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Booleanization of uniform frames

B. BANASCHEWSKI*, A. PULTR**

Abstract. Booleanization of frames or uniform frames, which is not functorial under the
basic choice of morphisms, becomes functorial in the categories with weakly open homo-
morphisms or weakly open uniform homomorphisms. Then, the construction becomes
a reflection. In the uniform case, moreover, it also has a left adjoint. In connection with
this, certain dual equivalences concerning uniform spaces and uniform frames arise.

Keywords: Booleanization, uniform frame, uniform space, weakly open maps and ho-
momorphisms

Classification: 06D10, 06E15, 18A40, 18B30, 54C10, 54E15

The familiar topological fact that the regular open subsets of a space form
a complete Boolean algebra, extended by Glivenko [6] to arbitrary frames, gives
rise to the Booleanization of a wuniform frame L, obtained by equipping the
Boolean frame of regular elements of L with the uniformity induced by that
of L. It is then straightforward, if not trivial, that any complete uniform frame
is the completion of its Booleanization, while any Boolean uniform frame is the
Booleanization of its completion, by a basic result of Isbell [8]. This paper inves-
tigates the functorial aspects of this situation.

First, we extend a result of Banaschewski-Pultr [5] for mere frames to the case
of uniform frames (Proposition 1): as in [5], Booleanization becomes a reflection
for uniform homomorphisms which are weakly open, characterized among others
by the condition that dense elements are mapped to dense elements. Next we
establish, in crucial contrast to the situation of mere frames, that Booleanization
has a left adjoint, provided by completion (Proposition 2), which then induces an
equivalence between Boolean uniform frames with all uniform homomorphisms
and complete uniform frames with weakly open uniform homomorphisms (Propo-
sition 3). In addition, based on suitable naturally arising uniformities, this leads
to equivalences between totally bounded Boolean uniform frames with all uniform
homomorphisms and compact regular frames with weakly open homomorphisms
(Proposition 4), and between Boolean frames with all homomorphisms and Glea-
son frames with all weakly open homomorphisms (Proposition 5).

*Support of the Natural Sciences and Engineering Research Council of Canada and of the
Categorical Topology Research group at the University of Cape Town is gratefully acknowledged.
**Support of the Natural Sciences and Engineering Research Council of Canada and the
Grant Agency of the Czech Republic under Grant 201/93/950 is gratefully acknowledged.
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Finally, we deal with the relationship between uniform frames and uniform
spaces. First, we obtain the general result that the category of complete uni-
form spaces and uniformly continuous maps is dually equivalent, by the obvious
functors, to the category of those completely uniform frames which we call weakly
spatial (Proposition 6). This, in turn, leads to a further dual equivalence in which
the maps on the frame side are restricted to weakly open uniform homomorphisms
(Proposition 7), and then to a dual equivalence between the category of complete
uniform spaces with weakly open uniformly continuous maps and the category of
Boolean uniform frames which are separated by their Cauchy spectrum (Propo-
sition 8).

We note that another study of the Booleanization of frames with additional
structure is carried out in Banaschewski-Pultr [3], dealing with the case of metric
frames. In broad outline, the results there parallel those presented here but the
distinctive features of the two areas make several details considerably different;
in particular, neither can be construed as a special case of the other.

0. Background and definitions
Recall that a frame is a complete lattice L in which
a/\\/S:\/{a/\t |teS}, forall ae L and SCL,

and a frame homomorphism is a map h : L — M between frames preserving all
finitary meets, including the unit (= top) e, and arbitrary joins, including the zero
(=Dbottom) 0.

Any complete Boolean algebra is a frame, and the frame homomorphisms be-
tween complete Boolean algebras are exactly the complete Boolean homomor-
phisms. On the other hand, any frame L determines a complete Boolean algebra
L., consisting of the elements a = a** of L, where ( )* is the pseudocomplemen-
tation in L, that is, 2* = \/{y € L | y Az = 0} (Glivenko [6]). Note that meets
in Ly are the same as in L while the join of any S C Luy in Lsy is (\/ S)**; in
particular, the map L. — Ly taking each a to a** is a frame homomorphism. The
latter is characterized as the essentially unique dense homomorphism A : L — M
onto a Boolean frame M, dense meaning that h(a) = 0 implies a = 0 (Isbell [8]).

For general facts concerning frames we refer to Johnstone [9] or Vickers [13].

