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Notes on slender prime rings

Robert El Bashir, Tomáš Kepka

Abstract. If R is a prime ring such that R is not completely reducible and the additive
group R(+) is not complete, then R is slender.
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Classification: 16N60

The purpose of this short note is to discuss a few sufficient conditions for a
prime ring to be slender. As concerns the concept of slenderness (various results,
references, historical remarks, etc.), a reader is fully referred to [4, Chapter III].

1. Introduction

In the sequel, R is a non-zero associative ring with unit and modules are unitary
left R-modules. The ring R is said to be prime (resp. a domain) if aRb 6= 0 (resp.
ab 6= 0) for all a, b ∈ R, a 6= 0 6= b. Commutative domains are also called integral
domains.
LetM be a module. By a filtration F ofM we mean any sequenceMi, i < ω, of

submodules of M such that Mi ⊇ Mi+1. The filtration F is said to be separating
if

⋂

F

Mi = 0 and it is said to be discrete if 0 ∈ F . The filtration F determines a

linear closure operator onM and the module M is said to be F -complete if every
Cauchy F -sequence of elements from M is convergent.
A module M is said to be complete if it is F -complete for a non-discrete

separating filtration F of M .
A left (right) ideal I of R is said to be l. s. ∪-compact (r. s. ∪-compact) if

every countable subset S of I is contained in a finitely generated left (right) ideal
K ⊆ I.
The ring R is said to be left (right) ∩-compact if the left (right) module RR

(RR) possesses no non-discrete separating filtration.
We denote by TR the set of ideals I of R such that the factor R/I is completely

reducible. For a module M , let Soct(M) be the set of all x ∈ M such that (0 : x)

contains an ideal from TR. Finally, let V = Rω, U = R(ω) and W = V/U . If
i < ω, then V [i] = {a ∈ V ; a(j) = 0 for every j < i}.
For further basic terminology concerning rings and modules, we refer to [1].
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2. Slender modules

A module M is said to be slender if, for every homomorphism ϕ : V → M ,
ϕ(ei) = 0 for almost all i < ω. The following result is implicitly contained in [5]
and is proved in [3] for torsionfree modules over integral domains:

2.1 Proposition. A module M is slender if and only if HomR(W, M) = 0 and
M is not complete.

2.2 Proposition. LetM be a module such that there exists a filtration Ii, i < ω,
of R satisfying the following conditions:

(1) Ii is a r. s. ∪-compact ideal for every i < ω.
(2) If i < ω and 0 6= u ∈ M , then Iiu 6= 0.
(3)

⋂

ω

IiM = 0.

Then the module M is slender if and only if it is not complete.

Proof: The result is an immediate consequence of the following observation:
�

2.3 Observation. Let Ii, i < ω, be a filtration of RR such that all the right
ideals Ii are r. s. ∪-compact. Put E = {IiV [i]; i < ω}. Then E is a separating
filtration of V (+) and V (+) is E-complete.
Now, let ϕ : V → M be a (module) homomorphism. Put G = ϕ(E) =

{Iiϕ(V [i])}. Then G is a filtration of M(+), ϕ is continuous and M(+) is G-
complete.
Assume

⋂
G = 0. Then Ker(ϕ) is E-closed in V . If Ker(ϕ) is E-open, then

Imϕ(V [m]) = 0 for some m < ω. If Ker(ϕ) is not E-open, then G is not discrete.
Now, G is a non-discrete separating filtration of M(+) and M(+) is G-complete.
In particular, if the right ideals Ii are two-sided, then M is a complete module.

2.4 Corollary. Suppose that there exists a separating filtration Ii, i < ω, of R
such that Ii is an r. s. ∪-compact ideal and (0 : Ii)r = 0 for every i < ω. Then
the ring R is left slender if and only if it is not left complete.

2.5 Corollary. LetM be a module such that there exists a countable non-empty
setM of submodules of M satisfying the following properties:

(1)
⋂
M = 0.

(2) (0 :M/N) is r. s. ∪-compact for every N ∈ M.
(3) (0 :M/N) ∈ TR for every N ∈ M.

Then M is slender if and only if Soct(M) = 0 and M is not complete.

2.6 Corollary. Suppose that R possesses a countable non-empty setM of maxi-
mal left ideals such that

⋂
M = 0, (0 : R/I) ∈ TR and (0 : R/I) is r. s. ∪-compact

for every I ∈ M. Then R is left slender if and only if Soctl(R) = 0 and R is not
left complete.
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3. Prime rings and slenderness

3.1 Theorem. Let R be a prime ring.

(i) If every right ideal is an ideal and R is not right ∩-compact, then R is a
domain and R is left slender if and only if R is not left complete.

(ii) If the additive group R(+) is not complete, then R is slender if and only
if R is not isomorphic to a (full) matrix ring over a division ring.

(iii) If card(R) ≥ 2ω and the additive group R(+) is not complete, then R is
slender.

Proof: (i) Clearly, R is a right uniform domain, and hence there is a separating
filtration riR, i < ω, of non-zero principal right ideals and it remains to apply
2.4.

(ii) Let p denote the characteristic of R. If p > 0, then card(R) < 2ω (since
R(+) is not complete) and we can use [2, Theorem 4.1]. If p = 0 and R(+) is
reduced, then R(+) is slender (see [6]) and consequently R is also slender. Assume
finally that p = 0 and the divisible part Q(+) of R(+) is non-zero.
Obviously, Q is an ideal of R and the factorgroup R(+)/Q(+) is slender ([6]),

and hence the factormodule RR/Q is slender, too. Now, it remains to show
that the module RQ is slender. However, since Q(+) is not complete, we have
card(Q) < 2ω and then we can proceed similarly as in the proof of [2, Theo-
rem 4.1].

(iii) This assertion follows easily from (ii). �

3.2 Proposition. Let R be a domain satisfying maximal condition on principal
left ideals and such that R is not a division ring and that every right ideal of R
is an ideal. Then R is left slender if and only if R is not left complete.

Proof: Clearly, R is not right ∩-compact and the result follows from 3.1 (i). �

3.3 Proposition. Let R be an integral domain, not a field, satisfying at least
one of the following conditions:

(1) R is noetherian.
(2) R is a unique factorization domain.
(3) The quotient field of R is a countably generated R-module (see [3, Theo-
rem 20]).

(4) R is not ∩-compact.

Then R is slender if and only if it is not complete.

Proof: The first two cases follow from 3.2, the condition (3) implies (4) and,
when (4) is true, the result follows from 3.1 (i). �

References

[1] Anderson F.W., Fuller K.R., Rings and Categories of Modules, 2nd edition, Springer, New
York, 1992.

[2] El Bashir R., Kepka T., On when small semiprime rings are slender, to appear.



422 R.El Bashir, T.Kepka
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