓ
∂u

∂x1
+ ▽p = −F

▽ · u = 0 x ∈ Ω,

u|Σ = g

u(x)→ 0 |x| → ∞.

̺(x)→ 0

The system (2.2) has been extensively studied in both cases: ℓ = 0 and ℓ 6= 0 as
well, cf. Galdi (1991), (1992-c), for a clear description of the full problem.

Lemma 2.1. (a) Let ℓ = 0, k = 0, 1, 2, . . . , 3/2 < q < 3, p > 3, Ω ∈ C 2 and

F ∈ H−1,q, g ∈W1−1/q,q(Σ); F ∈ L
k,q,p, g ∈Wk+2−1/p,p(Σ) resp.
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Then there exists just one solution of the problem (2.1), with ℓ = 0,

u ∈ H1,q, p ∈ Lq; u ∈ V
2,q ∩Hk+2,p, p ∈W1,q ∩Wk+1,p resp.

which satisfies the estimates

(2.2)
‖▽u‖q + ‖p‖q ≤ c

[

|g|1−1/q,q,Σ + |F|−1,q
]

‖▽u‖q + ‖p‖q + ‖▽u‖k+1,p + ‖̺‖k+1,p ≤ c
[

|g|k+2−1/p,p,Σ + -|F|- k,q,p

]

, resp.

(b) Let ℓ 6= 0, k = 0, 1, 2, . . . , 3/2 < q < 3, 3 < p, sq = 4q/(4 − q), Ω ∈ C 2,

Ω ∈ C k+2 resp., and let

F ∈ H−1,q, g ∈W1−1/q,q(Σ); F ∈ L
k,q,p, g ∈Wk+2−1/p,p(Σ) resp.

Then there exists just one solution of the problem (2.1), with ℓ 6= 0,

u ∈ Lsq ∩H1,q, p ∈ Lq; u ∈ V
2,q ∩Hk+2,p, p ∈W1,q ∩Wk+1,p resp.

Moreover, u, ̺ verify the estimates
(2.3)

‖▽u‖q + ℓ
1/4‖u‖sq

+ ‖p‖q ≤ c
[

|g|1−1/q,q,Σ + |F|−1,q
]

‖▽u‖q + ‖▽u‖k+1,p + ℓ
1/4‖u‖sq

+ ‖p‖q + ‖p‖k+1,p ≤ c
[

|g|k+2−1/p,p,Σ + -|F|- k,q,p

]

.

The constant c depends on k, q, p and ℓ. However, if q ∈ (1, 3/2) and ℓ ∈ (0, B] for
some B > 0, c depends solely on k, q, p and B.

The next lemma furnishes an estimate for the negative norm of ̺ in terms of F
only and not of g.

Lemma 2.2. Let {u, ̺} be a solution to the problem (2.1) corresponding to F ∈ Lp,

1 < p <∞. Then, it holds

(2.4)
〈▽p〉−1,p := sup |(▽p,▽φ)|/|φ|2,p ≤ c‖F‖p

| △ p|k−1,p ≤ c‖F‖k,p

where the supremum is taken over all φ ∈ H2,p0 .

Proof: From the weak formulation of the problem (2.1), choosing the test function
as the gradient of a function φ in C∞0 yields

(▽p,▽ψ) = (F,▽ψ).

�
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Remark 2.1. The seminorm defined by (2.4)1 is equivalent to the usual L
p-norm

only for the functions which have zero value on the boundary. In fact, set △ ψ = h,

h |Σ= 0, for h ∈ Lp′ it holds

‖p‖p = sup
|(p, h)|

|‖h‖p′|
= sup

|(p,△ ψ)|

|‖▽▽ψ‖p′|
= sup

|(▽p,▽ψ)|

|‖▽▽ψ‖p′|
.

Corollary. Let w ∈ H1,p0 ∩ H2,p, σ ∈ W1,p, w · ▽σ ∈ W1,p, p > 3, divw = 0
on Σ, thus

div(σw) |Σ= 0.

Proof: Here we just give the proof for a plane, bounded boundary Σ = π(0),
with z normal direction. We put ψε(z) = 0, if |z| > 2ε, ψε(z) = 1, if |z| < ε,
|▽ψε(z)| < ε−1. We now observe that |w(x)| < ε for |x| < ε, because w on Σ is
lipschitzian. From the regularity properties of w it follows that |▽ψεw| is bounded
in ε. Therefore, from the identity

∫

Σ
|w · ▽σ|p =

∫

Σ
|ψεw · ▽σ|p =

∫ ε

0

∫

π(t)
p(ψtw · ▽σ)p−1

( ∂

∂t
(ψtw · ▽σ)

)

using Poincaré inequality we easily recover the lemma. �

In particular, under the assumption of Corollary, it results div(σw) = 0 on Σ,
and

(2.5) ‖ div(σw)‖p ≤ C〈▽ div(σw)〉−1,p .

