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On stabbing triangles by lines in 3-space

Boris Aronov, Jiř́ı Matoušek

Abstract. We give an example of a set P of 3n points in R3 such that, for any partition
of P into triples, there exists a line stabbing Ω(

√
n) of the triangles determined by the

triples.

Keywords: combinatorial geometry, computational geometry, crossing number

Classification: 52C99, 68U05

We begin with a definition. Let T be a set of points in R
d and let f be a flat.

We say that f crosses T if f transversally intersects the relative interior of the
convex hull of T . In particular, a line crosses a triple of non-collinear points in
R
3 if it intersects the triangle determined by the triple in a single interior point.
Given a set P of 2n points in the plane, one can partition P into n pairs in such

a way that no line crosses more than C
√

n of the pairs, where C is an absolute
constant. It is easy to construct point sets for which this bound is best possible,
up to the value of the constant. This result was proved by Chazelle and Welzl
[CW89], and it found numerous applications in the design of geometric algorithms
(see e.g. [Aga90]) as well as in combinatorial geometry [Pac91] and discrepancy
theory [MWW93]. It has been generalized in various directions.
One possible generalization to higher dimension is to consider a set P of 2n

points in R
d and to ask for a partition of P into pairs such that the maximum

number of pairs crossed by any single hyperplane is as small as possible. In

dimension d, a tight bound on this crossing number is Θ(n1−1/d) [CW89]. Another
generalization arising naturally in various applications and posed explicitly as an
open problem by Welzl [Wel92] is the following:

Let T be a partition of a set P of 3n points in R
3 into triples, and

denote by κ(T ) the maximum number of triples of T which can be
simultaneously crossed by a single line. Put

κ(n) = max
P
min
T

κ(T ),
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where the maximum is taken over all sets P of 3n points in R
3 and

the minimum over all partitions of P into triples. Find the order of
magnitude of κ(n).

It is known (although, to our knowledge, it has not appeared in print) that
κ(n) = O(

√
n); this can be established, e.g. by projecting P orthogonally onto a

general plane ρ, and by partitioning the projected set P̄ into triples such that any
line within ρ crosses O(

√
n) of the triples. Such a partition within ρ is possible by

a result of [Mat92], which generalizes the aforementioned Chazelle-Welzl result in
yet another direction. It is not difficult to check that by ‘lifting’ this partition
back to P , we obtain the desired partition. In this note we show that this result
is asymptotically tight:

Proposition. κ(n) = Ω(
√

n).

Proof: Let Γ denote the hyperbolic paraboloid with equation z = xy in R
3. This

surface plays a key role in our example as well as in many other constructions
related to the geometry of lines in 3-space, see e.g. [CEGS89] [CP90].
Without loss of generality, we assume that 3n is of the form m2, and we define

an auxiliary point set

P = {(i, j, ij); i, j = 1, 2, . . . , m} ⊂ Γ .

Our example, a point set P̃ witnessing κ(n) = Ω(
√

n), arises by a small pertur-
bation of P . We choose a small enough number ε > 0 and put

P̃ = {(i+ εj, j + εi, (i+ εj)(j + εi)); i, j = 1, 2, . . . , m} ⊂ Γ .

The only lines intersecting the quadric surface Γ in more than 2 points are parallel
to the yz- or xz-planes. From this it is easily seen that no 3 points of P̃ are
collinear.
Let T be a partition of P̃ into triples. Consider a triple T̃ = {ã, b̃, c̃} ∈ T , let

T = {a, b, c} be the corresponding triple of points of the ‘unperturbed’ set P , and
let T̄ be the vertical projection of the triangle △abc onto the xy-plane. We say
that the triple T̃ is of one of three types, as follows:

I if none of the sides of T̄ are parallel to the x- or y-axes,
II if at least one but not all sides of T̄ are parallel to the axes, and
III if the entire T̄ is a segment parallel to the x-axis or y-axis.

It can be checked that this classification exhausts all possibilities. We analyze
three cases according to which type has the majority of triples.

Case I (at least n/3 triples are of type I): We show that there is a line crossing

Ω(
√

n) of the triples of the form T , with T̃ ∈ T (that is, the triangles formed by
the unperturbed points). If ε > 0 is chosen small enough, this line also crosses
the corresponding triples after the perturbation.
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Figure 1: Type I triple: (a) vertical projection, (b) situation within the plane ξu.

