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The sizes of relatively compact T1-spaces

Winfried Just
1

Abstract. The relativization of Gryzlov’s theorem about the size of compact T1-spaces
with countable pseudocharacter is false.
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Let X,Y be topological spaces such that Y ⊆ X . We say that Y is rela-
tively compact (relatively Lindelöf ) in X if for every open cover U of X there
exists a finite (countable) subfamily V ⊆ U such that V is a cover of Y . The no-
tion of relative compactness was introduced (under a slightly different name) by
D.V. Ranchin [R]. A.V Arhangel’skii showed that if Y is regular in X (i.e., for each
closed subset B ofX and each point y ∈ X\B, there is an open neighborhood U of
y in X such that cl(U)∩B = ∅), X is first-countable at each point in Y , and Y is
Lindelöf in X , then |Y | ≤ 2ℵ0 (see Corollary 6 of [A] for a somewhat stronger re-
sult). Thus, Arhangel’skii’s famous theorem on the size of first-countable regular
Lindelöf spaces generalizes to the context of relative Lindelöfness.

In [G], A.A. Gryzlov proved that every compact T1-space of countable pseu-

docharacter has cardinality at most 2ℵ0 . The question arises whether this theorem
also generalizes to the context of relative compactness. Theorem 1 below shows
that this is not the case.

1. Theorem. Suppose λ is smaller than the first measurable cardinal. Then

there exist first-countable T1-spaces Y ⊂ X , such that |Y | = λ, |X | = 2λ, and Y
is compact in X .

Proof: Let λ ≥ ℵ0 be as in the assumption. We let Y be λ itself with the discrete
topology. Let Z be the set of all partitions z̄ = (zn)n∈ω of λ into countably many
pairwise disjoint sets. The underlying set of the space X will be Y ∪Z. We define
a topology on X as follows:
- the points in Y are isolated;
- the basic open neighborhoods of z̄ ∈ Z are of the form V z̄

m =
⋃

n≥m zn ∪ {z̄}.
Clearly, X and Y are first-countable T1-spaces. It remains to show that Y is

relatively compact in X . The latter is equivalent to the following:
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2. Claim. For every function f : Z → ω there exists a finite set F ⊂ Z such

that |Y \
⋃

z̄∈F

⋃
n≥f(z̄) zn| < ℵ0.

Proof: Suppose not and let f be a counterexample. For each F ∈ [Z]<ℵ0 define:

YF = Y \
⋃

z̄∈F

⋃
n≥f(z̄) zn. Then the family {YF : F ∈ [Z]<ℵ0} generates a filter

F of subsets of λ with the following properties:

(1) F contains no finite subset of λ;
(2) for every partition {zn : n ∈ ω} of λ into countable many pairwise disjoint
subsets there exists an m ∈ ω such that

⋃
n≤m zn ∈ F .

The existence of such an F leads to a contradiction, since it implies that λ
is at least as big as the first measurable cardinal. To see the latter, consider
the characteristic function of F , i.e., the function χF : P(λ) → {0, 1} that takes
the value χF (a) = 1 if and only if a ∈ F . If we identify P(λ) and λ{0, 1}
with the product topology, then (1) implies that χF is not continuous. On the
other hand, if limn→∞ an = a and zn = {ξ ∈ λ : n = min{k ∈ ω : ∀m ≥
k (ξ ∈ am ↔ ξ ∈ a)}}, then {zn : n ∈ ω} is a partition of λ. Applying (2) to
this partition, we can see that χF is sequentially continuous. Now a result of
Antonovskii and Chudnovskii [AC, Theorem 1.3] implies that λ is as least as big
as the first measurable cardinal. �

In Theorem 1, the assumption that λ is smaller than the first measurable
cardinal cannot be dropped, since the following relativized version of a well-known
classical result holds:

3. Proposition. Suppose X is a T1-space and ψ(x,X) < κ for every x ∈ X . If

Y is relatively Lindelöf in X , then |Y | < κ.

Proof: Suppose X,Y form a counterexample. Let µ : P(κ) → {0, 1} be a
κ-additive measure that vanishes on singletons, and assume without loss of gen-
erality that κ ⊆ Y . For each x ∈ X , choose {Ux

ξ : ξ < λx < κ} such that Ux
ξ is

an open neighborhood of x and
⋂

ξ<λx

Ux
ξ = {x}. By κ-additivity of µ, we can

pick for every x ∈ X a ξx such that µ(κ ∩ Ux
ξx

) = 0. Now let U = {Ux
ξx

: x ∈ X}.

Then U is an open cover of X , but if V = [U ]<κ, then µ(
⋃

V ∩ κ) = 0, hence V
does not cover Y . �
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