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Singular quadratic functionals of one dependent variable

Zuzana Došlá, Ondřej Došlý

Abstract. Singular quadratic functionals of one dependent variable with nonseparated
boundary conditions are investigated. Necessary and sufficient conditions for nonnega-
tivity of these functionals are derived using the concept of coupled point and singularity
condition. The paper also includes two comparison theorems for coupled points with

respect to the various boundary conditions.

Keywords: quadratic functional, singular quadratic functional, periodic and antiperiodic
boundary condition, conjugate point, coupled point, singularity condition

Classification: 34C10, 49B10, 34A10

1. Introduction

The purpose of this paper is to study singular quadratic functionals of one de-
pendent variable with periodic and antiperiodic boundary conditions. Our results,
together with [3] and some modification of the results of [6], [7], [8], complete the
analysis of the problem of nonnegativity of quadratic functionals in scalar case.
Let r−1(·), p(·) ∈ Lloc[a,∞), r(·) > 0, and α, γ ∈ R. We study the necessary

and sufficient conditions for nonnegativity of the singular quadratic functional

(1.1)

I(η; a,∞) = lim inf
b→∞

I(η; a, b) =

αη2(a) + lim inf
b→∞

[

γη2(b) +

∫ b

a
r(s)η′2(s)− p(s)η2(s) ds

]

,

over all functions η ∈ W
1,2
loc [a,∞) subject to the boundary condition

(1.2) lim
b→∞

D

(

η(a)

η(b)

)

= 0,

where D is a 2× 2 matrix.
Singular quadratic functionals have been studied for the first time by Leighton

and Morse [6] and followed by the subsequent papers [7], [8], [10], [11], [12] in
the special case D = I — the identity matrix, i.e. for functions satisfying zero
boundary conditions. Note that in [6], [7], [8] the singularity is considered at the

point t = 0, but the change of independent variable t → 1
t brings this singularity
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to ∞ as considered here. The term singular functional means that the functions
p, r−1 may fail to be Lebesgue integrable in the interval under consideration.
It was shown that I(η; a,∞) ≥ 0 for the functions satisfying η(a) = 0 =

limb→∞ η(b) if and only if the associated Euler equation

(1.3) (r(t)y′)′ + p(t)y = 0

is disconjugate on [a,∞) and the so-called singularity condition holds:

(1.4) lim inf
t→∞

η2(t)
r(t)y′a(t)

ya(t)
≥ 0

for any admissible function η for which I(η; a,∞) < ∞, where ya is the solution
of (1.3) for which ya(a) = 0, y′a(a) 6= 0.
The quadratic functionals of n-dependent variable on a compact interval over

functions satisfying the general boundary condition

(1.5) D

(

η(a)

η(b)

)

= 0

where D is a 2n×2n matrix, have been studied by Zeidan and Zezza [13] and the
concepts of the so-called coupled point and regularity condition were introduced
here. It was shown, see [13], [14], [15], that the nonexistence of a point c ∈
[a, b) coupled with a together with the regularity condition yields a necessary and
sufficient condition for the nonnegativity of the quadratic functional. However, for
singular functionals the analogous ideas cannot be applied for proving necessary
as well as sufficient condition. For this reason in [3] the coupled point relative to
quadratic functionals of scalar variable with free and periodic boundary condition
was described by means of a solution of the Riccati equation associated with (1.3)

(1.6) w′ + r−1(t)w2 + p(t) = 0.

It was shown that for free end points, similarly as for zero end points, nonexistence
of a coupled point with a is no longer sufficient for nonnegativity of the functional
and the “free end points” analogy of the classical singularity condition (1.4) was
introduced.

Here we continue this research. We introduce the concept of the singular-
ity condition for functionals with periodic and antiperiodic boundary condition
and we show that nonexistence of a coupled point together with validity of the
regularity and singularity condition yield necessary and sufficient condition for
nonnegativity of the functional under consideration. The used method enables
to improve the result on ordering of coupled point with respect to the various
boundary condition on a compact interval and to prove similar result for singular
functionals.

The boundary conditions (1.2) can be transformed by a transformation pre-
serving nonnegativity of a quadratic functional (see Remark 5) into one of the
following cases:
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I. rank D = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . free end points
II. rank D = 1
II (a) η(a) = − limb→∞ η(b) . . . . . . . . . . . antiperiodic boundary conditions
II (b) η(a) = limb→∞ η(b) . . . . . . . . . . . . . . . . . periodic boundary conditions
II (c) η(a) = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . .free right (singular) end point
II (d) limb→∞ η(b) = 0 . . . . . . . . . . . . . . . . . . . . . . free left (regular) end point

III. rank D = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . zero boundary conditions

The paper is organized as follows. In Section 2 there are presented our main re-
sults on nonnegativity of singular quadratic functionals of one dependent variable
and two theorems about ordering of coupled points with respect to the various
boundary conditions. Section 3 contains auxiliary results; the main result of this
section is description of coupled point in terms of Riccati equation. The three
theorems from Section 2 are proved in Section 4 and the last section contains two
examples illustrating our results.

2. Main results

We start with two definitions, which are analogical to the compact interval
case given in [13].

