Jin Yuan Zhou
On subspaces of pseudo-radial spaces

Commentationes Mathematicae Universitatis Caroliniae, Vol. 34 (1993), No. 3, 583--586

Persistent URL: http://dml.cz/dmlcz/118615

Terms of use:
© Charles University in Prague, Faculty of Mathematics and Physics, 1993

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz
On subspaces of pseudo-radial spaces

JIN-YUAN ZHOU

Abstract. It is proved that, under the Martin’s Axiom, every T_1-space with countable tightness is a subspace of some pseudo-radial space. We also give several characterizations of subspaces of pseudo-radial spaces and conclude that being a subspace of a pseudo-radial space is a local property.

Keywords: pseudo-radial spaces, prime spaces, sub pseudo-radial spaces, tightness, Martin’s Axiom

Classification: 54A35, 54B05, 54D99

1. Introduction.

In [1] the authors proposed the following problem: find necessary or sufficient (or both) conditions for a topological space to be a subspace of a pseudo-radial space. They also asked whether, in particular, $N \cup \{p\}$ is a subspace of a pseudo-radial space for $p \in \beta N \setminus N$. In Section 2 we give some necessary and sufficient conditions for a space to be a subspace of a pseudo-radial space. In Section 3 we prove that, under Martin’s Axiom, every T_1 space with countable tightness is a subspace of a pseudo-radial space. Thus we partly answer the question 3.4 of [1].

Definition 1.1. A subset A of a topological space X is called closed w.r.t. chain-net if for each $x \in X$, if there exists a transfinite sequence in A converging to x, then $x \in A$. For any $B \subseteq X$ we denote by $\text{clseq}_X B$ the smallest subset of X containing B and closed w.r.t. chain-net.

Definition 1.2 (5). A space is called pseudo-radial if for each $A \subseteq X$, $\overline{A} = \text{clseq}_X A$. A space is called sub pseudo-radial if it is a subspace of some pseudo-radial space.

There was a lot of equivalent definitions of pseudo-radial spaces (see [1] and [2]). All spaces are assumed to be T_1. If $\{X_\alpha : \alpha \in \Sigma\}$ is a family of spaces, we denote by $\bigoplus_{\alpha \in \Sigma} X_\alpha$ the topological sum of $\{X_\alpha : \alpha \in \Sigma\}$.

2. Some characterizations.

We start with a lemma.

Lemma 2.1. Every quotient of a sub pseudo-radial space is sub pseudo-radial.

Proof: Since every quotient of a pseudo-radial space is pseudo-radial, it is enough to see that for any class M of spaces, if M is closed under quotient mappings, then the class consisting of subspaces of the spaces in M is also closed under quotient mappings. \qed
We call a space a prime space if it has only one non-isolated point. Given any space \(X \) and a point \(p \) in \(X \), denote by \(X_p \) the prime space constructed by making each point, other than \(p \), isolated with \(p \) retaining its original neighborhoods. We call \(X_p \) the prime factor of \(X \) at \(p \). Obviously, each topological space is the quotient of the topological sum of all its prime factors.

Proposition 2.2. For a space \(X \) the following conditions are equivalent:

(i) \(X \) is sub pseudo-radial,

(ii) for every \(p \) in \(X \), \(X_p \) is sub pseudo-radial,

(iii) for each subset \(A \) of \(X \) and \(q \in \overline{A} \), there exists a subset \(B \) of \(A \) such that \(q \in \overline{B} \) and \(B \cup \{q\} \) is sub pseudo-radial.

Proof: The implication (i) \(\rightarrow \) (iii) is obvious. The proof of the implication (i) \(\rightarrow \) (ii) is completely the same as that of Proposition 5.1 of [3].

To prove the left two implications, let \(Z = \bigoplus_{p \in X} X_p \) when (ii) holds and \(Z = \bigoplus\{Y : Y \subseteq X \text{ and } Y \text{ is sub pseudo-radial}\} \) when (iii) holds. It is easy to see that, in both cases, \(X \) is a quotient of \(Z \) and \(Z \) is sub pseudo-radial. By virtue of Lemma 2.1, \(X \) is a pseudo-radial space when (ii) or (iii) holds. \(\square \)

Corollary 2.3. A space \(X \) is sub pseudo-radial if either

(i) each subset of \(X \) with cardinality not greater than the tightness of \(X \) is sub pseudo-radial, or

(ii) each point of \(X \) has a sub pseudo-radial neighborhood.

3. Countable case.

In this section, \(N \) denotes the set of natural numbers. \(\beta N \) is the Čech-Stone compactification of the discrete space \(N \). If \(A \) and \(B \) are subsets of \(N \), \(A \subseteq \ast B \) means that there exists an \(n \) in \(N \) such that \(A \setminus \{0, 1, 2, \ldots, n - 1\} \subseteq B \). A family \(A \) of subsets of \(N \) is called an almost disjoint family, shortened as a.d. family, if for any distinct elements \(A_1 \) and \(A_2 \) of \(A \), \(A_1 \cap A_2 \) is finite. We say that \(A \) has sfip (strong finite intersection property) if every nonempty finite subfamily of \(A \) has infinite intersection. We say that \(B \) is a pseudo-intersection of \(A \) if \(B \subseteq \ast A \) for each \(A \) in \(A \). For any set \(A \), \(|A| \) denotes the cardinality of \(A \); \(c \) denotes the cardinality of the power set \(\mathcal{P}N \) of \(N \).

The following lemma is well-known in set-theory (for example, see 11C of [14]).

Lemma 3.1 (MA). For each family \(A \) of subsets of \(N \), if \(|A| < c \) and \(A \) has sfip, then \(A \) has an infinite pseudo-intersection.