In a frame L, a cover is any subset whose join is the unit, and, for covers A
and B of L, A < B (“A refines B”) means that, for each a € A, there exist b > a
in B. Further, for any cover A of L and any ¢ € L, we put

Ac:\/{x€A|x/\c7$0}

and define A <* B (“A star-refines B”) for covers A and B of L to mean that the
cover {Ac | ¢ € A} refines B. Finally, a uniformity on L is a filter il of covers of
L (in the sense of <) for which each member of i is star-refined by some member
of 4 and each a € L is the join of all x € L such that Cz < a for some C € .
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In the following, L, M, ... will be uniform frames, that is, frames equipped
with a specified uniformity. The latter will be denoted UL, UM, . ... Further, we
allow the notational confusion between L, M, ... and their underlying frames. A
uniform (frame) homomorphism is a map h : L — M between uniform frames
which is a frame homomorphism and preserves uniform covers, that is, h[A] € UM
for any A € UL. UniFrm will then be the resulting category.

A uniform frame homomorphism h : L — M is called a surjection if it is an
onto map and UM is generated by the h[C], C' € UL. Explicitly, the latter means
that, for each B € 4M, there exist C' € UL such that A[C] < B. A uniform frame
L is called complete if any dense surjection M — L is an isomorphism. Any
uniform frame L has a completion, that is, a dense surjection vy, : CL — L with
complete C'L, unique up to isomorphism, providing the coreflection of UniFrm
to its full subcategory CUniFrm of complete uniform frames (Isbell [8]; also Ki{z
[11], Banaschewski-Pultr [2]). In the following, C will be the functor determined
by completion.

Given a uniform frame L, a mere frame N, and an onto frame homomorphism
h : L — N, the latter can be made into a uniform frame homomorphism by en-
dowing N with the uniformity generated by the covers h[C], C € L, consisting of
all covers of N refined by some such h[C]. That this really works is a consequence
of the obvious inequality

h[A]h(x) < h(Ax),

for any cover A of L and any x € L. Of course, with this uniformity on N, h
becomes a surjection of uniform frames.

In particular, we can use this observation to introduce the Booleanization of
a uniform frame L, denoted (§f, : L — BL, where 8L is the uniform frame with
underlying frame L.« and uniformity generated by the covers

{z* |z eC} (Cedl),

and (7, maps x € L to z**. The subcategory of UniFrm that these BL belong
to is the full subcategory BUniFrm determined by all Boolean uniform frames.

Now, if L is a complete uniform frame then 8, : L — B L, as a dense surjection,
is the completion of B L, by the uniqueness of completions. On the other hand, if
M is a Boolean uniform frame then vy : CM — M, as a dense homomorphism
onto a Boolean frame, is the Booleanization of CM, by the uniqueness result
of Isbell [8] quoted earlier. Hence, the correspondence between the objects of
BUniFrm and CUniFrm given by completion and Booleanization are inverse
to each other, up to isomorphism. In the following, the functorial aspects of this
situation are studied.

1. Booleanization as reflection

A natural question concerning Booleanization of uniform frames is: which uni-
form homomorphisms make the correspondence L — BL functorial so that the
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Booleanization maps Gy, : L — BL constitute a natural transformation? Be-
low, we provide some characterizations where h : L — M is any map of uniform
frames.

Lemma 1. The following are equivalent:

(1) There exists h : BL — BM such that h3;, = Byh.

(2) For any dense a € L, h(0) is dense.

(3) For any a € L, h(a™) < h(a)**.
PRrROOF: For mere frames this is part of Theorem 4.3 in Banaschewski-Pultr [3],
and hence it only remains to check that (3) = (1) still holds in the uniform case.
Now, {($BL) is generated by the covers 3,[C], C € UL, and h[BL[C]] = Bas[R[C]]
belongs to U(BM), by the definition of the latter and since h is uniform. Thus,
h is uniform, as claimed. ([

Following the terminology of [4], we shall call the h : L — M which satisfy the
equivalent conditions of Lemma 1 weakly open and let UniFrm,,, then be the
category of all uniform frames and their weakly open uniform homomorphisms.
Note that, for Boolean L, any h : L — M is trivially weakly open since e is the
only dense a € L; in particular, BUniFrm is a subcategory of UniFrm,,.

For any weakly open h : L — M, the h : BL — BM of Lemma 1 is uniquely
determined; we shall express this by putting Bh = h, obtaining a functor B :
UniFrm,,, — BUniFrm. Moreover, as an immediate consequence of Lemma 1,
together with the obvious fact that 87, : L — BL is the identity map for Boolean
L and weakly open for any L, we have the following uniform counterpart of
Theorem 2.2 of Banaschewski-Pultr [5]:

Proposition 1. BUniFrm is reflective in UniFrm,,,, with reflection functor 8
and reflection maps L : L — BL.

