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Sensitivity analysis of M-estimators

of non-linear regression models

Rubio A.M., Quintana F., Vı́̌sek J. ÁN

Abstract. An asymptotic formula for the difference of the M -estimates of the regression
coefficients of the non-linear model for all n observations and for n − 1 observations is
presented under conditions covering the twice absolutely continuous ̺-functions. Then
the implications for the M -estimation of the regression model are discussed.

Keywords: M -estimation of non-linear regression models, the influence points

Classification: Primary 62F35; Secondary 62F12

1. Introduction

In the development of the theory of the linear regression models a considerable
attention has been paid to the sensitivity analysis. Let us mention at least Cook
and Weisberg(1982), Welsch (1982), Chatterjee and Hadi (1988) or Zvára (1989),
among others. One of the important tools of the linear regression analysis (in
detail explained below) was the formula describing a change of the coefficient
estimates (or the studentized change of the estimates) when excluding one obser-
vation from the original data. Such a formula has been used to find out which of
the points has the largest influence on the determination of the model. A sim-
ilar formula is derived here for the non-linear regression scheme considering the
M -estimation. Let us start with some basic notation to be able to explain the
problem in question in detail.
LetN denote the set of all positive integers,R the real line, Rℓ the ℓ-dimensional

Euclidean space (ℓ ∈ N) and (Ω,A, P ) a probability space. Moreover, let for some
fixed p ∈ N and q ∈ N , β0 = (β01 , β

0
2 , . . . , β

0
p)

T (where “T ” denotes the transpo-

sition) be the vector of the regression coefficients and {Xi}
∞
i=1, Xi : Ω → Rq, be

a sequence of independent and identically distributed random variables (i.i.d.r.v.).
Finally, let {ei}

∞
i=1, ei : Ω→ R, be another sequence of i.i.d.r.v., independent from

the sequence {Xi}
∞
i=1. For a function g : R

q+p → R we shall consider (for all
i ∈ N) the regression model

(1) Yi = g(Xi, β
0) + ei.

1This paper was written while the author was visiting the Department of Mathematics of
The University of Extremadura.
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Let us denote byK(x) the distribution function ofX1 and by F (t) the distribution
function of e1 (by f(t) will be denoted the density of F (t) whenever we shall
assume that it exists; moreover let S1 denote the support of K(x)). We will be
interested in the M -estimator of β0 given as

(2) β̂(n) = argminβ∈Rp{
n

∑

i=1

̺(Yi − g(Xi, β))}

where ̺ : R → R is assumed to be differentiable with an absolutely continuous
derivative ψ. Let us denote the derivative of ψ by ψ′ (at the points where it
exists).

Specifying for q = p and g(X,β) = XTβ we obtain the linear regression model

Yi = X
T
i β
0 + ei, i = 1, 2, . . . , n.

Let us denote by X(n) and X(n−1,ℓ) the design matrices (X1, X2, . . . , Xn)
T , Xi ∈

Rp and (X1, X2, . . . , Xℓ−1, Xℓ+1, . . .Xn)
T , respectively, and the corresponding

LS-estimators by β̂
(n)
LS and β̂

(n−1,ℓ)
LS . Comparing the normal equations for n and

n− 1 observations we obtain

(3) β̂
(n−1,ℓ)
LS − β̂

(n)
LS = −{[X(n−1,ℓ)]TX(n−1,ℓ)}−Xℓ(Yℓ −XT

ℓ β̂
(n)
LS )

where {[X(n−1,ℓ)]TX(n−1,ℓ)}− denotes a pseudoinverse to {[X(n−1,ℓ)]TX(n−1,ℓ)}.
From it follows that

(4)
‖β̂
(n−1,ℓ)
LS − β̂

(n)
LS ‖

√

var
(

‖β̂
(n−1,ℓ)
LS − β̂

(n)
LS ‖

)

= |Yℓ −XT
ℓ β̂
(n)
LS |.

So to find a point, exclusion of which implies the largest value of the studentized
norm of change of estimates of the regression coefficients, we need just to look
for the point(s) with the largest absolute value of the residual. Naturally, when
we want to take into account also the position of data in space we will prefer to
use (3) and the analysis will be a little more complicated. It may be of interest
that when we want to analyze the data (and the model) from the point of view
of the largest change in the prediction we find the same as above. In fact, for any
X̃ ∈ Rp we obtain