2.2. Generalized solutions for symmetric equations.

Next, in order to prove an estimate for the density ̺, we are led to solve the
following equation which is symmetric positive in the sense of Friedrichs (1958)

(2.6)
hω + (λ+ 2µ) div(ωw) = ̺,

w · ν |Σ= 0.

This problem was studied by several authors, here we shall report only a recent result
proved in exterior domains, cf. Padula (1992), Novotný & Padula (forthcoming),
Novotný (in preparation).

Lemma 2.3. Let 1 < q < 3, 3 < p, k = 0, 1, 2, . . . , Ω ∈ C k+3. Assume p ∈

Wk+1,p ∩W1,q, w ∈ H1,q0 ∩Hk+2,p, and let there exist suitable γ > 0 such that w
satisfies the following condition

(2.7) ‖w‖k+2,q,p < γ.

Then there exists a unique solution ω to the equation (2.6) in the space W
k+1,p ∩

W
1,q satisfying the following estimate

(2.8)

〈〈ω〉〉k,q,p ≤ (C/h)[‖p‖1,q + ‖p‖k,q,p]

〈▽ div(wω)〉−1,p ≤ c{〈▽p〉−1,p + ‖▽w‖1,q,p‖ω‖1,p}

| △ div(wω)|k−1,p ≤ c{| △ p|k−1,p + ‖▽w‖k+1,p‖ω‖1,p}
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with C positive constant.

Proof: From known results on the symmetric positive equations, cf. Friedrichs
(1958), da Veiga (1987), we can establish a one to one correspondence between ω
and p in the space in which ω exists for bounded domains having the boundary
as characteristic surface. Moreover, in the general case it has been studied for the
first time by Padula (1992-b) and then systematically by Novotný (in preparation),
therefore we shall omit the proof. �

2.3. On the estimates for the Dirichlet and Neumann problems.

As the last two linear problems we shall consider the Neumann and Dirichlet
problems. Precisely, we start with the following Neumann problem

(2.9)

△ ϕ = G

▽ϕ · ν |Σ = φ · ν |Σ

ϕ(x)→ 0 as |x| → ∞
∫

Ω
Gdx =

∫

Σ
φ · ν dΣ.

The result below provides some existence, uniqueness and estimates which will
be used in the sequel.

Lemma 2.4. Let Ω ∈ C 1, 1 < q < 3, 1 < p < ∞, and k = 0, 1, 2, . . . , Ω ∈ C k+1,

G ∈ (H1,q
′

)∗, G ∈ (H1,q
′

)∗ ∩ Lq ∩Wk,p, resp., φ = const. Then there exists only
one solution to (2.9)

ϕ ∈ H1,q; ϕ ∈ H1,q ∩Wk+3,p resp.

which satisfies the estimate

(2.10)

|φ|1,q ≤ {|G|−1,q + |φ|}

|▽φ|1,q ≤ c{|▽G|−1,q + |φ|}

|φ|1,q + ‖▽ϕ‖k+2,p ≤ c{|G|−1,q + |φ|}.

Next, consider the Dirichlet problem

(2.11)

△ θ = G

θ |Σ = 0

θ(x)→ 0 as |x| → ∞.

Lemma 2.5. Let 3/2 < q < 3, Ω ∈ C 1, G ∈ H−1,q. Then there exists only one
weak solution to (2.9) ϕ ∈ H1,q, which satisfies the estimate

(2.12) |ϕ|1,q ≤ c|G|−1,q .

As a consequence of Lemmas 2.4, 2.5 we can now state the following existence
and uniqueness result for the Neumann problem below, cf. also Galdi (1992).

(2.13)

△ ϕ = G

(▽ϕ+ v∞) · ν |Σ = 0

ϕ(x)→ 0 as |x| → ∞.
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Lemma 2.6. Let 3/2 < q < 3, 3 < p, k = 0, 1, 2, . . . , Ω ∈ C k+3, and, for any w

with ▽w ∈ Wk+1,q,p, let G ∈ Wk+1,q,p. Then there exists only one solution to

(2.13) with ▽ϕ ∈ Lr ∩W1,q ∩Wk+1,p, r = 3q/(3− q) such that

(2.14) |ϕ|1,r + ‖▽ϕ‖1,q + ‖▽ϕ‖k+1,p ≤ c
[

‖G‖k,q,p + ‖G‖k+1,q,p‖w‖k+2,p + ℓ
]

.