Remark. For spatial frames, Lemma 1 is essentially due to Johnstone [10], using
the alternative condition h(a*)* = h(a)** instead of (2) or (3), which is known to
be equivalent to the latter by Banaschewski-Pultr [4]. As to terminology, following
that of Johnstone [10] the homomorphisms in (1) would be called skeletal, which
is derived from topological usage due to Mioduszewski-Rudolf [12]. On the other
hand, somewhat earlier, Herrlich and Strecker [7] had introduced the term demi-
open for continuous maps of this kind. We find it more suggestive to call these
homomorphisms weakly open, especially in view of the analysis carried out in [4].

2. Booleanization as right adjoint

As the preceding section shows, it is quite straightforward that the functor
B : UniFrmy,, — BUniFrm is left adjoint to the corresponding inclusion
functor, once the role of the weakly open homomorphisms in this context has
been recognized. We now turn to the rather more subtle result that 95 also has
a left adjoint, supplied by completion, which in turn leads to various noteworthy
consequences.
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We begin with a couple of lemmas.

Lemma 2. For any uniform h : L — M, Ch is an isomorphism iff h is a dense
surjection.

PROOF: (=) If Ch is an isomorphism then hv;, = v),Ch is a dense surjection,
and this makes h a dense surjection.

(<) is proved in Banaschewski-Pultr [2]. O
Lemma 3. C induces a functor on UniFrm,,,.

Proor: For any h: L — M in UniFrm, we have the commuting square

cr = [

C’hl lh

CM —— M

™
with dense onto vy, and v;. Now, if h is weakly open then, for any dense a € C'L,

v Ch(a) = hyr(a), and hence Ch(a) is dense since dense onto homomorphisms
obviously preserve and reflect denseness of elements. O

Now we come to the desired main result.

Proposition 2. B : UniFrmy, — BUniFrm has a left adjoint, given by
completion.

PrOOF: For any Boolean uniform frame M, both
Yy CM — M and Bopy : CM — BCM

are dense homomorphisms onto a Boolean frame, and as noted earlier there exists
an isomorphism pp; : M — BCM, necessarily unique, such that gy = Bow-
Further, for any uniform frame L, we have the commuting square

cr 9P, omp

| e

L —— $BL
BL

where C'3, is an isomorphism by Lemma 2. Hence we have py, : C°BL — L, given
by pr, = 7(CBr,) "1, weakly open since -y, is.

It is straightforward to show that these maps define natural transformations
@:Id —BC and p: CB — Id. We claim they satisfy the identities that make C'
left adjoint to B.
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For the identity
pcy © Cunr =idom
note that
v © ponr © Crr © Cyar = v © vor © (CBem) ™t o CBan = Y 0 Yo

while the commuting square

com M, ap

YoM l l Y™

CM —— M
™

shows that v o vour = v © Cyas- Hence
Y o pem © Cpnr 0 Cymr =y 0 Cymr
where both Cyps and ~js can be cancelled, the latter by denseness and the reg-
ularity of the frames involved. This yields the desired conclusion.
To the other identity,
Bpr, o ppr, = idepr,

consider the diagram

CBL
BosL
CBr, VBL
KB

o _ L L Pr BL BOBLX
Bpr,

/

Ber By,
BOHL
BCL

where the squares on the left, the outer squares and the triangles on the right all
commute, the latter by the definition of x4 and p. Now

Bpr, o puspr, © Br ovL = Bpr o psr, 0y, © CBL = Bpp o Bowr 0 CPL =
=Bpr, o BCPBL o Por, =By o Por = Br oL,
and (, oy, can be cancelled. O
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Proposition 3. 8 induces an equivalence between CUniFrm,,, and BUniFrm,
with inverse given by C.

PRrROOF: By general principles, the adjointness produces an equivalence between
the full subcategories on either side given by the objects on which the adjunction
maps are isomorphisms. Since all p1;; are isomorphisms, this is the entire category
on that side. On the other hand, p;, = v7,(CB,) ! is an isomorphism iff 7y, is,
that is, iff L is complete. (I

We now turn to a couple of natural subcategories of BUniFrm and determine
what the above equivalence involves for them.