Ŷ
(n−1,ℓ)
LS − Ŷ

(n)
LS = X̃

T (β̂
(n−1,ℓ)
LS − β̂

(n)
LS )

and hence
sup

‖X̃‖=1

|Ŷ
(n−1,ℓ)
LS − Ŷ

(n)
LS | = ‖β̂

(n−1,ℓ)
LS − β̂

(n)
LS ‖.
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(Similarly as in the case of the change of estimates of the regression coefficients
described by (3) and (4) we may want for the prediction to take a position of
data in the space also into account. Naturally, the analysis will be again a little
more complicated. The present authors, however, believe that we should abandon
invariance and prefer the position of data in the factor space only when there are
very strong reasons for it.) The purpose of this paper is to establish formulae
analogous to (3) and (4) for the M -estimators for the non-linear model. Since for
the M -estimators we usually do not have analytic formulae for their evaluations
but only asymptotic representations, our result will be also of the asymptotic
type. The LS-estimator is under the assumption that EF (e1) = 0 unbiased. For
the M -estimators the situation is somewhat more complicated and hence we will

simply assume that β̂(n) is consistent, so that our result will be applicable on
any consistent M -estimator. For the conditions guaranteeing consistency of the
M -estimators in the non-linear regression see Liese and Vajda (1992) (do not be
confused that the authors assume ̺ to be twice continuously differentiable which
is slightly stronger than our assumptions; in fact, they need this assumption
only for deriving asymptotic normality, so that it is reasonable to consider our
Conditions B below).

2. Asymptotic representation of difference between estimates

of regression model

For any finite set S = {s1, s2, . . . sk} ⊂ R and α > 0 put S(α) = ∪k
i=1 [si−α, si+α].

We shall assume:

Condition A.

The estimator β̂(n) is consistent in the following sense:

∀(δ > 0 and ε > 0) ∃(n0 ∈ N) ∀ (n ∈ N, n ≥ n0 and ℓ = 1, 2, . . . , n)

P
(

‖β̂(n) − β0‖ > δ
)

< ε

and
P

(

‖β̂(n−1,ℓ) − β0‖ > δ
)

< ε

where

β̂(n−1,ℓ) = argminβ∈Rp{
n

∑

i=1,i6=ℓ

̺(Yi − g(Xi, β))}.

Conditions B.

(i) The function ψ(z) and the derivative ψ′(z) are uniformly continuous on
R and on R \ C, respectively, where C = {c1, c2, . . . , cr}, r being finite.

(ii) There is τ0 such that F (z) has a continuous density f(z) on C(τ0).
(iii) There is a finite L such that sup

z∈R
|ψ(z)| < L and sup

z∈C(τ0)\C
|ψ′(z)| < L.

(iv) The mean value EFψ
′(e1) > 0.
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Remark 1. Let us observe that due to the continuity of f(x) on C(τ0), f(x) is
bounded there, let us say by M <∞.

Remark 2. Due to the fact that ψ is assumed bounded, the mean value of it

exists. Let us assume that it is zero.

Remark 3. Conditions B essentially coincide with those of Hampel et al.

(1986), 7.2a, under which a general class of tests of the linear model was studied.
The reader who is interested in a heuristic discussion of these conditions may find

it at this book.

Conditions C.

(i) The function g is in a neighbourhood of β0 twice continuously (and uni-
formly with respect to x ∈ S1) differentiable in the coordinates corre-
sponding to the regression coefficients, i.e. there is δ0 > 0 such that for
any β ∈ Rp, ‖β − β0‖ < δ0

∂

∂βj
g(x, β) (j = 1, 2, . . . , p) and

∂2

∂βj∂βk
g(x, β) (j, k = 1, 2, . . . , p)

exist for any x ∈ S1 and are uniformly in x ∈ S1 continuous. Let us
denote the corresponding vector and the matrix simply by g′(x, β) and
g′′(x, β), respectively, and their coordinates and elements by g′j(x, β) and

g′′jk(x, β).

(ii) There is J ∈ (1,∞) such that

max
1≤j≤p

sup
x∈S1,β∈Rp,‖β−β0‖<δ0/2

|g′j(x, β)| < J

and
max
1≤j,k≤p

sup
x∈S1,β∈Rp,‖β−β0‖<δ0/2

|g′′jk(x, β)| < J.

(iii) The matrix Q = EK{g′(x, β0)[g′(x, β0)]T } is regular (and hence in our
case positive definite).

Remark 4. Observe that under Conditions C the functions g and g′ are

absolutely, and uniformly with respect to x ∈ S1, continuous in δ0-neighbourhood

of β0 (let us recall that S1 is the support of K(x)).

Remark 5. From the fact that the sequences {ei}
∞
i=1 and {Xi}

∞
i=1 are indepen-

dent and from B.iv together with C.ii it follows that
1
n

∑n
i=1 ψ

′(ei)g
′(Xi, β

0)[g′(Xi, β
0)]T converges in probability to Q · EFψ

′(e1).

Similarly, 1n
∑n

i=1 ψ(ei)g
′′(Xi, β

0) converges to the zero matrix in probability.