2.4. The fundamental tensors for the Oseen and the Stokes problems.

As it is known, the fundamental tensors for the Oseen and Stokes problems admit
the following compact and elegant form

(2.15)

Uij(x, y) =
(

δij △ −
∂2

∂xi∂xj

)

O (x, y),

qj(x, y) =
∂

∂xj

(

△ +2ℓ
∂

∂x1

)

O (x, y),

where

O (x, y) := −
1

4πℓ

∫ s

0

(1− e−α)

α
dα, (Oseen)

O (x, y) := (|x− y|/8π). (Stokes)

Put
Ui := U · ei, qi := q · ei .

If u, ̺ is a solution to the problem (2.1) we have the following result, cf. Finn
(1965), Galdi (1992-c).

Lemma 2.7. Suppose F ∈ C α, g ∈ C α. Let u, p be the solution to (2.1) given by
Lemma 2.1. Then the following representation in the large holds:
(2.16)

ui(x) =

∫

Ω
Ui(x− y) · F(y) dy +

∫

Σ
{u ·TUi −Ui · Tu+ (Ui · u)v∞} dΣy ,

p(x) =

∫

Ω
q(x − y) · F(y) dy +

∫

Σ
{u ·Tq− q ·Tu+ (q · u)v∞} dΣy .

Here, corresponding to any vector fields w and scalar field p, the stress tensor
Tw is defined by the relation

(Tw)i,j := −pδi,j +
(∂wi

∂xj
+
∂wj

∂xi

)

.

For F with compact support it can be stated that the behavior of the generalized
solution u, p at infinity can be controlled by that of the fundamental tensor U, q,
cf. Finn (1965).
One of the main tools in the proof of the existence theorem in Section 4 will be

the following basic estimate proved in Finn (1965).
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Lemma 2.8. There is a constant h, uniform in each interval of ℓ such that

(2.17) |x|

∫

Ω
|y|−2|▽yU(x, y, ℓ)| dy < h.

Let K(x, y) denote any of the quantities in (2.15), we now set

(2.18) ϕ(x) := T(φ) :=

∫

Ω
K(x, y)φ(y) dy.

The following results of potential theory can be proved, cf. Galdi (1992-c), Novotný
& Padula (forthcoming):

Lemma 2.9. Let T be given by (2.18). Then, T defines a linear continuous integral
transform from A in B , defined below.

(i) Let K(x, y) ≤ c|x− y|−2, and A := {φ : |x|2|φ(x)| ≤ c}, then B ≡ L∞ and

‖|x|ϕ‖∞ ≤ c‖|x|2φ‖∞ .

(ii) Let 1 < q1 ≤ 3/2 ≤ q2 < 3, 1 < p <∞, k = 0, 1, . . . , let K(x, y) ≤ c|x−y|−1,
and A := {φ : |x|φ ∈ Lq1,q2} then B ≡ L∞ and

‖|x|ϕ‖∞ ≤ c{‖|x|φ‖q1 + ‖|x|φ‖q2} .

(iii) Let 3/2 < q < 3 < p < ∞, K(x, y) ≤ c|x − y|−2, and A := {φ : |x|φ ∈
Lq1,q2}. Then B ≡ L∞ and

‖|x|ϕ‖∞ ≤ c{‖|x|φ‖q + ‖|x|φ‖p} .

3. Existence of steady flows when v∞ 6= 0.

We shall prove that, once the external forces are suitable, there exists a solution

̺ := m+ σ,v, with (σ,v − v∞) ∈ K
k,q,p
ℓ to the problem (1.1), mv∞ = ℓe1, ℓ 6= 0.

Precisely, the main purpose of this section is the proof of the following

Theorem 3.1. Let 1 < r ≤ 6/5, 3 < p, k = 0, 1, 2, . . . , Ω ∈ C k+2 and f ∈

Lr ∩Wk,p. Then there exist positive constants ℓ∗, f∗ functions of r, p, k only such
that for

(3.1) 0 6= ℓ < ℓ∗ -|f |- k,q,p ≤ f∗

there exists one and only one solution (σv) in the ballB R ⊆ K
k,q,p
ℓ , q = 3r/(3−r)

to (1.1) satisfying the estimate

(3.2) ](σ,v)[ ℓ,k,q,p≤ c∗[‖f‖r + ‖f‖k,p + ℓ]



284 M.Padula

where also c∗ depends on ℓ, r, k, p.