Definition 1. The functional I(η; a,∞) is said to satisfy the regularity condition
if I(η; a,∞ ) ≥ 0 for any constant function η if this is admissible.
That is, if the constant function is admissible, then

(2.1) k := α+ γ − lim sup
b→∞

∫ b

a
p(s) ds ≥ 0.

Definition 2. A point c ∈ [a,∞) is said to be the coupled point with a relative
to I(η; a,∞) if there exists a nontrivial solution y of (1.3) and σ ∈ R

2 such that

y(t) 6≡ y(c) on (c,∞) D

(

y(a)

y(c)

)

= 0,

[(

αy(a)

γy(c)

)

+

(

−r(a)y′(a)

r(c)y′(c)

)

− lim sup
b→∞

(

0

y(c)
∫ b
c p

)]

= DT σ.

If the interval [a, c) does not contain any other coupled point with a, then c is
said to be the first coupled point .

Recall that replacing lim supb→∞

∫ b
a p(s) ds by

∫ b
a p(s) ds and

lim supb→∞

∫ b
c p(s) ds by

∫ b
c p(s) ds in Definition 1 and 2, respectively, we have

definitions of regularity condition and coupled point for functionals on a compact
interval [a, b] introduced in [13].

Remark 1. The point a is coupled with a if and only if y ≡ const is admissible,
it is not an extremal on [a,∞) and k = 0.

The first theorem gives necessary and sufficient conditions for nonnegativity of
singular quadratic functionals.



222 Z.Došlá, O. Došlý

Theorem 1. I(η; a,∞) ≥ 0 if and only if the regularity condition (2.1) holds,
there exists no coupled point c ∈ [a,∞) with a and the singularity condition is

satisfied: for any admissible function η for which I(η; a,∞) < ∞ and for the

solution w of (1.6) the following holds

Case I (free end points)

lim inf
t→∞

η2(t)[w(t) + γ] ≥ 0, w(a) = α.

Case II (a) (antiperiodic boundary conditions)

lim inf
t→∞

[

η2(a)[α − w(a)] + [γ + w(t)]η2(t) +
(η(t) − η(a))2

u(t)

]

≥ 0

where
∫ t
a r−1w ds=0 and u is the solution of (1.3) for which u(a) = 0, r(a)u′(a)=1.

Case II (b) (periodic boundary conditions)

lim inf
t→∞

[

η2(a)[α − w(a)] + [γ + w(t)]η2(t) +
(η(t) − η(a))2

u(t)

]

≥ 0

where w and u is the same as in Case II (a).

Case II (c) (free singular end point)

lim inf
t→∞

η2(t)[w(t) + γ] ≥ 0, w(a+) =∞.

Case II (d) (free regular end point)

lim inf
t→∞

η2(t)w(t) ≥ 0, w(a) = α.

Case III (zero boundary conditions)

lim inf
t→∞

η2(t)w(t) ≥ 0, w(a+) =∞.

In the next remark we give some comments concerning Theorem 1. All state-
ments presented in this remark are proved in all details in Section 3.

Remark 2. (i) If we consider the quadratic functional on a compact interval [a, b]
then nonexistence of a point c ∈ [a, b) coupled with a and regularity condition
imply that singularity condition is satisfied (this means that replacing lim inft→∞

by lim inft→b all lower limits are nonnegative). From this point of view, Theorem 1
presents an alternative proof of the statement that I(η; a, b) is nonnegative if and
only if the regularity conditions hold and there is no point c ∈ [a, b) coupled
with a.
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(ii) A function η satisfying the zero boundary condition η(a) = 0 = limb→∞ η(b)
is admissible for all types of boundary conditions. For this class of functions all
singularity conditions I, II (a)–(d) reduce to the classical singularity condition III.

(iii) The validity of the regularity condition (2.1) in Cases I, II (a), (c), (d)
implies

(2.2) lim sup
b→∞

∫ b

a
p < ∞

since constant functions are admissible. In the antiperiodic Case II (b) constants
are not admissible, but if (2.2) is not satisfied then for the function

η(t) =

{

1 + a − t, t ∈ [a, a+ 2]

−1 t > a+ 2
the functional attains again the value −∞.

In the following, we give two comparison theorems for coupled points; the
first one concerns the regular functionals I(η, a, b), the second one the singular
functionals I(η, a,∞). In [4] it is proved for regular functionals I(η, a, b) by
index theory method the ordering of coupled points with respect to the various
boundary conditions (1.5) in terms “≤” but the general character of this theory
does not enable to distinguish cases “=” and “<”. Our method enables to improve
this result. In the following theorem we use the same classification of boundary
conditions (1.5) on [a, b] as the one on [a,∞).

Theorem 2. Let cf , cp, ca, c0 be first coupled points with a relative to I(η, a, b)
with free end points, periodic, antiperiodic, zero boundary conditions, respec-

tively. Then it holds
cf ≤ cp < ca ≤ c0.

Moreover, let u, v be the solutions of (1.3) satisfying u(a) = 0 = v′(a), r(a)u′(a) =
1 = v(a). If

αu(t) + v(t)− 1 6= 0, t ∈ [a, cf ]

then cf < cp. If
∫ c0 r(t)u′(t) + 1)2

r(t)u2(t)
dt =∞

then ca < c0.