Due to the assumption of the existence and the continuity of ψ and g′ we may

look for β̂(n) as

(5) β̂(n) = argβ∈Rp{
n

∑

i=1

ψ(Yi − g(Xi, β)) g
′(Xi, β) = 0},
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as well as for β̂(n−1,ℓ) as

(6) β̂(n−1,ℓ) = argβ∈Rp{
n

∑

i=1,i6=ℓ

ψ(Yi − g(Xi, β)) g
′(Xi, β) = 0}.

Of course, due to the fact that we have not asked for the monotonicity of the
function ψ(t) we have only

argminβ∈Rp{
n

∑

i=1

̺(Yi−g(Xi, β))} ⊂ argβ∈Rp{
n

∑

i=1

ψ(Yi−g(Xi, β)) g
′(Xi, β) = 0}.

Recalling that ei = Yi−g(Xi, β
0), let us put for any β ∈ Rp ri(β) = Yi−g(Xi, β)

and for any pair β1, β2 ∈ Rp

ξi(β1, β2) = min {ri(β1), ri(β2)} and ζi(β1, β2) = max {ri(β1), ri(β2)} .

Finally, for any ω ∈ Ω define

Hn,1,ℓ(ω) =

=
{

i ∈ {1, 2, . . . , ℓ− 1, ℓ+ 1, . . . , n} ,
[

ξi(β̂
n, β̂(n−1,ℓ)), ζi(β̂

n, β̂(n−1,ℓ))
]

∩ C 6= ∅
}

and
Hn,2,ℓ(ω) = {1, 2, . . . , ℓ− 1, ℓ+ 1, . . . , n} \ Hn,1,ℓ(ω).

Now using (5) and (6), and employing the mean value theorem we may write

(7)

∑

i∈Hn,1,ℓ

[

ψ(Yi − g(Xi, β̂
(n))) g′(Xi, β̂

(n))

−ψ(Yi − g(Xi, β̂
(n−1,ℓ))) g′(Xi, β̂

(n−1,ℓ))
]

+
∑

i∈Hn,2,ℓ

[

ψ′(Yi − g(Xi, β̃)) g
′(Xi, β̃)

[

g′(Xi, β̃)
]T

]

−ψ(Yi − g(Xi, β̃)) g
′′(Xi, β̃)

]

· (β̂(n−1,ℓ) − β̂(n))

= −ψ(Yℓ − g(Xℓ, β̂
(n))) g′(Xℓ, β̂

(n)).

where max{‖β̃ − β̂(n)‖, ‖β̃ − β̂(n−1,ℓ)‖} ≤ ‖β̂(n) − β̂(n−1,ℓ)‖.

Remark 6. It follows from B.iii and C.ii that the right hand side of (7) is
bounded.
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Lemma 1. Let Conditions A, B and C hold. Moreover, let us assume that

the set C = ∅ (see B.i). Then

n(β̂(n−1,ℓ) − β̂(n)) = −Q−1
E
−1
F ψ′(e1) ψ(Yℓ − g(Xℓ, β̂

(n))) g′(Xℓ, β̂
(n)) + op(1)

uniformly in ℓ = 1, 2, . . . n.

Remark 7. The uniformity claimed in Lemma 1 is of the following type:

∀(δ > 0 and ε > 0) ∃(n0 ∈ N) ∀(n ∈ N, n ≥ n0 and ℓ = 1, 2, . . . , n)

P
(∥

∥

∥ n
(

β̂(n−1,ℓ) − β̂(n)
)

+Q−1
E
−1
F ψ(e1) ψ(Yℓ − g(Xℓ, β̂

(n))) g′(Xℓ, β̂
(n))

∥

∥

∥ > δ
)

< ε

(i.e. n0 is the same for all ℓ = 1, 2, . . . , n) but not necessarily

P

(

max
ℓ=1,2,...,n

∥

∥

∥ n
(

β̂(n−1,ℓ) − β̂(n)
)

+Q−1
E
−1
F ψ(e1) ψ(Yℓ − g(Xℓ, β̂

(n))) g′(Xℓ, β̂
(n))

∥

∥

∥ > δ
)

< ε.

Proof of Lemma 1: First of all, we shall prove that for any u, v = 1, 2, . . . , p
we have uniformly in ℓ = 1, 2, . . . , n

lim
n→∞

∣

∣

∣

∣

∣

1

n

n
∑

i=1

[

ψ′(Yi − g(Xi, β̃)) g
′
u(Xi, β̃)g

′
v(Xi, β̃)

−ψ(Yi − g(Xi, β̃)) g
′′
uv(Xi, β̃)

]

− quvEFψ
′(e1)

∣

∣

∣ = 0

in probability (let us recall that β̃ was introduced in (7)). Now let us fix some
τ > 0 and find ν > 0 so that for any pair t1, t2 ∈ R such that |t1 − t2| < ν we
have |ψ(t1)− ψ(t2)| < τJ−1 and also |ψ′(t1) − ψ′(t2)| < τJ−1. Moreover, let us
find κ ∈ (0, δ0) such that for any β