Proof: Let us first choose a suitable linearization of (1.1). To this end, we follow
the lines of Novotný & Padula (forthcoming), precisely, using the velocity v :=
v̂ − v∞, we first rewrite the system (1.1) in the more suitable form

(3.3)

− µ △ v − (λ+ µ)▽ divv +
ℓ

m

∂(̺v)

∂x1
+ h▽̺ = F

′(̺,v),

div(̺(v + v∞)) = 0 in Ω;

v |Σ= −v∞

v(x)→ 0 as |x| → ∞.

̺(x)→ m

with
F

′(̺,v) := ̺f − div(̺v ⊕ v).

Next, we decompose the density and the velocity (̺,v) into an incompressible (m,u)
and compressible (σ,▽ϕ) part following the Helmholtz decomposition, by writing

̺ := m+ σ, v := u+ ▽ϕ, divu = 0.

Let us observe that, while the density m is exactly constant, we take m = 1 for
simplicity, the component u of the velocity even though solenoidal (does not change
the volume of the fluid), still remember the compressibility of the gas at the bound-
ary Σ, in fact for the Helmholtz decomposition it holds

(3.4) △ ϕ = divv,
∂ϕ

∂ν
|Σ= −v∞ · ν; divu = 0, u |Σ= −v∞ − ▽ϕ |Σ .

In this way, the equation (3.3)2 becomes

divv = − div(σ(v + v∞)).

Therefore, integrating over Ω (3.3)2, by Gauss lemma and by (3.4)2, we deduce that
the following compatibility must be satisfied

(3.5)

∫

Σ
(▽ϕ+ v∞) · ν dΣ = −

∫

Σ
σ(▽ϕ + v∞) · ν dΣ = 0.

Thus, to prove existence we reduce ourselves to study the following three more
simple linear problems:

(i) Neumann problem

(3.6)

△ ϕ = G(σ, p,▽ϕ),

▽ϕ · ν |Σ = −v∞ · ν,

ϕ(x)→ 0 as |x| → ∞.
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(ii) Oseen problem

(3.7)

△ u− ℓ
∂u

∂x1
− ▽p = −F(σ,v),

▽ · u = 0 x ∈ Ω,

u|Σ = g

u(x)→ 0 |x| → ∞.

p(x)→ 0

(iii) Symmetric system

(3.8)
hσ + (λ + 2µ) div(σ(v + v∞)) = p− λ

∂ϕ

∂x1
,

(v + v∞) |Σ= 0.

Here it is

(3.9)

G(σ, p,▽ϕ) := −
1

(λ+ 2µ)

[

p− hσ − ℓ
∂ϕ

∂x1

]

F(σ,u,▽ϕ) := +div((1 + σ)v ⊕ v − (1 + σ)f) + ℓ
∂(σv)

∂x1
g(▽ϕ) := −v∞ − ▽ϕ.

The iterative procedure is at once naturally suggested from the three problems
written above. In fact, in order to solve the full problem (3.6–3.9), it is enough to
find a sequence (ϕn,un, pn, σn) of solutions to the linearized system (3.6–3.8) when
the quantities G,F,g are given by

(3.10)

vn−1 := un−1 + ▽ϕn−1; G = G(σn−1, pn−1,▽ϕn−1)

F(σn−1,vn−1) := +(1 + σn−1)[vn−1 · ▽vn−1 − f ] + ℓ
∂(σn−1,vn−1)

∂x1
g = g(▽ϕn−1).

Now, the iterative procedure starts by fixing at the step n = 1

u0 = p0 = σ0 = 0, ϕ0 = const .

The existence of ϕ1 follows from Lemma 2.4, when we take G = 0, φ = v∞ · ν and
states that there exists only one ϕ1 ∈ H

1,q ∩Wk+3,p satisfying the estimate

(3.11) |ϕ|1,q + ‖▽ϕ‖k+2,p ≤ c|ℓ|.

Moreover, the existence of a unique u1, p1 follows from Lemma 2.1 when we put

F = f , g = −v∞ − ▽ϕ1 and assures that u1 ∈ V
k+1,p,q
q , p1 ∈W

1,q ∩Wk+1,p,

(3.12) ‖▽u1‖q+‖▽u1‖k+1,p+ |ℓ|1/4‖u1‖sq
+‖p1‖q+‖p1‖k+1,p ≤ c[|ℓ|+-|f |- k,q,p].
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Finally, Lemma 2.3 can be applied with w := v1 + v∞, p := p1 − ℓ(∂ϕ1/∂x1). It

provides the existence and uniqueness of σ1 ∈ W
k+1,p ∩ W

1,q once the smallness
assumption ‖v1 + v∞‖k+2,q,p < γ holds true. We are so led to assume even at the
first step the assumptions (3.1) of Theorem 3.1

c{ℓ∗ + f∗} < γ.