A similar statement holds also for functionals on a noncompact interval. Before
stating this, we need to define the conjugate point of ∞.

Definition 3. Let u be the solution of (1.3) such that u(a) = 0, r(a)u′(a) = 1.
We say that∞ is the generalized first conjugate point of a if u(t) > 0 for t ∈ (a,∞)
and

(2.3)

∫ ∞ dt

r(t)u2(t)
=∞.

Recall that solution satisfying this condition is said to be principal at ∞ and

if b is conjugate with a then trivially
∫ b dt

r(t)u2(t)
=∞.
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Theorem 3. Let

(2.4) lim sup
b→∞

∫ b

a
p > −∞.

Suppose that ∞ is the generalized first conjugate point with a and the boundary

condition (1.2) is one of the types I, II (b), II (c), II (d), III. Then there exists
c ∈ [a,∞) which is coupled with a relative to I(η; a,∞).
Concerning the antiperiodic boundary condition II (a), if

(2.5)

∫ ∞ (r(t)u′(t) + 1)2

r(t)u2(t)
dt =∞,

then there exists c ∈ [a,∞) coupled with a relative to I(η; a,∞). Here u is the

solution of (1.3) satisfying (2.3).

Remark 3. If (2.4) is not satisfied then there is no point c ∈ [a,∞) coupled with
a for any boundary condition I, II, see Lemma 7 and Remark 7.

At the end of this section we show that the boundary conditions of type I–III
cover, up to a suitable transformation, all possible cases of boundary conditions
(1.5). The same holds for boundary conditions (1.2). The cases rank D = 0 and
rank D = 2 are trivial. Let rank D = 1 and

D =

(

d11 d12
d21 d22

)

.

Then at least one of the entries dij , i, j = 1, 2 is nonzero and the rows of D are
linearly dependent, so it is sufficient to consider the first row. The cases d11 = 0
and d12 = 0 are equivalent to II (d) and II (c), respectively. If d11 6= 0 and d12 6= 0,
the transformation

η(t) = h(t)u(t)

where h(t) 6= 0, transforms I(η; a, b) into the functional

[αh2(a)− r(a)h′(a)h(a)]u2(a) + [γh2(b) + r(b)h′(b)h(b)]u2(b)+
∫ b

a
[rh2u′2 − h((rh′)′ − ph)u2],

see, e.g. [2], and the boundary condition (1.5) yields

d11h(a)u(a) + d12h(b)u(b) = 0.

Now, taking h(t) 6= 0 such that h(a) = 1
|d11|
, h(b) = 1

|d12|
, we see that the case

d11d12 > 0 can be reduced to the periodic boundary condition and the case
d11d12 < 0 to the antiperiodic one.
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3. Auxiliary results: coupled point in terms of the Riccati equation

The idea of the Riccati equation method consists in the following: the quadratic
functional is expressed by the Picone identity and by means of this expression an
auxiliary function F is defined in order to describe a coupled point. More precisely,
the point coupled with a is the point where the function F equals the constant k
from regularity condition. The crucial property of F is its monotonicity.
Since the main subject of this paper are periodic and antiperiodic boundary

conditions, we specify explicitly these two cases. Let

A(η; a,∞) = (α+ γ)η2(a) + lim inf
b→∞

∫ b

a
[r(s)η′2(s)− p(s)η2(s)] ds,

over all η ∈ W
1,2
loc [a,∞) such that η(a) = − limt→∞ η(t);

and

P(η; a,∞) = (α+ γ)η2(a) + lim inf
b→∞

∫ b

a
[r(s)η′2(s)− p(s)η2(s)] ds,

over all η ∈ W
1,2
loc [a,∞) such that η(a) = limt→∞ η(t). The definition of coupled

point in these cases reads as follows:
A point c ∈ [a,∞) is said to be the coupled point with a relative to A(η; a,∞)

if there exists a nontrivial extremal y for which y(a) = −y(c),

(3.1) (α+ γ)y(a)− r(c)y′(c)− r(a)y′(a) + y(a) lim sup
b→∞

∫ b

c
p = 0

and y(t) 6≡ y(c) on [c,∞).
A point c ∈ [a,∞) is said to be the coupled point with a relative to P(η; a,∞)

if there exists a nontrivial extremal y for which y(a) = y(c),

(α+ γ)y(a) + r(c)y′(c)− r(a)y′(a)− y(a) lim sup
b→∞

∫ b

c
p = 0,

and y(t) 6≡ y(c) on [c,∞).

Again, replacing in the above definitions lim supb→∞

∫ b
c p by

∫ b
c p, we have

the definition of the coupled point for the functionals A(η; a, b), P(η; a, b) on
a compact interval.

To introduce the auxiliary function F , we recall first some known results.