1 ∈ Rp, ‖β1 − β0‖ < κ we have

sup
x∈S1

|g(x, β1)− g(x, β0)| < ν,

sup
x∈S1

max
1≤u≤p

|g′u(x, β
1)− g′u(x, β

0)| < L−1 τ

and

sup
x∈S1

max
1≤u,v≤p

|g′′uv(x, β
1)− g′′uv(x, β

0)| < L−1τ.
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Now, let us fix some ε > 0 and δ > 0 and making use of the law of large numbers
let us find n0 ∈ N so that for any n ∈ N,n ≥ n0 we have for the set

An =

{

ω ∈ Ω :

∣

∣

∣

∣

∣

1

n

n
∑

i=1

[

ψ′(ei) g
′
u(Xi, β

0) g′v(Xi, β
0)

+ψ(ei) g
′′
uv(Xi, β

0)
]

− quv EFψ
′(e1)

∣

∣

∣ > δ
}

P (An) < ε. Moreover, let us find n1 ∈ N,n1 > n0 such that for any n ∈ N,n > n1
and ℓ = 1, 2, . . . , n

P

(

‖β̂(n) − β0‖ >
1

2
κ

)

< ε

and

P

(

‖β̂(n−1,ℓ) − β0‖ >
1

2
κ

)

< ε ℓ = 1, 2, . . . , n

and let us denote by Bn and Bn,ℓ the sets {ω ∈ Ω : ‖β̂(n) − β0‖ > 1
2κ} and

{ω ∈ Ω : ‖β̂(n−1,ℓ)−β0‖ > 1
2κ}, respectively. Then we have for any ℓ = 1, 2, . . . , n

P (An ∪Bn ∪Bn,ℓ) < 3ε

and since
‖β̃ − β0‖ ≤ ‖β̂(n) − β0‖+ ‖β̂(n−1,ℓ) − β0‖

for any ω ∈ [An ∪Bn ∪Bn,ℓ]
c we have

max
1≤u,v≤p

∣

∣

∣

∣

∣

1

n

n
∑

i=1

[

ψ′(Yi − g(Xi, β̃) g
′
u(Xi, β̃)) g

′
v(Xi, β̃)

+ψ(Yi − g(Xi, β̃)) g
′′
uv(Xi, β̃)

]

− quv EFψ
′(e1)

∣

∣

∣ < 2τ2 + δ.

So we have just proved that the matrices

(8) V(n) =

{

1

n

n
∑

i=1

{

ψ′(Yi − g(Xi, β̃)) g
′
u(Xi, β̃) g

′
v(Xi, β̃)

+ψ(Yi − g(Xi, β̃)) g
′′
uv(Xi, β̃)

}}v=1,2,...,p

u=1,2,...,p

converge in probability to the regular matrix Q · EFψ(e1). We shall show that it
enables us to use Lemma 2 (see Appendix) to prove that

(9) n
(

β̂(n) − β̂(n−1,ℓ)
)

= Op(1).
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Let us assume that (9) does not hold. (Let ℓ0 be fixed in the rest of the proof.)
Then

∃(ε > 0) ∀(K > 0) lim sup
n→∞

P ( n‖β̂(n) − β̂(n−1,ℓ0)‖ > K) > ε.

But it means that for γ(n) = n(β̂(n) − β̂(n−1,ℓ)) the conditions of Lemma 2 are
fulfilled. So we have

∃(t ∈ {1, 2, . . . , p} and δ > 0) ∀(H > 0)

lim sup
n→∞

P





∣

∣

∣

∣

∣

∣

p
∑

j=1

v
(n)
tj · n(β̂

(n)
j − β̂

(n−1,ℓ0)
j )

∣

∣

∣

∣

∣

∣

> H



 > δ.

Taking into account that C = ∅, and hence Hn,1,ℓ = ∅, we see that the previous
inequality yields a contradiction with (7), see Remark 6, i.e. (9) holds. The rest
of the proof is straightforward. Let us rewrite (7) into the form (keep in mind
that Hn,1,ℓ = ∅, and also (8))

{

V(n) −Q · EFψ(e1)
}

n(β̂(n−1,ℓ) − β̂(n))

+Q · EFψ(e1)n(β̂
(n−1,ℓ) − β̂(n)) = −ψ(Yℓ − g(Xℓ, β̂

(n)))g′(Xℓ, β̂
(n)) + op(1)

and the proof follows. �

However, the conditions of Lemma 1 do not cover the ψ-functions frequently
used in the M -estimation (e. g. they are not fulfilled for Huber’s function).
Although it is true that by small modifications of these functions we may fulfil
the conditions of Lemma 1 (e.g. imagine Huber’s function modified so that it
has uniformly continuous derivative), there are at least two reasons why we may
try to prove the assertion of Lemma 1 under more general conditions. At first,
these small modifications break the admissibility of the estimators (see Hampel
et al. (1986)). (Of course, it is more or less an academic question.) Secondly, the
modifications lead to a more complicated evaluation of the M -estimators (which
is already not very simple). Although an increase of the complexity of evaluation
caused by the modifications would not be drastic, if we were able to do without
them, it would be preferable. (We have left aside that it is also a theoretical
challenge which is interesting to answer.)
So the next step will be to take into account such continuous functions ψ, that

there are some points at which the derivative of ψ does not exist, i.e. the set C is
not empty (remember again Huber’s function).