Under the assumption (3.1), Lemma 2.3 holds and the solution σ1 satisfies

(3.13) 〈〈σ1〉〉k+1,q,p ≤
C

h

[

‖p‖1,q + ‖p‖k+1,q,p

]

.

The proof of the existence of ϕ1,u1, p1, σ1 together with the estimates (3.11), (3.12),
(3.13) is so complete.
By recurrency, now, we prove the existence of ϕn,un, pn, σn. To this end, assume

what follows

(3.14)
ϕn−1 ∈ H

1,q ∩Wk+3,p, un−1 ∈ V
k+1,p,q ,

pn−1W
1,q ∩Wk+1,p, σn−1 ∈ W

k+1,p ∩ W
1,q

together with

(3.15) |ϕn−1|1,q + ‖▽ϕn−1‖k+2,p + 〈〈σn−1〉〉k+1,q,p + ‖▽un−1‖q+

+ ‖▽un−1‖k+1,p + |ℓ|1/4‖un−1‖sq
+ ‖̺n−1‖q + ‖̺n−1‖k+1,p ≤ R.

We must prove that also ϕn,un, pn, σn exist in the same space and verify the es-
timate (3.15) with the same constant R. Let us consider the three problems sepa-
rately.

(i) In view of (3.14) and (3.8), it is easy to check that

G = div(σn−1(vn−1 + v∞)) ∈ (H
1,q′)∗ ∩ Lq ∩Wk,p.

Moreover, by assuming (3.15) true at the step n − 1, it naturally follows that the
compatibility condition (2.9)4 holds true. Therefore, Lemma 2.4 allows us to state

that there exists ϕn ∈ H1,q ∩Wk+3,p which satisfy the estimate

|▽ϕn|1,q + ‖▽ϕn‖k+2,p ≤

c| div(σn−1(vn−1 + v∞))|−1,q + ‖ div(σn−1(vn−1 + v∞))‖k,p .

Furthermore, a straightforward calculation shows that

(3.16)
|▽ϕn|1,q + ‖▽ϕn‖k+2,p ≤

C
[

| △ div(σn−1(vn−1 + v∞))|k−1,p + ‖σn−1‖k+1,q,p(‖vn−1‖k+2,p + ℓ)
]

.
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(ii) Next, we verify if conditions of Lemma 2.1 are satisfied. To this end, from
(3.10)3 we observe that the main difficulty consists in the estimate of the convective
nonlinearity which contains as the worst term the term vn−1 ·▽vn−1. However, this
term coincides with the usual convective term in the incompressible case and thus
we know how to deal with it easily. Therefore, in the wake of Galdi (1992-a, b), see
also Novotný & Padula (forthcoming), it results

-|F(σn−1,vn−1)|- k,q,p = -| − (1 + σn−1)[vn−1 · ▽vn−1 + f ]− ℓ
∂(σn−1,vn−1)

∂x1
|-

k,q,p

≤ c ](σn−1,vn−1)[
2
ℓ,k+1,q,p(1 + ℓ

−1/2)(1 + ‖σn−1‖k+1,q,p)+

+c(1 + ‖σn−1‖k+1,q,p)‖f‖k,r,p .

From (3.15), ▽ϕn ∈Wk+2,p, hence the assumptions of Lemma 2.1 are satisfied and

we can state also the existence of un ∈ V
2,q ∩ Hk+2,p, pn ∈Wk+1,q,p solution to

(3.7) satisfying the estimate

(3.17)

-‖un‖- ℓ,k,q,p + ‖̺‖k+1,q,p ≤ c[|g|k+2−1/p,p + -|F|- k,q,p]

≤ c ](σn−1,vn−1)[
2
ℓ,k+1,q,p(1 + ℓ

−1/2)(1 + ‖σn−1‖k+1,q,p)+

+c(1 + ‖σn−1‖k+1,q,p)‖f‖k,r,p .

The constant c depends on k, q, p and ℓ. However, if q ∈ (1, 3/2) and ℓ ∈ (0,B] for
some B > 0, c depends solely on k, q, p and B.

(iii) Finally, concerning the problem (3.8), we observe that from (i) and (ii) it

follows that ϕn ∈ H1,q ∩Wk+3,p and un ∈ V
2,q ∩Hk+2,p, p ∈Wk+1,q,p. Therefore,

also (▽ϕn + un + v∞) ∈W
k+2,q,p ∩W

1,q
0 , pn − ℓ(∂ϕn/∂x1) ∈W

k+1,q,p, next we
must check that the condition (2.7) is satisfied. To this end, from (3.16) and (3.17)
we have

(3.18)

‖▽ϕn + un + v∞‖k+2,q,p ≤ c
[

ℓ+ (1 + ‖σn−1‖k+1,q,p)‖f‖k,r,p+

+](σn−1,vn−1)[
2
ℓ,k+1,q,p(1 + ℓ

−1/2)(1 + ‖σn−1‖k+1,q,p)
]

+

+ ‖σn−1‖k+1,q,p([vn−1]ℓ,k,q,p + ℓ) + | △ div(σn−1(vn−1 + v∞))|k−1,p.