The first of these is the full subcategory given by the totally bounded M, that
is, those M for which M is generated by its finite members or, equivalently,
whose completion is compact (Banaschewski-Pultr [2]). On the other hand, the
compact uniform frames may be identified with the compact regular frames, in
view of the fact that each of the latter has a unique uniformity, generated by
its finite covers; moreover, any homomorphism between these frames is obviously
uniform with respect to these uniformities.

Putting these facts together, we obtain

Proposition 4. B induces an equivalence between the category of compact reg-
ular frames and weakly open homomorphisms and the category of totally bounded
Boolean uniform frames, with inverse given by C.

In a similar vein, any Boolean frame M may be identified with the uniform
frame obtained by equipping it with the uniformity generated by all its finite
covers, and the corresponding completion then has the frame JM of all ideals of
M as its underlying frame. Further, JM is a Gleason frame, that is, compact,
zero-dimensional, and satisfying the Stone identity z* V ** = e. On the other
hand, for any Gleason frame L, 8L is a sublattice of L, in virtue of the Stone
duality, so that any finite cover of BL is actually a cover of L, and hence the
unique uniformity of L induces the uniformity determined by all finite covers
on BL.

In all, this shows the following, where J is the ideal frame functor.

Proposition 5. % induces an equivalence between the category of Gleason
frames and weakly open homomorphisms and the category of all Boolean frames,
with inverse given by J.

Remark 1. Recall from Banaschewski [1] that the Gleason envelope of a compact
frame L, the counterpart of the familiar Gleason cover of a compact Hausdorff
space, is given by the weakly open embedding

L—GL=73(BL)

a—{z € BL|z*Va=e}
This puts in evidence that the Gleason envelope is functorial for weakly open
homomorphisms: G = J%B, and that G is the reflection of Gleason frames, a special

141



142

B. Banaschewski, A. Pultr

case of a general result of Johnstone [10]. On the other hand, it provides an
interesting representation of the Gleason envelope: in the category of totally
bounded Boolean uniform frames, G corresponds to the functor that enlarges each
uniformity to the finite cover uniformity.

Remark 2. The treatment of the Booleanization of metric frames in Bana-
schewski-Pultr [3] established the counterpart of Proposition 3 directly, without
first proving that completion provides a left adjoint to Booleanization. We note
that the proof of Proposition 2 applies to the metric case as well.

Remark 3. One may ask whether there are variants of Proposition 2 in which
the weakly open homomorphisms are replaced by a more restricted class of maps.
That, however, is not the case: the completion functor produces all weakly open
uniform homomorphisms between complete uniform frames.

3. Duality

We now want to connect our results on uniform frames with uniform spaces.
In particular, we are interested in representing the complete uniform spaces in
terms of Boolean uniform frames. By way of preparation, we first establish some
general facts concerning the relation between uniform spaces and uniform frames.

To begin with, recall the basic pair of contravariant functors, for the category
UniSp of uniform spaces and uniformly continuous maps,

9 : UniSp — UniFrm, ¥ :UniFrm — UniSp

which come from the corresponding functors for topological spaces and frames:
For any uniform space X, the uniform frame O X is the frame of open subsets of
X, equipped with the uniformity given by the open uniform covers of X. For any
uniform frame L, %L has the same elements as the frame spectrum of L, that is,
the homomorphisms & : L. — 2, while its uniformity is generated by the covers
{34 | a € A} for A € UL, where ¥4 = {{ € TL | £(a) = 1}. Further, there are
the two adjunctions

ny:L— OXL, np(a) =%
and
ex: X = X0X, ex(z)=2z, Z(U)=card(U N{z}).

Note that, for any separated uniform space X, because it is Hausdorff in its
uniform topology and therefore sober, € x is an isomorphism. On the other hand,
1, is always a surjection of uniform frames, although it may fail very badly to
be an isomorphism. For instance, XL = ) and then DXL is trivial whenever
L = BN for any uniform frame N which has no atoms. A uniform frame L for
which 7y, is an isomorphism will be called spatial.

Concerning spatial uniform frames, we need the following
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Lemma 4. For any dense surjection h : L — K with spatial K, ¥h : YK — XL
is a dense embedding.

PROOF: Since h is onto, XA is one-one. Further, for any A € UK there exist
B € ML such that h[B] < A, and thus

{(En) () [ be By = {Spp) | be By < {Za | ac A},

showing that Xh is a uniform subspace embedding. Finally, to see ¥h is dense,
consider any Y, # 0 in X L. Then a # 0, therefore h(a) # 0 since h is dense, and
the fact that K is spatial then ensures that (Xh)~1(Z,) = Eh(a) 18 also non-void.
This proves the desired result. O

Remark. This lemma no longer holds for non-spatial K: all 37, : L — BL are
dense surjections but X8 L may well be empty.