Lemma 1 ([1, p. 2]). Let (1.3) be disconjugate on [a, b], c ∈ (a, b], α, β ∈ R be
arbitrary. Then there exists the unique solution y of (1.3) for which y(a) = α,

y(c) = β.
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Lemma 2. Let (1.3) be disconjugate on [a, b), c ∈ [a, b), η ∈ W 1,2[a, b] be such
that η(a) = −η(c) 6= 0 and η(t) ≡ η(c) for t ∈ [c, b]. If w is any solution of (1.6)
which exists on [a, c], then

A(η; a, b) = η2(a)

[

(

α+ γ −

∫ b

a
p
)

−
(

∫ c

a
r−1w2 −

1

η2(a)

∫ c

a
r−1(rη′ − wη)2

)

]

.

Proof: The statement follows from the well known Picone identity (c.f. [9, p. 73])

A(η; a, b) = (α+ γ)η2(a) + η2w|ca +

∫ c

a
r−1(rη′ − wη)2 − η2(c)

∫ b

c
p

= η2(a)[α+ γ + w(c) − w(a) −

∫ b

c
p] +

∫ c

a
r−1(rη′ − wη)2

= η2(a)[α+ γ −

∫ b

a
p −

∫ c

a
r−1w2] +

∫ c

a
r−1(rη′ − wη)2.

�

The statement of Lemma 2 suggests the form of the function F in case of
antiperiodic boundary condition (this is the part of the last expression depending
on c)

(3.2) F (c) =

∫ c

a
r−1w2 −

1

y2(a)

∫ c

a
r−1(ry′ − wy)2.

The problem is which solution w of Riccati equation should be taken in (3.2) and
we solve this in the following lemmata.

Lemma 3 ([3, Lemma 5]). If (1.3) is disconjugate on [a, b) then for every c ∈
(a, b) there exists a solution wc(t) of (1.6) for which

(3.3)

∫ c

a
r−1(t)wc(t) dt = 0.

Remark 4. If y is a nonzero extremal satisfying y(a) = y(c), then the correspond-
ing solution wc = r−1y′y−1 of (1.6) satisfies (3.3). Thus we have

∫ c
a r−1(ry′ −

wy)2 = 0, i.e.,

(3.4) P(y; a, b) = y2(a)[α+ γ −

∫ b

a
p −

∫ c

a
r−1w2]

and hence for periodic boundary condition the function F takes the form

F (c) =

∫ c

a
r−1w2.
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In contrast to this case, a nontrivial extremal y satisfying antiperiodic condition
y(a) = −y(c) defines no solution of Riccati equation (1.6) which exists on the
whole interval (a, c). For this reason, the method of investigation of coupled
points in antiperiodic case in terms of the Riccati equation is more complicated
than in periodic case.

The following lemma describes a certain extremal property of solution w of
(1.6) satisfying (3.3).

Lemma 4. Let (1.3) be disconjugate on [a, b), c ∈ (a, b). Let y be a nontrivial

extremal satisfying
y(a) = −y(c)

and let wc be the solution of (1.6) satisfying (2.3). Then
∫ c

a
r−1(ry′ − wcy)

2 ≤

∫ c

a
r−1(ry′ − wy)2

for any other solution w of (1.6) which exists on [a, c]. Moreover, the minimal
value is

∫ c

a
r−1(ry′ − wcy)

2 =
4y2(a)

u(c)
,

where u is the solution of (1.3) for which u(a) = 0, r(a)u′(a) = 1.

Proof: Let u be the solution of (1.3) for which u(a) = 0, r(a)u′(a) = 1. The
solutions u, y, are linearly independent, hence any solution w of (1.6) is of the
form

w(t) =
r(t)(Au′(t) +By′(t))

Au(t) +By(t)
,

A, B, being real constants. Since B 6= 0 for solutions which exist on [a, c], we
may suppose B = 1. Denote z = Au + y, G(A) =

∫ c
a r−1(ry′ − wy)2, where

w = rz′z−1. Then

d

dA
G(A) =

d

dA

∫ c

a
r−1(ry′ −

r(Au′ + y′)

Au + y
y)2

= ω
d

dA

[

A

∫ c

a

y′(Au+ y)− y(Au′ + y′)

(Au + y)2

]

= ω
d

dA

Ay

Au+ y
|ca = ω

d

dA

[

Ay(c)

Au(c) + y(c)
− A

]

= ω

[

y2(c)

(Au(c) + y(c))2
− 1

]

where ω = r(y′u − yu′) is the Wronskian of u and y. For A0 = −2y(c)u−1(c) =

2y(a)u−1(c) we have d
dAG(A0) = 0 and the corresponding solution z of (1.3)

satisfies z(a) = z(c). Hence wc(t) = rz′z−1 satisfies
∫ c
a r−1(t)wc(t) dt = 0 and the

minimal value is G(A0) = 4y
2(a)u−1(c). �
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Lemma 5. Let wc and u be the same as in Lemmas 3 and 4. Then

d

dc

∫ c

a
r−1(t)w2c (t) dt =

1

r(c)

(

r(c)u′(c)− 1

u(c)

)2

.

Proof: Let yc(t) be the solution of (1.3) for which yc(a) = yc(c). Then

r(t)
∂

∂c
y′c(t)yc(t)− r(t)y′c(t)

∂

∂c
yc(t) = ̺ = const.