In (3.18) all terms at the right hand side but the last can be taken arbitrarily small
through a suitable choice of f and R. We next consider the term

(3.19) A := | △ div(σn−1(vn−1 + v∞))|k−1,p .

In order to bound A with the given constant γ, we should find a new estimate.
This is essentially the purpose of the inequality (2.8)3 of Lemma 2.3 which provides
a sharp estimate for the negative norm of the △ div(σn−1(vn−1 + v∞)) in terms
of the same negative norm of the △ [pn − ℓ(∂ϕn/∂x1)]. Next, the inequality (2.4)2
provides an estimate for this last term in the function of F only which can be taken
as small as we like. In doing so, we can state that for ℓ, f ,R suitably small, we can
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bound the convective term (▽ϕn + un + v∞) by a given positive constant γ. Then

there exists a unique solution σn to the equation (3.8) in the spaceW
k+1,p ∩W1,q

satisfying the following estimate

〈〈σn〉〉k+1,q,p ≤ (C/h)‖pn‖k+1,q,p

which together with (3.17) furnishes

(3.20)
〈〈σn〉〉k+1,q,p ≤ c](σn−1,vn−1)[

2
ℓ,k+1,q,p(1 + ℓ

−1/2)(1 + ‖σn−1‖k+1,q,p)+

+c(1 + ‖σn−1‖k+1,q,p)‖f‖k,r,p .

From (i), (ii), (iii) we can only conclude that there exists a solution to the n-th
step and that, for suitably small f , ℓ, its norm satisfies the estimate (3.15) with
the same constant R. To complete the existence proof we must prove now the
convergence of the full sequence in a suitably weak norm. For this last step of
proof, as it will be clear in a moment, it becomes fundamental estimate (2.4)1. In
particular, the intent of the last part of this section is to prove that for any positive
constant ε there exists an integer n such that for all n > n it occurs

(3.21) |vn+1 − vn|1,p + ‖σn+1 − σn‖p ≤ ε.

Inequality (3.21) allows us to pass to the limit in (3.21) and in (3.6) so we obtain
the system (3.3).
Let us take the equations for the differences

(3.22) ϕ′n = (ϕn+1 − ϕn), u
′
n = un+1 − un, p′n = pn+1 − pn, σ′n = σn+1 − σn

in (3.6)–(3.8) then we receive

△ ϕ′n = − div(σ′n−1(vn + v∞)) + div(σn−1v
′
n−1)(3.23)

△ u′n − ℓ
∂u′n
∂x1

− ▽p′n = −F′n−1(σ,v), ▽ · u′n = 0,

hσ′n + (λ + 2µ) div(σ
′
n(vn+1 + v∞)) = p

′
n − ℓ

∂ϕ′n
∂x1

− (λ+ 2µ) div(σnv
′
n)

u′n |Σ= −▽ϕ′n, v′n |Σ= 0, ▽ϕ′n · ν |Σ= 0,

u′n(x)→ 0, p′n(x)→ 0, ϕ′n(x)→ 0, as |x| → ∞

with
F′n−1(σ,v) := F(σn,vn)− F(σn−1,vn−1).

Now, it can be easily checked that F′n−1(σ,v) admits the following estimate

|F′n−1(σ,v)−1,p ≤ c{](σn,vn)[ ℓ,q,p+](σn−1,vn−1)[ ℓ,q,p}×

× [‖▽v′n−1‖p + ‖σ′n−1‖p] .
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Thus, using (2.3)1 we find

(3.24) |u′n|1,q + ℓ
1/4‖u′n‖sq

+ ‖p′n‖q ≤ c|▽ϕ′n|1,q + [‖▽v
′
n−1‖q + ‖σ′n−1‖q]×

× {](σn,vn)[ ℓ,q,p+](σn−1,vn−1)[ ℓ,q,p} .

Furthermore, using (2.10)2 into (3.23)1 we receive

(3.25) |▽ϕ′n|1,q ≤ c{|▽ div(σ′n−1(vn + v∞))|−1,q + ‖ div(σn−1v
′
n−1)‖q} .

