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Group conjugation has non-trivial LD-identities

Aleš Drápal, Tomáš Kepka, Michal Muśılek

Abstract. We show that group conjugation generates a proper subvariety of left distribu-

tive idempotent groupoids. This subvariety coincides with the variety generated by all
cancellative left distributive groupoids.

Keywords: left distributivity, free group

Classification: 20N02, 20A99

Given a group G, define an operation ∗ on G by x ∗ y = xyx−1. G(∗) is an
idempotent left distributive groupoid (i.e. x ∗ x = x and x ∗ (y ∗ z) = (x ∗ y) ∗
(x ∗ z) for any x, y, z ∈ G). It has been an open question, whether a non-trivial
free idempotent groupoid occurs as a subgroupoid of G(∗) for some group G,
particularly for G free. One easily verifies that

(†) ((x ∗ y) ∗ y) ∗ x = (x ∗ y) ∗ ((y ∗ x) ∗ x)

holds in any group G.
We present here two left distributive idempotent groupoids on four elements

which do not satisfy (†):

∗ 1 2 3 4

1 1 2 4 3
2 1 2 4 3
3 4 4 3 1
4 3 3 1 4

∗ 1 2 3 4

1 1 2 3 4
2 2 2 4 4
3 1 1 3 3
4 1 2 3 4

To see that the identity (†) does not hold, put x = 2 and y = 3, in both cases.
Note that our result contrasts with an older result of Pierce [4], by which free

left distributive idempotent groupoids satisfying x ∗ (x ∗ y) = y can be obtained
as subgroupoids of G(∗), if the group G is freely generated by involutions.
The presented groupoids have been found by a brute-force computer search.

Each of these groupoids has just one non-trivial automorphism, and hence on the
set {1, 2, 3, 4} there exist 24 groupoids isomorphic to one of them. There are 2183
different idempotent left distributive groupoids on a four-element set, and these
groupoids fall into 141 isomorphism classes. The above examples represent the
only classes, in which the identity (†) does not hold.
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A groupoid A(∗) is said to be left (right) cancellative, if a∗b = a∗c (b∗a = c∗a)
implies b = c for any a, b, c ∈ A. If a groupoid is both left and right cancellative,
it is called cancellative.
In every idempotent left distributive groupoid A(∗) the elastic law x∗ (y ∗x) =

(x ∗ y) ∗ x holds and we have

(((x ∗ y) ∗ y) ∗ (x ∗ y)) ∗ (((x ∗ y) ∗ y) ∗ x) =

((x ∗ y) ∗ y) ∗ ((x ∗ y) ∗ x) = (x ∗ y) ∗ (y ∗ x) =

(x ∗ y) ∗ ((y ∗ x) ∗ (y ∗ x)) = (x ∗ y) ∗ (((y ∗ x) ∗ y) ∗ ((y ∗ x) ∗ x)) =

((x ∗ y) ∗ (y ∗ (x ∗ y))) ∗ ((x ∗ y) ∗ ((y ∗ x) ∗ x)) =

(((x ∗ y) ∗ y) ∗ (x ∗ y)) ∗ ((x ∗ y) ∗ ((y ∗ x) ∗ x))

for any x, y ∈ A.

Denote by W (X) the absolutely free groupoid of terms with a base X and by
∼ the congruence of W (X) induced by the left distributive and idempotent laws.
Then W (X)/∼ is a free left distributive idempotent groupoid. We have proved:

Proposition 1. If card(X) ≥ 2, then W (X)/∼ is not left cancellative.

For terms t1, t2, . . . , tk ∈ W (X) write t1t2 . . . tk in place of t1(t2(. . . tk)) and
define a relation ≈ on W (X) by

s ≈ t ⇐⇒ a1a2 . . . aks ∼ a1a2 . . . akt

for some a1, a2, . . . , ak ∈W (X).

Proposition 2. The relation ≈ is a congruence of W (X) and W (X)/≈ is left
cancellative. Moreover, W (X)/≈ is free in the variety generated by all left can-
cellative left distributive idempotent groupoids.