Indeed, let u, v be the solutions of (1.3) for which u(a) = 0, r(a)u′(a) = 1,
v(c) = 0, r(c)v′(c) = −1. Then yc(t) = v(a)u(t) + u(c)v(t) and

̺ = r(t)u′(c)v′(t)[v(a)u(t) + u(c)v(t)] − r(t)u′(c)v(t)[v(a)u′(t) + u(c)v′(t)]

= u′(c)v(a)[r(t)v′(t)u(t)− r(t)u′(t)v(t)] = −u′(c)v2(a).

Now, let wc(t) = r(t)y′c(t)y
−1
c (t). Then

∂
∂c

wc(t) = ̺y−2c (t) and

d

dc

∫ c

a
r−1(t)w2c (t) dt = r−1(c)w2c (c) + 2

∫ c

a
wc(t)

∂

∂c
wc(t) dt

= r−1(c)w2c (c) + 2̺

∫ c

a

r(t)y′c(t)

y3c (t)
dt

= r−1(c)

(

v(a)r(c)u′(c)− u(c)

v(a)u(c)

)2

− ̺
1

y2c (t)
|ca =

1

r(c)

(

r(c)u′(c)− 1

u(c)

)2

.

since the wronskian identity r(u′v− v′u)|t=a = r(u′v− v′u)|t=c gives u(c) = v(a).
�

Lemma 6. Let (1.3) be disconjugate on [a, b), wc and u be the same as in

Lemma 3 and Lemma 4. Then the function F

F (c) =

∫ c

a
r−1w2 −

4

u(c)

is nondecreasing on [a, b) and

(3.5) lim
c→a+

F (c) = −∞.

Moreover, if b is a conjugate point of a and r(b)u′(b) 6= −1 then

lim
c→b−

F (c) =∞.
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Proof: By previous lemmas

(3.6)
dF

dc
=
1

r(c)

(

r(c)u′(c)− 1

u(c)

)2

+
4u′(c)

u2(c)
=
1

r(c)

(

r(c)u′(c) + 1

u(c)

)2

≥ 0.

Since limc→a+
∫ c
a r−1w2c = 0, (3.5) follows from Lemma 5. If b is a conjugate

point of a then
∫ b

r−1u−2 = ∞ and if r(b)u′(b) 6= −1 there exists k > 0 and

c̃ ∈ (a, b) such that (r(t)u′(t) + 1)2 > k for t ∈ (c̃, b), hence

F (c) = F (c̃) +

∫ c

c̃
F ′(t) dt ≤ F (c̃) + k

∫ c

c̃
r−1u−2 dt → ∞ as c → b − .

�

Remark 5. Observe that Lemma 6 holds for any solution w of (1.6) which ex-
ists on [a, c]. The solution wc has been taken because of its extremal property
(Lemma 2.4) and since the computations concerning the function F (c) are in this
case simpler.

Remark 6. (i) In case of the periodic boundary condition the first coupled point
of a may be described by means of a solution of Riccati equation (1.6) only under
the so-called regularity assumption

α+ γ −

∫ b

a
p ≥ 0

which means that the functional is nonnegative for nontrivial constant functions.
In antiperiodic case we do not need a similar assumption since nontrivial constant
functions are not admissible. Hence, in this case a cannot be its own coupled point;
this fact reflects the relation (2.4).

(ii) In contrast to periodic boundary condition y(a) = y(b) (see [3, Lemma 3]),
in the case of the antiperiodic boundary condition it may happen that the coupled
point with a relative to A(η; a, b) coincides with the first right conjugate point of
a as shows Example 2.

We conclude this section with the “Riccati equation” description of the first
coupled point relative to the functionals on a compact interval for all cases of
boundary conditions I–III.

Lemma 7. Let I(η; a, b) satisfy the regularity condition. A point c ∈ [a, b) is the
first coupled point with a relative to I(η; a, b) if and only if

Case I. The solution w of (1.6) such that w(a) = α satisfies

∫ c

a
r−1w2 = α+ γ −

∫ b

a
p
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and there exists d ∈ (c, b) such that
∫ d
c r−1w2 > 0.

Case II (a). The solution w from Lemma 3 and u from Lemma 4 satisfy

F (c) :=

∫ c

a
r−1w2 −

4

u(c)
= α+ γ −

∫ b

a
p

and there exists d ∈ (c, b] such that F (d) > F (c).

Case II (b). The solution w from Lemma 3 satisfies

∫ c

a
r−1w2 = α+ γ −

∫ b

a
p

and there exists d ∈ (c, b) such that
∫ d
c r−1w2 > 0.

Case II (c). For the solution w of (1.6) for which w(a+) = ∞ and for some

ā ∈ (a, c) the following holds:

∫ c

ā
r−1w2 = γ −

∫ b

ā
p+ w(ā)

and there exists d ∈ (c, b) such that
∫ d
c r−1w2 > 0.

Case II (d). The solution w of (1.6) such that w(a) = α satisfies |w(c−)| =∞.

Case III. The solution w of (1.6) such that w(a+) = ∞ exists on (a, c) and
w(c−) = −∞.

Proof: Case I. See [3, Lemma 2].