Theorem 3.2 (MA). Every space with countable tightness is sub pseudo-radial.

Proof: It is a consequence of the following Theorem 3.3 and (i) of Corollary 2.3, \(\square \)

Theorem 3.3 (MA). Every countable space is sub pseudo-radial.

Proof: By virtue of Proposition 2.2, we only need to prove that every countable prime space is sub pseudo-radial. Let \(X = N \cup \{p\} \) be a prime space with the unique non-isolated point \(p \). We prove the \(X \) is sub pseudo-radial.
W.l.o.g., we assume that $\chi(p, X) = c$. Let \mathcal{B} be a filter base on N such that the set $\{B \cup \{p\} : B \in \mathcal{B}\}$ constitutes a local base at p. Let $\mathcal{A} = \mathcal{B} \cup \{A \subseteq N; \ p \in \overline{A}^X$ and A contains no infinite pseudo-intersection of $B\}$.

Let $\mathcal{A} = \{A_\alpha : \alpha < c\}$ be an enumeration of \mathcal{A} such that for each $A \in \mathcal{A}$, the set $\{\alpha < c : A_\alpha = A\}$ is unbounded in c. We construct by induction an almost disjoint sequence $\mathcal{C} = \{C_\alpha : \alpha < c\}$ and a sequence $\{B_\alpha : \alpha < c\} \subseteq \mathcal{B}$ such that

(i) $\forall \alpha < c$, $C_\alpha \subseteq A_\alpha$ and C_α is infinite;
(ii) $\forall \beta < \alpha < c$, if $A_\beta \in \mathcal{B}$, then $C_\alpha \subseteq *A_\beta$;
(iii) $\forall \alpha < c$, $C_\alpha \cap B_\alpha = \emptyset$.

Assume $\alpha < c$ and we have constructed $\{C_\beta : \beta < \alpha\}$ and $\{B_\beta : \beta < \alpha\}$ satisfying (i) to (iii). We construct C_α, B_α as follows.

Case I. $A_\alpha \notin \mathcal{B}$. Since $p \in \overline{A_\alpha}^X$, we apply Lemma 3.1 on the family

$$\mathcal{B}' = \{B_\beta \cap A_\alpha : \beta < \alpha\} \cup \{A_\beta \cap A_\alpha : \beta \leq \alpha \text{ and } A_\beta \in \mathcal{B}\}.$$

We obtain an infinite subset A of A_α which is a pseudo-intersection of \mathcal{B}'. Since A cannot be a pseudo-intersection of \mathcal{B}, there is a $B \in \mathcal{B}$ such that $A \setminus B$ is infinite. Let $C_\alpha = A \setminus B$ and $B_\alpha = B$.

Case II. $A_\alpha \in \mathcal{B}$. Let \mathcal{B}' as in the Case I. Since X is a T_1 space and $|\mathcal{B}'| < c = \chi(p, X)$, there exists a $B^* \in \mathcal{B}$ such that for each finite subfamily \mathcal{B}' of \mathcal{B}, $\bigcap_{B \in \mathcal{B}'} B \setminus B^*$ is infinite. Therefore the family $\mathcal{F} = \{B \setminus B^* : B \in \mathcal{B}\}$ has the sfp. Again by Lemma 3.1, we obtain an infinite $A \subseteq A_\alpha \setminus B^*$ which is a pseudo-intersection of \mathcal{B}'. Let $C_\alpha = A$ and $B_\alpha = B^*$. Thus we have finished the induction.

Now we construct a Hausdorff pseudo-radial space Y containing X as a subspace. Let $Y = X \cup (c \times \{0\})$. We define a topology on Y as follows. The set N is open discrete in Y. For each $\alpha < c$, let $\{C_\alpha \setminus n \cup \{(\alpha, 0)\} : n \in N\}$ be a local base at the point $(\alpha, 0)$. For the point p, let $\{U(A_\alpha) : A_\alpha \in \mathcal{B}, \ \alpha < c\}$ be a local base, where $U(A_\alpha) = \{p\} \cup A_\alpha \cup \{(\beta, 0) : \alpha < \beta < c\}$. It is easy to see that the above topology is well-defined and that X is a subspace of Y. Y is Hausdorff because of the above property (iii) and the fact that, for each B_α, the set $\{\beta < c : A_\beta = B_\alpha\}$ is unbounded in c. We are left to check that Y is pseudo-radial. Let $E \subseteq Y$ and $y \in \overline{E}^Y$. To avoid the trivialities, we assume $y = p$ and $E \subseteq N$. Then $p \in \overline{E}^X$. If $E \notin \mathcal{A}$, then $\{(\alpha, 0) : \alpha < c \text{ and } A_\alpha = E\} \subseteq \text{clseq}_Y E$. Since the set $\{\alpha < c : A_\alpha = E\}$ is unbounded in c, $p \in \text{clseq}_Y \{(\alpha, 0) : A_\alpha = E\}$. Thus $p \in \text{clseq}_Y E$. If $E \notin \mathcal{A}$, then there exists an infinite subset E' of E which is a pseudo-intersection of \mathcal{B}. But this obviously implies that $p \in \text{clseq}_X E$. Therefore $p \in \text{clseq}_E$. We are done.

Remark. For any $p \in \beta N \setminus N$, it is easy to see that $N \cup \{p\}$ is not pseudo-radial. But by Theorem 3.2, we see that it is sub pseudo-radial under the Martin’s Axiom. Thus we partly answer the question 4 of [1].

Acknowledgement. Author would like to thank Professor J. Vaughan for his helpful discussions in proving the main theorem.
REFERENCES

Department of Mathematics and Statistics, York University, North York, Ontario M3J 1P3, Canada

(Received January 25, 1993)