Next, recall from Banaschewski-Pultr [2] that the spectrum of a complete uni-
form frame is complete so that one has the contravariant functors

C9® : CUniSp — CUniFrm, X :CUniFrm — CUniSp

(prefix C for completeness), adjoint on the right, with the adjunction maps
X - 200X = X X vox 29X voox

and

—1
L—CoxL=1-t, cr 9" coxr,

for any complete uniform space X and any complete uniform frame L. In particu-
lar, CO and ¥ induce a dual equivalence between the full subcategories on either
side, determined by those objects whose adjunction maps are isomorphisms.

Now, on the space side, every adjunction map is an isomorphism: every ¢x is
an isomorphism since complete uniform spaces are understood to be separated,
whereas Xygoyx is always a dense embedding by Lemma 4 and hence also an
isomorphism whenever X is complete.

On the other hand, for any complete uniform frame L, the adjunction map
is an isomorphism iff Cny, is an isomorphism, and by Lemma 2 this holds iff 7y,
is dense. Now, the latter means that X, # () whenever a # 0; explicitly, this
holds iff, for any non-zero a € L, there exists a homomorphism ¢ : L. — 2 such
that £(a) = 1. Spatial uniform frames obviously satisfy this, but there are quite
natural examples of non-spatial uniform frames with this property. We shall call
a (uniform) frame weakly spatial whenever it satisfies this condition. Hence we
now have
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Proposition 6. The category of complete uniform spaces is dually equivalent
to the category of weakly spatial complete uniform frames by the contravariant
functor C9, with inverse X.

Calling a uniformly continuous map f : X — Y weakly open whenever Of :
DY — OX is weakly open, CO takes the corresponding category CUniSpy,,
into CUniFrm,,, by Lemma 3. On the other hand, ¥h : XK — XL is weakly
open for weakly open h : L — K, provided L and K are weakly spatial: If
e € XL is dense open then a € L is dense since L is weakly spatial, and hence
(Zh)~H(Ze) = Eh(a) is dense because h is weakly open and K weakly spatial.

As a consequence of this, we also have the following restricted version of the
previous proposition:

Proposition 7. CO induces a dual equivalence, with inverse X, between
CUniSpyo and the category of weakly spatial complete uniform frames with
weakly open uniform homomorphisms.

Remark. We note that the weak openness of a (uniformly) continuous map
has the suggestive topological characterization: f : X — Y is weakly open if
int f[U] # 0 for any non-void open U C X (Banaschewski-Pultr [4, Theorem 4.4]).

Combining the results of Propositions 3 and 6 obviously leads to a dual equiv-
alence involving certain Boolean uniform frames. To make this explicit requires
an internal characterization of those Boolean uniform frames which have weakly
spatial completion. This can be done by means of the Cauchy spectrum of uniform
frames (Banaschewski-Pultr [2]).

We recall the relevant details. A Cauchy filter in a uniform frame L is a filter
which meets every uniform cover of L. A regular Cauchy filter in L is a Cauchy
filter P in L such that, for each a € P, there exist b < a in P, the latter meaning
that Cb < a for some C € {L. Then, the Cauchy spectrum WL of L is the uniform
space whose points are the regular Cauchy filters of L, and whose uniformity is
generated by the covers

Uy={¥,|acd}, ¥,={PecVL|aecP} (A e uL).
W[ is always complete, and the correspondence L — WL is contravariantly func-
torial. Moreover, there is a natural equivalence A\ : ¥C' — ¥ such that, for each
L, A, : XCL — VL takes any £ : CL — 2 to the regular Cauchy filter
{acL|&hpla) =1}
where kj, : L — CL is the right adjoint of 7, : CL — L.

Now we have

Lemma 5. The following are equivalent for any Boolean uniform frame M :
(1) CM is weakly spatial.
(2) The Cauchy spectrum of M separates the elements of M.
(3) The spectrum of CM separates the elements kr(a), a € M.
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PROOF: (1) = (2). If a £ b in M then a A b* # 0 since M is Boolean, hence
kEnr(a Ab*) # 0, and therefore there exist £ : CM — 2 for which {kpr(a AD*) = 1.
It then follows, for the regular Cauchy filter P corresponding to &, that a Ab* € P
and hence a € P but b ¢ P.