Case II (a). Let c ∈ (a, b) be coupled with a and let y be the extremal which
realizes this coupled point. By Lemma 2 we get

A(η; a, b) = η2(a)[α + γ −

∫ b

a
p − F (c)] = 0 .

Since y(t) = const is not extremal on [c, b], we have p(t) 6≡ 0 on this interval and
this implies r(t)u′(t) 6≡ −1 for t ∈ [c, b] and thus F (·) is not constant on [c, b].
Conversely, if (2.5) holds and there exists d ∈ (c, b] such that F (d) > F (c) then

according to (3.6) ru′ 6≡ −1 on [c, b], i.e. p(t) 6≡ 0 on this interval.
It is not difficult to verify that the function

η(t) =

{

y(t), t ∈ [a, c]

y(c), t ∈ [c, b],

where y is a nontrivial extremal satisfying y(a) = −y(c), realizes the coupled
point with a relative to A(η; a, b).

Case II (b). See [3, Lemma 4].
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Case II (c). Let y be a nontrivial extremal which realizes the coupled point c,

i.e. y(a) = 0 and r(c)y′(c) + γy(c)− y(c)
∫ b
c p = 0. If y(c) = 0 then r(c)y′(c) = 0,

a contradiction, because y is nontrivial. Hence,

r(c)y′(c)y−1(c)−

∫ b

c
p+ γ = w(c) + γ −

∫ b

c
p = 0.

Integrating (1.6) from ā to c and substituting for w(c) we get the conclusion. As
y(t) ≡ y(c) is not an extremal on [c, b), clearly there exists d ∈ (c, b) such that
∫ d
c r−1w2 > 0.

Case II (d) and III. The statements follow immediately from the definition of
coupled and conjugate points. �

Remark 7. To obtain the Riccati equation characterization of coupled point for

I(η, a,∞) it is sufficient to replace
∫ b
a p by lim supb→∞

∫ b
a p in Lemma 7.

4. Proofs of main results

Proof of Theorem 1. Case I — see [3, Theorem 2].

Case II (a). (i) If there exists no point c ∈ (a,∞) coupled with a then (1.3)
is disconjugate on (a,∞). Indeed, suppose that there exists b ∈ (a,∞) which is
conjugate with a. If r(b)u′(b) + 1 = 0, where u is the solution of (1.3) satisfying
u(a) = 0, r(a)u′(a) = 1, then by Definition 3.2 b is coupled with a. If r(b)u′(b) +
1 6= 0, then Lemma 6 implies F (b−) =∞, hence by Lemma 7 there exists c ∈ (a, b)
which is coupled with a, a contradiction.

Let η ∈ W
1,2
loc
be any admissible function, b > a is arbitrary and y is the

extremal for which y(a) = η(a), y(b) = η(b). Disconjugacy of (1.3) on (a,∞)
implies

∫ b

a
(rη′2 − pη2) dt ≥

∫ b

a
(ry′2 − py2) dt,

see [9, p. 71]. This inequality and Lemma 2 (with the solution wb(t) of (1.6)

satisfying
∫ b
a r−1wb = 0) give

A(η; a, b) ≥ A(y; a, b) = y2(a)(α−wb(a))+y2(b)[γ+w2b (b)]+

∫ b

a
r−1(ry′−wby)

2.

If η(a) 6= 0, let us denote by v the solution of (1.3) for which v(a) = η(a) = v(b)
(i.e. wb = rv′v−1 ). Then y(t) = (η(b) − η(a))u−1(b)u(t) + v(t) and similarly as
in the proof of Lemma 4 we have

∫ b

a
r−1(ry′ − wy)2 =

(η(b)− η(a))2

u(b)
.
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It follows

A(η; a, b) ≥ A(y; a, b) = η2(a)γ + wb(b)η
2(b)− wb(a)η

2(a) +
(η(b)− η(a))2

u(b)
,

hence, if (3.4) holds, A(η; a,∞) = lim infb→∞A(η; a, b) ≥ 0.
If η(a) = 0, then y(t) = u(t)η(b)u−1(b) and one may directly verify that

∫ b

a
r−1(ry′ − wy)2 = η2(b)u−1(b).

Hence also in this case, A(η; a, b) = lim infb→∞A(η; a, b) ≥ 0 provided (3.4) holds.

(ii) Now suppose that A(η; a,∞) ≥ 0. That means that A(η; a,∞) ≥ 0 also
for any η for which η(a) = 0 = η(∞), i.e. (1.3) is disconjugate on [a,∞) by [6].
Suppose that there exists a point c ∈ (a,∞) coupled with a relative to A(η; a,∞)
and let y be an extremal which realizes this coupled point. Disconjugacy of (1.3)
implies that y(a) 6= 0; thus by Lemma 7 and Remark 7 there exists d > c such
that

F (c) = α+ γ − lim sup
b→∞

∫ b

a
p, F (d) > F (c).

Let y be a nontrivial extremal for which y(a) = −y(d) and define

η =

{

y(t), t ∈ [a, d]

y(d), t ∈ [d,∞).