Next, we notice that (2.8)1,2 imply

(3.26)
〈〈σ′n〉〉p ≤ (C/h)[‖p′n‖q]

〈▽ div(σ′n(vn+1 + v∞))〉−1,p ≤ c〈▽p′n〉−1,p + ‖▽v′n‖p‖σ
′
n−1‖1,p .

We put
X n :=](σ

′
n,u

′
n)[ 1,q+‖p

′
n‖q + |▽ϕ′n|1,q .

Employing (3.15) which states the boundedness of our sequence through the con-
stant R, the inequalities (3.24), (3.25), (3.26)1 infer

(3.27) X n ≤ CRX n−1 +C〈▽ div(σ
′
n−1(vn + v∞))〉−1,p .

Here, a new problem arises again, as in (3.19), due to the term

A′ := 〈▽ div(σ′n−1(vn + v∞))〉−1,p .

In fact, such a term can be considered as nonlinear, however, in such a case, it is
increased through a norm of σ′n−1 stronger than the one at left hand side of (3.27).

On the other side, we can consider A′n as linear, including it in the norm X n.
Unfortunately, using this approach, the constant which multiplies A′n−1 cannot be
taken arbitrarily small. Therefore, we are led to consider the sharper inequality
(2.4)1, (2.7), (2.8)2 and Remark 2.1, thus delivering

(3.28) ‖ div(σ′n−1wn)‖p ≤ C〈▽ div(σ′n−1wn)〉−1,p ≤ C{〈RX
′
n−1 + ‖F′n−1‖〉}

we set wn+1 = vn+1 + v∞. From (3.27) and (3.28) we conclude that

X n ≤ CRX n−1 ≤ (CR)
n .

Thus, the statement (3.21) results completely proved. �

Remark 3.1. To prove the existence for the linear scheme, it is equivalent to
prove existence for the first step. With this in mind, we stress the fact that in
order to obtain an estimate for the density we assumed the validity of the smallness
condition (3.1). Precisely, if we interpret it from a physical point of view we deduce
that we are in a subsonic regime, see Padula (1992-b).
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Remark 3.2. The iterative procedure used here is new and seems more fruitful
than all others already introduced because it presents a technique allowing us to
deduce the properties of the solution of the full nonlinear problem from those that
can be proved for the easiest linearized one. This fact allows us to claim that our
linearized systems (i), (ii), (iii) for the system governing the compressible nonlinear
flows play the same role as that played by the linearized Stokes or Oseen systems
for the full nonlinear Navier-Stokes system.

4. Existence and asymptotic behavior of the solution when v∞ = 0.

The aim of this section is to prove that, once the external forces in L
k,p
q1,q2 are

small and h in (3.8) is large, there exists at least one solution to (1.1). Precisely,
we prove

Theorem 4.2. Let p > 3, 1 < q1 < 3/2 < q2 < 3, k = 0, 1, . . . , Ω ∈ C k+2 and

f ∈ L
k,p
q1,q2 . Then there exists a positive constant f∗ such that if

-|f |-∗k,q1,q2,p
≤ f∗

then there exists at least one solution v, ̺ to (1.1), (σ,v) in the ball BR ⊆ K
k,q,p
∗ .

Moreover, it satisfies the estimate

(4.1) ](σ,v)[ ∗k,q,p≤ c{-|f |-∗k,q1,q2,p} .

Proof: Here we follow the lines of Section 3, namely, we restrict ourselves to the
study of the systems (3.6), (3.7), (3.8) for the step n = 0, and then employ the
recurrency procedure. Repeating the same argument of Section 3 we can still state
the existence and uniqueness of the sequences ϕn, un, pn, σn such that (σn,vn) is

in the space K
k,q,p
0 once we prove that F ∈ L k,q,p, g ∈Wk+2−1/p,p(Σ). Remark

that, now, it is L = 0, in this circumstance we are not able any more to prove
u ∈ Lsq . Therefore, to prove F ∈ L k,q,p we need some further regularity. Assume
that the sequence at the (n− 1)-th step verifies

(4.2)

|ϕn−1|1,q + ‖ϕn−1‖k+1,p + 〈〈σn−1〉〉k+1,q,p+

+ ‖▽un−1‖k+1,p + ‖un−1‖sq
+ ‖pn−1‖q + ‖pn−1‖k+1,p ≤ R,

‖|x|vn−1‖∞ ≤ R, ‖|x|ασn−1‖q + ‖|x|ασn−1‖p ≤ R.