Theorem 1. Let Conditions A, B and C hold. Then

(10) n(β̂(n−1,ℓ) − β̂(n))

= −Q−1
E
−1
F ψ′(e1) ψ(Yℓ − g(Xℓ, β̂

(n))) g′(Xℓ, β̂
(n)) + op(1)
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uniformly in ℓ = 1, 2, . . . n.

Proof: Let us fix some ε > 0 and let us consider the first term of (7). Due
to the uniform (in x ∈ S1) continuity of the function g(x, β) at β

0 (see C.i) we
may find ν1 > 0 such that for any β ∈ Rp, ‖β − β0‖ < ν1 we have |g(x, β) −

g(x, β0)| < τ0. Now, let us find for Bn = {ω ∈ Ω, ‖β̂(n) − β0‖ > 1
2ν1} and

Bn,ℓ = {ω ∈ Ω, ‖β̂(n−1,ℓ) − β0‖ > 1
2ν1} such n0 ∈ N that for any n ∈ N,n ≥ n0

we have P (Bn) < ε as well as P (Bn−1,ℓ) < ε, and consider instead of the first
term in (7) the expression

(11)
∑

i∈Hn,1,ℓ

[

ψ(Yi − g(Xi, β̂
(n))) g′(Xi, β̂

(n))

−ψ(Yi − g(Xi, β̂
(n−1,ℓ))) g′(Xi, β̂

(n−1,ℓ))
]

I{Bn∪Bn,ℓ}
c .

where “c” denotes the complement. Let us put for any n ∈ N,w ∈ R and
k = 1, 2, . . . , p

β(n,k)(w) = (β̂
(n)
1 , β̂

(n)
2 , . . . , β̂

(n)
k−1, w, β̂

(n−1,ℓ)
k+1 , . . . , β̂

(n−1,ℓ)
p )T .

Taking into account that for any i ∈ Hn,1,ℓ and any ω ∈ {Bn ∪ Bn,ℓ}
c we have

ri(β̂
(n)) ∈ C(τ0) as well as ri(β̂

(n−1,ℓ)) ∈ C(τ0) and making use of the absolute

continuity of ψ on C(τ0) and the absolute continuity of
∂

∂βj
g(x, β) we may find

functions hjk(Xi, w) : R
p → R, j, k = 1, 2, . . . , p such that

∣

∣

∣ψ(Yi − g(Xi, β̂
(n))) g′(Xi, β̂

(n))− ψ(Yi − g(Xi, β̂
(n−1,ℓ))) g′(Xi, β̂

(n−1,ℓ))
∣

∣

∣

=

∣

∣

∣

∣

∣

∣

p
∑

k=1

∫ β̂
(n)
k

β̂
(n−1,ℓ)
k

hjk(Xi, β
(n,k)(w)) dw

∣

∣

∣

∣

∣

∣

and max1≤j,k≤p supλ∈[0,1] |hjk(Xi, β̂
(n−1,ℓ)+λ(β̂(n)− β̂(n−1,ℓ)))| ≤ L ·J2 (in fact,

the functions hjk are equal a.e. to a sum of products of ψ
′ and the elements of

g′[g′]T , and of ψ and the elements of g′′). It implies that we may find a random
(p× p)-matrix, say Ki, such that

(12) | [Ki]jk | < p
1
2 · L · J2

for j, k = 1, 2, . . . , p and such that
(13)

|ψ(Yi − g(Xi, β̂
(n))) g′(Xi, β̂

(n))− ψ(Yi − g(Xi, β̂
(n−1,ℓ))) g′(Xi, β̂

(n−1,ℓ))|

= Ki(β̂
(n) − β̂(n−1,ℓ)).



120 A.M.Rubio, F.Quintana, J. Á Vı́̌sek

Now, let us find for (an arbitrary but fixed) ν > 0 such κ that for any β ∈ Rp

such that ‖β − β0‖ < κ we have |g(x, β)− g(x, β0)| < 1
2νM

−1 (keep in mind the

uniform (in x ∈ S1) continuity of g(x, β) at β
0; for M see Remark 1). Now, let

us select n2 ∈ N , n2 ≥ n1 so that for any n ∈ N , n ≥ n2 we have for the set

Cn = {ω ∈ Ω : ‖β̂(n) − β0‖ > κ} and Cn,ℓ = {ω ∈ Ω : ‖β̂(n−1,ℓ) − β0‖ > κ}
P (Cn) < ε as well as P (Cn,ℓ) < ε. Now, we shall consider instead of (11) the
expression

∑

i∈Hn,1,ℓ

[

ψ(Yi − g(Xi, β̂
(n))) g′(Xi, β̂

(n))

−ψ(Yi − g(Xi, β̂
(n−1,ℓ))) g′(Xi, β̂

(n−1,ℓ))
]

I{Bn∪Bn,ℓ∪Cn∪Cn,ℓ}
c .