Then by Lemma 2 A(η; a,∞) = limb→∞ η2(a)[α + γ −
∫ b
a p − F (d)] < 0, a con-

tradiction.
Finally, suppose that A(η; a,∞) ≥ 0, there exists no coupled point c ∈ (a,∞)

and the singularity condition is not satisfied, i.e. there exists ỹ ∈ W
1,2
loc [a,∞),

ỹ(a) = −ỹ(∞),A(ỹ; a,∞) < ∞ and

(4.1) lim inf
t→∞

[

ỹ2(a)[α − wt(a)] + ỹ2(t)[γ + wt(t)] +
(ỹ(t)− ỹ(a))2

u(t)

]

= −ε < 0.

Let y be an extremal such that y(a) = ỹ(a), y(d) = ỹ(d), d is sufficiently large
(such solution exists because of disconjugacy of (1.3), see Lemma 1) and define

ηd(t) =

{

y(t), t ∈ [a, d],

ỹ(t), t ∈ [d,∞).

Then ηd is admissible and by Lemma 2

A(ηd; a,∞) = αy2(a) + γy2(d) + w2y|da

+

∫ d

a
r−1(ry′ − wy)2 + lim inf

b→∞

∫ b

d
(rỹ′2 − pỹ2)

= αỹ2(a) + [γ + w(d)]ỹ2(d)− w(d)ỹ2(a) +
(ỹ(d)− ỹ(a))2

u(d)

+ lim inf
b→∞

∫ b

d
(rỹ′2 − pỹ2).



Singular quadratic functionals of one dependent variable 233

Since A(ỹ; a, b) < ∞, we have lim infb→∞

∫ b
d (rỹ

′2 − pỹ2) < ε, if d is sufficiently
large. Moreover, according to (4.1), d can be chosen such that

ỹ2(a)α+ [w(d) + γ]ỹ2(d)− w(a)ỹ2(a) +
(ỹ(d) − ỹ(a))2

u(d)
< −
2ε

3
.

Consequently, we have A(ηd; a,∞) < − ǫ
3 , a contradiction.

Case II (b). All arguments are almost the same as in the proof of Case II (b),
only instead of the function F introduced in Lemma 6 we consider the function

F̃ (b) =

∫ b

a
r−1(t)w2b (t) dt

where wb(t) is the solution of (1.6) satisfying
∫ b
a r−1w = 0. Monotonicity of this

function is proved in Lemma 5.

Case II (c). The proof of this case is almost identical with the proof of Case III
given by the transformation method in [2], only the solution y of (1.3) satisfying
y(a) = 0, y′(a) 6= 0 is to replace by the solution satisfying y(a) = 1, y′(a) = α.

Case II (d). In the proof of Case I in [3, Theorem 2], it suffices to replace the
solution w of (1.6) satisfying w(a) = α by the solution satisfying w(a) =∞.

Case III. See [2]. �

Proof of Theorem 2. From the index theory of quadratic forms [4] we have the
inequalities

(4.2) cf ≤ cp, ca ≤ c0

which can be proved also directly. For example, if c0 is the first conjugate point
of a, i.e. there is a nontrivial extremal satisfying y(a) = 0 = y(c0) then it is easy
to see that c0 is also coupled with a for all types boundary conditions, so we have
inequality cf , cp, ca ≤ c0. Similarly may be proved remaining inequalities, but
this reasoning gives no information concerning ordering of cp and ca.

Denote by wc and w the solutions of (1.6) for which
∫ c
a r−1w = 0 and w(a) = α,

respectively. According to Lemma 7, in order to prove that the first inequality in
(4.2) is strict, it suffices to show that for c ∈ [a, cf ]

∫ c

a
r−1w2 >

∫ c

a
r−1w2c

which is equivalent to the inequality

wc(c)− wc(a)− w(c) + α > 0.

We have

w(t) =
r(t)(v′(t) + αu′(t))

v(t) + αu(t)
, wc(t) =

r(t)[(1 − v(c))u′(t) + u(c)v′(t)]

(1− u(c))u(t) + u(c)v(t)
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and by a direct computation one may verify that

wc(c)− wc(a)− w(c) + α =
r(c)u′(c) + v(c)− 2

u(c)
−

r(c)(v′(c) + αu′(c))

v(c) + αu(c)
− α

= (v(c) + αu(c)− 1)2.

Concerning the second inequality, we have
∫ c

a
r−1w2c − F (c) =

4

u(c)
,

where F is given by (3.2) with w = wc, hence cp < ca.
Finally, ca < c0 provided F (c0−) =∞ and by Lemma 7 for ā ∈ (a, b)

F (c0−) = F (ā) +

∫ c0

ā
F ′(t) dt

= F (ā) +

∫ c0

ā

(r(t)u′(t) + 1)2

r(t)u2(t)
dt.

�

Proof of Theorem 3. Lemma 7 and Remark 7 give the Riccati equation de-
scription of coupled point on the noncompact interval. Now, except for the an-
tiperiodic boundary condition II (a), the statement follows from the fact that w

given by w(a+) = ∞ is the only solution which exists on the whole interval
(a,∞); any other solution blows up to −∞ at some finite point inside (a,∞), see
[1, Chapter I].
Concerning the antiperiodic boundary condition, if (2.4) holds then F (∞) =∞

and the statement follows using the same argument as in Lemma 7. �

Proof of Remark 2.

