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Three-space-problem for some

classes of linear topological spaces
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Abstract. We examine the so-called three-space-stability for some classes of linear topo-
logical and locally convex spaces for which this problem has not been investigated.
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0. Introduction

In the theory of linear topological spaces (lts), particularly locally convex spaces
(lcs) there were a lot of investigations of various hereditary questions (if a space
possesses certain property P , does its subspace, quotient-space, arbitrary product
or direct sum of such spaces, inductive or projective limit and so on, possess
this property). The so-called three-space-problem is in a certain sense an inverse
question: if a short exact sequence

(∗) 0→ F → E → E/F → 0

of lts is given (algebraic and topological exactness is assumed) in which spaces F
and E/F possess certain property P , must the space E possess the same property?
If the answer to such a question is positive, then the property P is called three-
space-stable. It is of some interest to mention that in the category of linear
topological spaces F and E/F can be locally convex, without E being locally
convex, i.e. the property of being locally convex is not three-space-stable in the
category of lts . Detailed account on the three-space-stability of many properties
can be found in [9] and [19].
In this paper we investigate the three-space-stability for some classes of lts and

lcs which, to our knowledge, have not been considered in that sense.

1. Three-space-problem for locally topological spaces

Let us recall some definitions.
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A locally convex space E is said to be a b-space (b-barrelled) if every absolutely
convex subset (resp. barrel) in it is a neighbourhood of origin whenever its inter-
section with each bounded absolutely convex subset B of E is a neighbourhood
of origin in B; E is a Db-space if it is b-barrelled and has a fundamental sequence
of bounded subsets (equivalently, if it is a b-space with a fundamental sequence
of bounded subsets) [18].
The respective notions in the category of linear topological spaces are called

locally topological, ultra-b-barrelled, resp. σ-locally topological spaces [1], [14] —
in the previous definitions one has just to replace an absolutely convex set by a
string and a barrel by an ultrabarrel.
These properties of lts (lcs) are not three-space-stable. As an example, let us

show it for Db (resp. σ-locally topological) spaces. We shall use the Example 3.5
from the paper [19]. In it, (X,Z) is an lcs and L is its subspace, such that:
(a) (L,Z|L) is a barrelled and bornological (DF)-space; it is certainly a Db and
σ-locally topological space; (b) (X/L,Z/L) is a normed space; (c) (X,Z) is not
a Db (neither a σ-locally topological) space. Indeed, the opposite assumption
would lead to the contradiction in the same way as in [19], using the fact that the
quotient mapping q : X → X/L in this case lifts bounded sets with closure — see
Theorem 3.2.1 [18], resp. 4.(3) [1].
Let us show now that, similarly to (ultra) bornological and (ultra) (DF)-spaces,

the three-space-problem for the mentioned classes has the positive answer under
some additional hypothesis.

Proposition 1.1. (a) Let (∗) be a short exact sequence of lts , such that F is
locally bounded and E/F is locally topological. Then E is a locally topological
space.

(b) If the previous sequence is in the category of lcs , such that F is seminormed
and E/F is a b-space, then E is a b-space, too.

Proof: We shall prove the part (a); for (b) it can be done in an even simpler
way. We shall use ideas as in [19].
Let (Tn)

∞
1 be a locally topological string in E, i.e. let for each B ∈ B(E) (the

set of all absolutely convex bounded subsets of E) and for each n, Tn ∩ B be a
neighbourhood of origin in B in the induced topology. Then (Tn∩F )∞1 is a locally
topological string in F . As far as the space F , being locally bounded, is locally
topological, (Tn ∩F )∞1 is a topological string, i.e. there exists a topological string
(Un)

∞
1 in E, such that F ∩ (Un + Un) ⊂ Tn for each n. It can be assumed that

the sets F ∩ (Un + Un) are bounded. Consider the string (q(Tn ∩ Un))
∞
1 in E/F

(q — the quotient map) and let us show that it is locally topological. Let C be
an arbitrary bounded subset of E/F . According to Proposition 3.1 (a) [19], there
is B ∈ B(E), such that C = q(B). It follows that