It may be written as (β̂(n) − β̂(n−1,ℓ))
∑n

i=1Ki · ISni
, where

Sni = [Bn∪Bn,ℓ∪Cn∪Cn,ℓ]
c∩{i ∈ Hn,1,ℓ} (see (13)). Now ISni

= 1 implies that

there is j0 ∈ {1, 2, . . . , r} (seeB.i) such that cj0 ∈ [ξ(β̂
(n), β̂(n−1,ℓ)), ζ(β̂(n), β̂(n−1,ℓ))]

(see also the definition of Hn,1,ℓ). Let us consider the case that

ri(β̂
(n)) ≤ cj0 ≤ ri(β̂

(n−1,ℓ)).

Since ISni
= 1 (i.e. we consider a point ω ∈ {Cc

n∩Cc
n,ℓ} )we have ‖β̂

(n)−β0‖ < κ

as well as ‖β̂(n−1,ℓ) − β0‖ < κ and so we have |ei − ri(β̂
(n))| = |g(Xi, β̂

(n)) −

g(Xi, β
0)| < 1

2νM
−1 as well as |ei − ri(β̂

(n−1,ℓ))| < 1
2νM

−1. But it means that

ISni
= 1 implies that ei ∈ [cj0 −

1
2νM

−1, cj0 +
1
2νM

−1] and hence taking into
account that Sni ∩ [Cn ∪ Cn,ℓ] = ∅ we arrive at

P (Sni) ≤ 2 ·M ·
1

2
· ν ·M−1 = ν.

Therefore
EF ISni

= P (ISni
= 1) ≤ ν

and finally for some δ > 0 we obtain (see (12))

P ( max
1≤j,k≤p

1

n
|

n
∑

i=1

[Ki]jk ISni
| > δ) ≤

ν · p
1
2 · L · J2

δ
.

Since ν was arbitrary we conclude that the first term in (7) may be written as
(see again (13))

(14) K(n) · n(β̂(n) − β̂(n−1,ℓ))
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where K(n) is a (p× p)-matrix with elements of order op(1). Now we may along
similar lines as in the proof of Lemma 1 show that (let us recall once again that

β̃ is given in (7))

(15)

1

n

∑

i/∈Hn,2,ℓ

[

ψ′(Yi − g(Xi, β̃)) g
′(Xi, β̃)

[

g′(Xi, β̃)
]T

− ψ′(Yi − g(Xi, β
0)) g′(Xi, β

0)
[

g′(Xi, β
0)

]T

+ψ(Yi − g(Xi, β̃)) g
′′(Xi, β̃)− ψ(Yi − g(Xi, β

0)) g′′(Xi, β
0)

]

= op(1)

and finally, carrying out similar steps as in the first part of this proof we show
that

(16)

1

n

∑

i∈Hn,1,ℓ

[

ψ′(Yi − g(Xi, β
0)) g′(Xi, β

0)
[

g′(Xi, β
0)

]T

+ψ(Yi − g(Xi, β
0)) g′′(Xi, β

0)
]

= op(1).

Now taking into account (14),(15) and (16) we may write instead of (7)

{

1

n

n
∑

i=1

[

ψ′(ei) g
′(Xi, β

0)
[

g′(Xi, β
0)

]T
+ ψ(ei) g

′′(Xi, β
0)

]

+ op(1)

}

·

· n(β̂(n) − β̂(n−1,ℓ)) = −ψ(Yℓ − g(Xℓ, β̂
(n))g′(Xℓ, β̂

(n)).

The rest of the proof is the same as the last part of the proof of Lemma 1
(starting with (8)). �

The conditions of Theorem 1 cover a majority of the frequently used ψ-
functions. For instance the most B- and V -optimal robust estimators, including
the bulk of the estimators with the redescending ψ-function (e.g. tanh-type es-
timators) fulfil these conditions – see Hampel et al. (1986), 2.5a. They do not
cover the M -estimators with the discontinuous ψ-functions. On the other hand,
it is known that the estimators generated by the ψ-function with (at least one)
downward jump (i.e. such a ψ-function for which at least at one point d ∈ R,
limzրd ψ(z) > limzցd ψ(z) - under the assumption that such limits exist at all,
like the skipped median or the estimator with skipped Huber’s function) have the
infinite change-of-variance sensitivity. In practical applications we usually avoid
such estimators just due to the fact that the infinite change-of-variance sensitiv-
ity is an indication of an implausible fluctuation of the estimator (even for small
changes of the contamination level).
It is clear that the relation (10) does not allow us to derive for theM -estimators