Consider a triple T̃ of type I (see Fig. 1). The points a, b, c, have distinct x-
coordinates; let b be the one with the middle x-coordinate, and let this coordinate
x(b) be equal to u. We consider the situation in the plane ξu = {x = u}. The
surface Γ intersects ξu in the line ℓu = {x = u, z = uy}. While the point b lies on
ℓu, the intersection of the segment ac with ξu has a positive distance from ℓu (as
the line ac only intersects the surface Γ at the two points a and c). Hence, any
line in ξu parallel to ℓu, lying on the appropriate side of and sufficiently close to
it crosses the triangle abc.
For each i = 1, 2, . . . , m, choose one line ℓ′i ⊂ ξi parallel to ℓi, lying below ℓi

and very close to it, and similarly ℓ′′i above ℓi. By the above considerations, each
of the at least n/3 triples of type I is crossed by at least one line of the form ℓ′i
or ℓ′′i . Hence there is a line crossing at least (n/3)/2m = Ω(

√
n) triples of type I.

Case II (at least n/3 triples are of type II): We again carry out the argument with

the unperturbed points. Let T̃ be a type II triple, let a, b, c be the corresponding
points of P , and let the side ab be parallel to the xz-plane (the other case, ab
parallel to the yz-plane, is handled symmetrically), let d be the midpoint of the
segment ab, set u = x(d), and consider the situation in the vertical plane ξu =
{x = u}. The triangle abc intersects ξu in a segment whose one endpoint d lies
on the surface Γ while the other endpoint does not lie on Γ. Thus, as in the case
I, any line in ξu parallel to the line ℓu = ξu ∩ Γ, lying on appropriate side of ℓu

and close enough to it crosses the triple {a, b, c}. As the x-coordinate u of the
midpoint of ab has fewer than 2m distinct values for all triples, we can choose
fewer than 8m lines (including the lines for the symmetric case with ab parallel
to the yz-plane) so that every type II triple is crossed by at least one of them.
Thus one of these lines crosses Ω(

√
n) triples.

Case III (at least n/3 triples are of type III): Let T̃ be a type III triple, suppose
that its triangle is almost parallel to the xz-plane; the other case is handled
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symmetrically. Let the points of T̃ be

ã = (u + εj, j + εu, (u+ εj)(j + εu)),

b̃ = (v + εj, j + εv, (v + εj)(j + εv)),

c̃ = (w + εj, j + εw, (w + εj)(j + εw)),

with u < v < w. We consider the situation within the plane ξv = {x = v}. We
calculate the intersections d, e of the segments ab and ac, respectively, with the
plane ξv , and we find their vertical distance to the line ℓv = ξv ∩ Γ. It turns out
that the vertical distance of d from ℓv is ε2j(v − u)− ε3j; the important fact for
us that it is O(ε2) (with n fixed and ε → 0) — this can also be seen by geometric
considerations. On the other hand, the vertical distance of the point e from ℓv

is ε(w − v)(v − u) + O(ε2) = Ω(ε) as u, v, w are all distinct. Hence, if we choose

lines ℓ′v, ℓ′′v ⊂ ξv parallel to ℓv, lying above and below it at a vertical distance ε3/2

(say), then one of them intersects the segment de and thus it crosses the triple

T̃ , provided that ε > 0 is small enough. The argument is concluded as in cases I
and II, finishing the proof of the proposition. �

Remarks. (1) One might object that the above construction does not produce
a set of points “in general position”, as the entire point set is contained in the
algebraic surface Γ. This objection can be addressed as follows: Start with the
set P̃ as above. For every partition T of points of P̃ into triples, we can fix a line
witnessing the crossing number of the partition. This line transversally intersects
the interior of each of the crossed triangles, and hence if the vertices are moved by
a sufficiently small amount, the crossing still exists. Taking the minimum of these
amounts over all witnessing lines and all crossed triangles, we obtain a distance
δ such that any perturbation of P̃ moving each point by at most δ preserves the

property that any partition of the point set into triples has a line crossing Ω(n1/2)
triples.

(2) The same proof, with little modification, can be used to show the following
more general result (the same point set will do):

For any n > 0, there is a set of n points in R
3 such that any collection

of m triangles (not necessarily distinct) spanned by these points has

a line crossing, in the above sense, Ω(m/n1/2) triangles.

In particular, we have

Corollary. For any n > 0, there exists a set Sn of n points in R
3 such that for

any triangulation of the convex hull of Sn there is a line meeting Ω(n
1/2) simplices

of the triangulation.
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[Mat92] Matoušek J., Efficient partition trees, Discrete Comput. Geom. 8 (1992), 315–334.
[Wel92] Welzl E., private communication, 1992.

Department of Computer Science, Polytechnic University, Brooklyn, New York

11201, USA

Department of Applied Mathematics, Charles University, Malostranské nám. 25,
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