The use of the decay properties (4.2)2,3 of the solutions together with the summa-

bility hypotheses (4.2)1 enables us again to prove that F ∈ L k,q,p; furthermore,
for small f and R it is possible to prove that all regularity and compatibility condi-
tions requested in Lemmas 2.1–2.6 are satisfied, cf. Lemma 7.1 Novotný & Padula
(forthcoming). Thus, existence of a solution ϕn, un, pn, σn to the problems (i),

(ii), (iii) with (σn,vn) ∈ K
k,q,p
0 is ensured. Next we prove that the same esti-

mates with the same constant R continue to hold for the sequence at the n-th step.
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Specifically, we must prove boundedness for the “physically reasonable” norm of
the known sequence ϕn, un, pn, σn, i.e.

](σn,vn)[
∗
k,q,p≤ R.

From existence results stated in Lemmas 2.1–2.6, we already know the belonging
of ϕn, un, pn, σn to the classical Sobolev spaces, it remains to prove the decay
properties (4.2)2,3. To this end, the solution to the problem (ii) will be sought in

a slightly different way. Precisely, let u(x) be such that u(x) < C|x|−1 at infinity
and having the same regularity used in Section 3 in any compact region. Using the
Gauss-Green identity, we begin by representing a generic solution u(x) of (3.7) in Ω
through the fundamental tensors (2.15), see Finn (1965). For an annular region AR
bounded by Σ and by a sphere ΣR of large radius R, we find

(4.3)

u(x) =

∫

AR

U(x; y; ℓ) · F′′(y) dy

+

∫

ΣR

{u ·TU−U ·Tu+ (U · u)v∞} dΣy

+

∫

AR

̺v · ▽U · v dy +

∫

Σ
[{−▽ϕ− v∞} ·TU−U · Tu] dΣy,

where F′′ = (1 + σ)f + ℓ
∂(σ,v)
∂x1

.

If we apply the results of §5, Corollary 2.8, Finn (1965) to U(x; y; ℓ) for y → ∞,
then we get that the outer surface integral vanishes in the limit and we obtain the
representation, valid whenever |x|βF′′ ∈ L2, β > 1/2,

(4.4) un(x) =

∫

Ω
U(x; y; ℓ) ·F′′(y) dy +

∫

Ω
̺v · ▽U · v dy +

∫

Σ
▽ϕ ·TU dΣy .

Then any solution of (3.7) with specified decay at infinity admits the representation

(4.5) un(x) =W(x) +

∫

Ω
̺n−1vn−1 · ▽U · vn−1 dy

where

(4.6) W(x) := U1(x) +U2(x) :=

∫

Ω
U(x; y; ℓ) ·F′′(y) dy +

∫

Σ
▽ϕn · TU dΣy .

Concerning the behavior at infinity, the integral U2(x), since Σ is a compact, it
coincides with that of TU i.e.

U2(x) ≤ c|x|−1, ℓ = 0.

Thus employing (ii) of Lemma 2.9 we receive

U1(x) ≤ c|x|−1, ℓ = 0.
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Finally, by use of Lemma 2.8 together with the hypothesis ‖|x|un−1‖∞ ≤ R, we
obtain

(4.7) ‖|x|un‖∞ ≤ cR2h+ ‖▽ϕn‖2,p

and from (3.16) with k = 0, (2.4)2 we can render ‖ϕn‖2,p less than R
2.

Moreover, recalling (3.6)

△ ϕn = − div(σn−1(vn−1))

by Lemma 2.4 and by the induction assumption (4.2), we find q ≤ ∞,

(4.8) ‖|x| △ ϕn‖q ≤ c[‖|x|(vn−1)‖∞ + ‖ div(vn−1)‖∞]‖σn−1‖1,q .

The estimates (4.7), (4.8) allow us to state the boundedness of our sequence in

the ball BR ⊆ K
k,q,p
∗ . Concerning the convergence, we do not need to add a word

to the reasoning done in Section 3. Therefore, the unique limit (σ,v) is still in BR
and the theorem is proved. �

Remark 4.1. In order to obtain more information on the order of decay of the
sequence we use the analogous representation formula for the pressure that after
a careful analysis can be written

p(x) =

∫

Ω
q(x; y; ℓ) · F′′(y) dy +

∫

Σ
{▽ϕ · T(U,q) − q ·T(v, p)}y dΣ+

+

∫

Ω
div(̺v ⊗ v)q(x; y; ℓ) dy

and |q| ≤ c|x|−2. In the line of the proof of (4.6), we can safely deduce from the
equation (4.8) with 1 ≤ α < 2

‖|x|αp‖∞ ≤ cR2 .

From the symmetric system we can thus deduce the same decay for σ, div(σ(v))
and hence for △ ϕ. In particular, it follows that the compressible part ▽ϕ of the
kinetic field has a better decay compared with that of the incompressible part u.
Finally, the density possesses the same behavior of the pressure and decays as the
compressible part.
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