Proof: Note that we have b1 . . . bra1 . . . akt ∼ (b1 . . . bra1) . . . (b1 . . . brak)
(b1 . . . bkt) for any b1, . . . , br, a1, . . . , ak, t ∈ W (X). Therefore if a1 . . . akr ∼
a1 . . . aks and b1 . . . bms ∼ b1 . . . bmt hold, then b1 . . . bma1 . . . akr ∼ b1 . . . bma1 . . .
aks ∼ (b1 . . . bma1) . . . (b1 . . . bmak)(b1 . . . bms) ∼ (b1 . . . bma1) . . . (b1 . . . bmak)
(b1 . . . bmt) ∼ b1 . . . bma1 . . . akt holds as well. This proves that ≈ is an equiv-
alence. To prove it is a congruence, one proceeds in a similar manner.
W (X)/≈ is thus idempotent, left distributive and left cancellative. If A = A(·)

is another left cancellative idempotent left distributive groupoid and ϕ :W (X)→
A is a homomorphism, then a1 . . . aks ∼ a1 . . . akt implies ϕ(a1) . . . ϕ(ak)ϕ(s) =
ϕ(a1) . . . ϕ(ak)ϕ(t). As A is left cancellative, we obtain ϕ(s) = ϕ(t), and we see
that kerϕ contains ≈. �

Let Vg be the variety generated by all groupoids G(∗) for G a group and ∗ the
conjugation. Further, let Vc denote the variety generated by all cancellative left
distributive groupoids. From x ∗ (x ∗ x) = (x ∗ x) ∗ (x ∗ x) it follows that every
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right cancellative groupoid is idempotent, and hence Vc contains only idempotent
groupoids.
It is not complicated to prove that Vg and Vc coincide. However, first we shall

describe a generator of Vg.
For a free group F = F (X) with a baseX , denote F0 = F0(X) the subgroupoid

of F (∗) generated by X .

Proposition 3. Let F = F (x, y) be the free group with two generators. Then
the groupoid F0(∗) generates the variety Vg .

Proof: The set of all yixy−i, i ≥ 0, is a free base of a subgroup it generates, and
belongs to F0. Hence it suffices to prove that F0(X) generates Vg for a countable
infinite set X = {x1, x2, . . . }. We shall show that if a ∗-identity t(y1, . . . , yk) =
s(y1, . . . , yk) is not satisfied in a group G, it does not hold also in F0(X). Let
g1, . . . , gk ∈ G be such that t(g1, . . . , gk) 6= s(g1, . . . , gk) and consider a group
homomorphism ϕ : F (X) → G with ϕ(xi) = gi for 1 ≤ i ≤ k. Then ψ =
ϕ ↾ F0(X) is a homomorphism of F0(X) into G(∗) and hence t(x1, . . . , xk) 6=
s(x1, . . . , xk). �

From the proof of the above proposition we also obtain:

Corollary. F0(X) is free in Vg for any nonempty base X .

Proposition 4. F0(X) is a right cancellative groupoid for any nonempty set X .

Proof: Every a ∈ F0(X) is a conjugate of some x ∈ X . Hence a cannot be
a non-trivial positive power of any u ∈ F (X). If a, b, c ∈ F0(X) are such that
b ∗ a = c ∗ a, then c−1b and a commute in F (X). Hence c−1b and a are powers
of some element v ∈ F (X). But then a = v±1, and we can assume a = v. As the
sum of all exponents is zero in c−1b and it is i in ai, we see that c = b. �

Proposition 5. The varieties Vg and Vc coincide.

Proof: Vg ⊆ Vc by Propositions 3 and 4. Let A(∗) ∈ Vc and suppose first that
the left translations of A (i.e. the mappings La : b → a ∗ b) are permutations
— such groupoids are often called left quasigroups. By a well known and easy
construction, the mapping a → La is a homomorphism of A(∗) into G(∗), where
G is the group generated by {La; a ∈ A}. Now, every left cancellative idempotent
LD-groupoid can be embedded into a left distributive idempotent left quasigroup
[2, Proposition 2.10]. If A is cancellative, then for a ∈ A the mapping a → La is
faithful, and hence A is in Vg . �

Denote by V the variety of all idempotent LD-groupoids and by Vl (Vr) its
subvariety generated by all left (right) cancellative groupoids. We have Vg ⊆
Vl ( V and Vg ⊆ Vr ⊆ V . It seems to be an open problem which of the indicated
inclusions are proper ones. We conjecture that Vg equals Vl and Vr coincides
with V .
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The free non-idempotent groupoids have received a lot of interest recently (for
example, see [1] and [3]). We hope that this short contribution will help to focus
interest also to the idempotent case.

The authors were recently informed that the identity (†), the respective four-
element groupoids and the Propositions 1 and 2 were found out independently by
Larue [5], [6]. Note also that the congruence ≈ appears already in [2].
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