a formula analogous to (4). The reason is the presence of op(1) in it, causing that
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we cannot derive from it an approximation to the variance of n‖β̂(n−1,ℓ)− β̂(n)‖.
But let us look a little closer on the problem. What does the presence of op(1)
in (10) indicate and what may it cause ? In fact op(1) in (10) may imply

that n(β̂(n−1,ℓ) − β̂(n)) can behave rather “wildly” on a set of (very) small

probability. So the behaviour of β̂(n−1,ℓ) − β̂(n) on the set of small probability

may influence (in fact it always increases) the value of var(n‖β̂(n−1,ℓ) − β̂(n)‖).

If this influence is considerable, then the value var(n‖β̂(n−1,ℓ) − β̂(n)‖) gives

a misleading idea about the variability of n‖β̂(n−1,ℓ) − β̂(n)‖ because the vari-

ability of the typical values of n‖β̂(n−1,ℓ) − β̂(n)‖ is in fact smaller, given by

E
−2ψ′(e1) var(‖Q

−1g′(Xℓ, β̂
(n))ψ(Yℓ−g(Xℓ, β̂

(n)))‖). That is why we would pre-

fer to normalize n‖β̂(n−1,ℓ) − β̂(n)‖ by E−1ψ′(e1) var
1
2 (‖Q−1g′(Xℓ, β̂

(n))ψ(Yℓ −

g(Xℓ, β̂
(n)))‖), compare also Huber (1965). Then the characterization of the

changes of the non-linear regression model estimates will be the same as for the
M -estimators of the linear model (Vı́̌sek (1992)), namely

(17) max
1≤ℓ≤n

∣

∣

∣
ψ(Yℓ − g(Xℓ, β̂

(n)))
∣

∣

∣
.

It means that having evaluated the residuals for the given estimate of the non-
linear model, we may look for the most influential points just looking for the point
with the largest “ψ-residual”. In the case when the problem of estimating the
regression model is not invariant with respect to the position of data in the factor
space, i.e. when this position plays an (important) role, we have to use for the
sensitivity analysis directly the formula (10) instead of (17) and the computation
will be a little more complicated.

From these considerations we may conclude:

Corollary 1. The largest value of the studentized norm of the change of the

estimate of regression coefficients is always bounded by supt∈R |ψ(t)|.

It is clear that if the ψ-function is properly selected (let us say “tuned”) then

there will be at least one point such that ψ(Yℓ − g(Xℓ, β̂
(n))) ∼= supt∈R |ψ(t)|,

even for the redescending functions. It is also evident that the change for the
LS-estimator would be even larger. So the assertion of Corollary 1 may be
interpreted so that using the M -estimators we are imposing an upper limit on
a possible change of the estimate. On the other hand, it may seem strange that
the influence of one point is so “large”, where the converted commas indicate
that one should keep in mind that we normalize the difference of estimates by the
factor n, i.e. the change is in fact of order Op(n

−1). But even keeping it in mind
and considering fixed sample size, it is natural to ask: Cannot we construct an
estimator which would be more stable on subsamples ?
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Appendix

Lemma 2. Let for some p ∈ N
{

V(n)
}∞

n=1
, V(n) =

{

v
(n)
ij

}j=1,2,...,p

i=1,2,...,p
be a se-

quence of (p× p) matrices such that

lim
n→∞

v
(n)
ij = qij i, j = 1, 2, . . . , p in probability

where Q = {qij}
j=1,2,...,p
i=1,2,...,p is a fixed nonrandom regular matrix. Moreover, let

{γ(n)}∞n=1 be a sequence of the p-dimensional random vectors such that

(18) ∃ (ε > 0) ∀ (K > 0) lim sup
n→∞

P
(

‖γ(n)‖ > K
)

> ε.

Then

(19)

∃ (k ∈ {1, 2, . . . , p} and δ > 0) ∀ (τ > 0)

lim sup
n→∞

P





∣

∣

∣

∣

∣

∣

p
∑

j=1

v
(n)
kj γ

(n)
j

∣

∣

∣

∣

∣

∣

> τ



 > δ .

Proof: Let us at first assume that for the sequence {γ(n)}∞n=1 we have

(20) ∃ (ε > 0) ∀ (K > 0) lim
n→∞

P
(

‖γ(n)‖ > K
)

> ε.

Let us fix a sequence {K̃r}∞r=1 ↑ ∞, K̃1 = 0, and construct a sequence {Kn}∞n=1
in the following way. For every r ∈ N find nr ∈ N such that for any n ∈ N ,
n ≥ nr

P
(

‖γ(n)‖ > K̃r

)

>
ε

2

and put for ℓ ∈ N , ℓ ∈ [nr, nr+1), Kℓ = K̃r (if n1 > 1 put Kℓ = 0 for ℓ ≤ n1).