(i) We prove the statement only in the most difficult Case II (a); in the remain-
ing cases the proof is much more easier. If there is no point c ∈ [a, b) coupled
with a, then by Lemma 7

∫ c

a
r−1w2c dt −

4

u(c)
≤ α+ γ −

∫ b

a
p

where
∫ c
a r−1wc = 0. Substituting for

∫ c
a r−1w2c from (1.6) we have

α+ γ −

∫ b

c
p+ wc(c)− wc(a) +

4

u(c)
≥ 0

for every c ∈ (a, b) and hence

lim inf
c→b−

[α+ γ + wc(c)− wc(a) +
4

u(c)
] ≥ 0.
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By a direct computation we have wt(t) =
r(t)u′(t)−1

u(t)
and the expression in the

singularity condition may be written in the form

lim inf
t→b−

{

y2(a)[α+ γ + wt(t)− wt(a) +
4

u(t)
]+

+(η2(t)− η2(a))(γ + wt(t)) +
(η(t)− η(a))2 − 4y2(a)

u(c)

}

≥

≥ lim inf
t→b−

y2(a)[α+ γ + wt(t)− wt(a) +
4

u(t)
]+

+ lim inf
t→b−

η(t) + η(a)

u(t)
[(r(t)u′(t)− 1)(η(t) − η(a)) + η(t)− 3η(a) ]+

+ lim inf
t→b−

(η2(t)− η2(a))γ.

The first lower limit is nonnegative, the third one is zero and if b is not conjugate
with a, the second limit is also zero. If b is conjugate with a (which may happen,
in view of Theorem 2, only in the antiperiodic boundary condition), the fact that
[a, c) does not contain a coupled point implies r(b)u′(b) = −1 by Lemma 6. Hence

lim inf
t→b−

η(t) + η(a)

u(t)
[(r(t)u′(t)− 1)(η(t)− η(a)) + η(t)− 3η(a) ] = 0,

i.e. the singularity condition for I(η; a, b) is satisfied.

(ii) We prove the statement, as an example, in Case II (b). Using the fact that

wt(t) =
r(t)u′(t)−1

u(t)
, the singularity condition in Case II (b) reads

lim inf
t→∞

[

η2(a)(α − wt(a)) + η2(t)(γ +
r(t)u′(t)− 1

u(t)
) +
(η(t)− η(a))2

u(t)

]

≥ 0

and substituting η(a) = 0 we get the classical singularity condition.

5. Examples

The first example shows that the nonexistence of coupled point and validity of
the regularity condition need not be sufficient for nonnegativity of the singular
functional.

Example 1. Consider the singular functional

F(η; 1,∞) = −η2(1) + lim inf
t→∞

[

γη2(t) +

∫ t

1
(η′2(s) + η2(s)) ds

]

, γ < −1 ,

over all η ∈ W
1,2
loc [1,∞).



236 Z.Došlá, O. Došlý

The solution w of Riccati equation satisfying w(1) = −1 is w(t) ≡ −1. It holds

α+ γ −

∫ ∞

a
p = −1 + γ +

∫ ∞

1
ds =∞,

i.e. the regularity condition holds and there exists no coupled point c ∈ [1,∞).
On the other hand, the functional is negative along the function η = et

F(η; 1,∞) = lim
b→∞

[

−e2 + γe2b +

∫ b

1
(e2t + e2t) dt

]

=

−2e2 + (γ + 1) lim
b→∞

e2b = −∞ for γ < −1.

Remark that the singularity condition is not satisfied, because

lim
t→∞

e2t[w(t) + γ] = −∞.

The second example shows that the coupled point relative to A(η, a, b) may
coincide with the first conjugate point.

Example 2. Consider the functional

(5.6) A(η; 0, π) = γη2(0) +

∫ π

0
(η′2 − η2) dt, γ ≥ 0

subject to the boundary condition η(0) = −η(π). Clearly, the first conjugate
point with t = 0 is t = π. We will show that the interval (0, π) does not contain
a coupled point with t = 0. By Lemma 2, for any c ∈ (0, π) and for any nontrivial
extremal y on [a, c] such that y(0) = −y(c) and y(t) ≡ y(c) for t ∈ [c, π] we have

A(y; a, π) = y2(0)[γ − π +

∫ c

a
cot2(t+

π

2
−

c

2
) +

1

y2(0)

∫ c

a
(y′2 − cot(t+

π

2
−

c

2
)y)2

= y2(0)[γ − π + c+ cot(
π

2
+

c

2
)−

4

sin c
].

By Lemma 6 the function

F (c) = cot(
π

2
−

c

2
)− cot(

π

2
+

c

2
)−

4

sin c

is nondecreasing for c ∈ (0, π) and

lim
c→π

F (c) = lim
c→π

4

sin c
(1− sin

π

2
sin

c

2
) = 0.

The fact γ ≥ 0 implies F (c) ≤ γ − π for every c ∈ (0, π), i.e. there is no point
coupled with 0. On the other hand, from Theorem 2 it follows that the first
coupled point relative to any boundary condition of the form (1.5) has to be ≤
then the first conjugate point, hence, the coupled point must coincide with the
conjugate point.
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