(2) = (3). If kpr(a) £ kpr(b) for some a,b € M, then also a £ b, and if P
is a regular Cauchy filter such that « € P and b ¢ P then &(kps(a)) = 1 and
&(kpr(b)) = 0 for the £ : CM — 2 that corresponds to P.

(3) = (1). Given any non-zero ¢ in CM, there exist a € C'M such that
0 < a < ¢, by the properties of uniform frames, and hence aAb=0and cVb=¢e
for some b € CM. It then follows that kprvar(a) Ab =0, since vyrkps = id and
v is dense, and therefore kjsvps(a) < c. Now, there exist £ : CM — 2 for which
E(kpryp(a)) =1 by hypothesis, and then also £(c) = 1. O

We shall call uniform frames with the property (2) in the above lemma Cauchy
spatial.
Putting together Propositions 6 and 3 we now conclude:

Proposition 8. B induces a dual equivalence, with inverse ¥, between the
category of complete uniform spaces with weakly open uniformly continuous maps
and the category of Cauchy spatial Boolean uniform frames.

There is a special case of this result which merits separate mention. Recall that
a uniform frame L is said to be of countable type if the filter L has a countable
basis. Countable type permits an inductive procedure, due to Isbell [8], which
shows that any uniform frame of this kind is Cauchy spatial. Hence the following

Corollary. 989 induces a dual equivalence, with inverse ¥, between the cate-
gory of complete uniform spaces of countable type with weakly open uniformly
continuous maps and the category of Boolean uniform frames of countable type.

Remark. Any Boolean uniform frame M with the finite cover uniformity is
Cauchy spatial (assuming the Boolean Ultrafilter Theorem) since the regular
Cauchy filters of such M are just the ultrafilters. Hence, the duality of the pre-
ceding proposition includes the duality between extremally disconnected Boolean
spaces and complete Boolean algebras, which, in turn, is contained in classical
Stone Duality between all Boolean spaces and Boolean algebras. Thus, Propo-
sition 7 may be viewed as an extension of a part of Stone Duality to arbitrary
complete uniform spaces.

Acknowledgements. An earlier version of this paper was in part written while
the first author was visiting the university of Cape Town on sabbatical leave from
McMaster University. Financial assistance from the Natural Sciences and Engi-
neering Research Council of Canada, the Categorical Topology Research group at
the University of Cape Town, and the Grant Agency of the Czech Republic under
Grant 201/93/950 is gratefully acknowledged.

145



146

B. Banaschewski, A. Pultr

REFERENCES

Banaschewski B., Compact regular frames and the Sikorski Theorem, Kyungpook J. Math.
28 (1988), 1-14.

Banaschewski B., Pultr A., Samuel compactification and completion of uniform frames,
Math. Proc. Cambridge Phil. Soc. 108 (1990), 63-78.

, A Stone duality for metric spaces, Canad. Math. Soc. Conf. Proceedings 13 (1992),

33-42.

, Variants of openness, Appl. Categ. Structures 2 (1994), 331-350.

, Booleanization, preprint.

Glivenko V., Sur quelque points de la logique de M. Brouwer, Acad. Royal Belg. Bull. Sci.
15 (1929), 183-188.

Herrlich H., Strecker G.E., H-closed spaces and reflective subcategories, Math. Annalen
177 (1968), 302-309.

Isbell J.R., Atomless parts of spaces, Math. Scand. 31 (1972), 5-32.

Johnstone P.T., Stone Spaces, Cambridge University Press, Cambridge, 1982.

, Factorization theorems for geometric morphisms, II., Springer Lecture Notes in
Math. 915 (1982), 216-233.

K#iz 1., A direct description of uniform completion in locales and a characterization of LT
groups, Cahiers Top. et Géom. Diff. Cat. 27 (1986), 19-34.

Mioduszewski J., Rudolf L., H-closed and extremally disconnected Hausdorff spaces, Dis-
sertationes Math. 66 (1969).

Vickers S., Topology via Logic, Cambridge Tracts in Theor. Comp. Sci., Number 5, Cam-
bridge University Press, Cambridge, 1985.

DEPARTMENT OF MATHEMATICS AND STATISTICS, MCMASTER UNIVERSITY, HAMILTON,
ONTARIO L8S 4K1, CANADA

DEPARTMENT OF APPLIED MATHEMATICS, FACULTY OF MATHEMATICS AND PHYSICS, CHARLES
UNIVERSITY, MALOSTRANSKE NAM. 25, 118 00 PrRAHA 1, CzZECH REPUBLIC

(Received May 15,1995)



		webmaster@dml.cz
	2012-04-30T16:12:58+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