Denote by Bn = {ω ∈ Ω : ‖γ(n)‖ > Kn}, i. e. P (Bn) >
ε
2 for all n ∈ N . Let us

assume that (19) does not hold, i.e. ∀ (k = 1, . . . , p and δ > 0) ∃ (τδ > 0) and

lim sup
n→∞

P





∣

∣

∣

∣

∣

∣

p
∑

j=1

v
(n)
kj γ

(n)
j

∣

∣

∣

∣

∣

∣

> τδ



 < δ.

Finally it may be written as

∀ (k = 1, . . . , p and δ > 0) ∃ (τδ > 0 and nδ ∈ N) ∀ (n ∈ N, n > nδ)

P





∣

∣

∣

∣

∣

∣

p
∑

j=1

v
(n)
kj γ

(n)
j

∣

∣

∣

∣

∣

∣

> τδ



 < 2δ.
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Put δ = ε
16p and denote by

An =







ω ∈ Ω : max
k=1,... ,p

∣

∣

∣

∣

∣

∣

p
∑

j=1

v
(n)
kj γ

(n)
j

∣

∣

∣

∣

∣

∣

≤ τδ







.

Then we have for any n > nδ P (A
c
n) ≤

∑p
k=1 P (

∣

∣

∣

∑p
j=1 v

(n)
kj γ

(n)
j

∣

∣

∣ > τδ) <
2ε
16p ·p =

ε
8 . Finally, denote by q̃ij the elements of Q

−1 and put Γ = maxi,j=1,... ,p |q̃ij |.

Select ∆ ∈ (0, 12p
−2 · Γ−1) and find n∆ ∈ N such that for any n ∈ N, n ≥ n∆

P

(

max
i,j

∣

∣

∣v
(n)
ij − qij

∣

∣

∣ ≥ ∆

)

<
ε

8p2
.

Denote Cn = {ω ∈ Ω : maxi,j=1,... ,p |v
(n)
ij − qij | < ∆}. Then we have for any

n > n∆

P (Cc
n) ≤

p
∑

i=1

p
∑

j=1

P
(

|v
(n)
ij − qij | ≥ ∆

)

<
ε

8p2
p2 =

ε

8
.

Since An ∩ Bn ∩ Cn = (Bn − Ac
n) − Cc

n we have for any n ∈ N , n > n0 =
max{nδ, n∆},

P (An ∩Bn ∩ Cn) ≥ P (Bn −Ac
n)− P (Cc

n)

≥ P (Bn)− P (Ac
n)− P (Cc

n) ≥
ε

2
−
ε

8
−
ε

8
=
ε

4
.

Let ω ∈ An ∩Bn ∩ Cn. Putting for all k = 1, . . . , p

p
∑

j=1

v
(n)
kj γ

(n)
j = Hk

we have |Hk| < τδ and we may write

p
∑

j=1

qkjγ
(n)
j = Hk −

p
∑

j=1

(

v
(n)
kj − qkj

)

γ
(n)
j

and also (ℓ = 1, . . . , p)

γ
(n)
ℓ =

p
∑

k=1

q̃ℓkHk −

p
∑

k=1

q̃ℓk

p
∑

j=1

(

v
(n)
kj − qkj

)

γ
(n)
j

and finally (ℓ = 1, . . . , p)

(21)
∣

∣

∣γ
(n)
ℓ

∣

∣

∣ ≤

p
∑

k=1

|q̃ℓk| · |Hk|+∆ · p2 · Γ · max
j=1,... ,p

∣

∣

∣γ
(n)
j

∣

∣

∣ .
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Let ℓn ∈ {1, 2, . . . , p} be such that |γ
(n)
ℓn

| = maxj=1,... ,p |γ
(n)
j |. From (21) we have

for any n ∈ N , n > n0 and ω ∈ An ∩Bn ∩ Cn

∣

∣

∣γ
(n)
ℓn

∣

∣

∣

(

1−∆ · p2 · Γ
)

≤ p · Γ · τδ,

i.e.
∣

∣

∣γ
(n)
ℓn

∣

∣

∣ ≤ 2 · p · Γ · τδ .

Now it is sufficient to find n ∈ N so that Kn > 2 · p2 · Γ · τδ and we obtain

2 · p2 · Γ · τδ <
∥

∥

∥γ(n)
∥

∥

∥ ≤ p
∣

∣

∣γ
(n)
ℓn

∣

∣

∣ ≤ 2 · p2 · Γ · τδ,

which is a contradiction. To prove the lemma with (18) instead of (20) it is suffi-

cient to assume again that it does not hold and to select a subsequence {γ(nk)}∞k=1
for which (20) holds and we get again a contradiction.
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