C ∩ q(Tn ∩ Un) = q(B) ∩ q(Tn ∩ Un) ⊃ q(B ∩ Tn ∩ Un),

hence, C ∩ q(Tn ∩ Un) is a neighbourhood of origin in C, since q is an open
mapping. Therefore, (q(Tn ∩ Un))

∞
1 is a topological string in E/F , and so, e.g.,
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q(T2 ∩ U2) is a neighbourhood of origin in E/F . Now V = U2 ∩ ((T2 ∩ U2) + F )
is a neighbourhood of origin in E. Since

V ⊂ U2 ∩ (T2 ∩ U2 + F ∩ (U2 + U2)) ⊂ T2 + T2 ⊂ T1,
T1 is a neighbourhood of origin in E, too, which proves that the space E is locally
topological. �

In the similar way one can prove the following

Proposition 1.2. Let (∗) be a short exact sequence of lcs (lts) in which F is
seminormed (locally bounded) and E/F is (ultra) b-barrelled. Then E is (ultra)
b-barrelled, too.

Proposition 1.3. Let (∗) be a short exact sequence of lcs (lts) in which F
is seminormed (locally bounded) and E/F is a Db (resp. σ-locally topological )
space. Then E is a Db (resp. σ-locally topological ) space, too.

Proof: Follows by combining our Proposition 1.1 and Proposition 3.3 (a) of [19].
�

2. Three-space-problem for (HM)-spaces

From [19] we know that some properties are three-space-stable in the class of
Fréchet spaces, not being stable in general. It was shown in [5] that distinguished-
ness and density condition (DC) of S. Heinrich are three-space-stable in the class
of (F)-spaces, with additional condition of lifting of bounded sets (with closure).
Recall that an lts E is called an (HM )-space if it has all isomorphic ultra-

powers in the sense of S. Heinrich [11] or (equivalently) if it has all isomorphic
nonstandard hulls in the sense of Henson-Moore [12], [13]. In the general case, a
space E is (HM) if and only if P(E) = B(E) (P(E) is the class of all precompact
subsets of E) and E satisfies (DC) [11], [15]. If E is a complete lcs , then it is an
(HM)-space if and only if it is inductively semireflexive [3], [7] and if and only if
each almost Cauchy ultrafilter converges in E as soon as it converges weakly.
For (HM)-spaces we have

Proposition 2.1. Let (∗) be a short exact sequence in the class of (F)-spaces.
Then E is an (HM)-space if F and E/F are such.

Proof: A Fréchet space is by [12] an (HM)-space if and only if it is Montel. The
proposition follows from Proposition 4.4 [19]. �

Notice that a part of the converse is not true by the famous Köthe-Grothen-
dieck Fréchet-Montel example [16; 31.5] — a quotient of a Fréchet-Montel space
need not be Fréchet-Montel.
A bit stronger conclusion is valid for Db (resp. σ-locally topological) spaces

(a fortiori for (ultra) (DF)-spaces). Namely, according to Proposition 4.4 [2],
Proposition 5.5 [15], and to 4.(7) and 4.(8) [1], in these classes a space is of the
type (HM) if and only if it is (ultra) Schwartz. Using Proposition 3.7 [19] and
the fact that subspaces and quotients of Schwartz spaces are of the same kind, we
obtain
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Proposition 2.2. Let (∗) be a short exact sequence in the class of Db (resp.
σ-locally topological ) spaces. Then E is an (HM)-space if and only if F and E/F
are such.

Remark 1. Particularly, in the mentioned classes every quotient of an (HM)-space
is again an (HM)-space, which is not true in the class of Fréchet spaces by the
mentioned example from [16]. Of course, each subspace of an (HM)-space is an
(HM)-space [15] and Schwartz space is of the type (HM) [13].

From [2], [13], [15] we know that a Fréchet, resp. (DF) or ultra-(DF) space E
is an (HM)-space if and only if P(E) = B(E). According to [10], an lcs E is
Schwartz if and only if P(E) = B(E) and E is quasinormable. Recall that E is
a (df)-space (sequentially-(DF) in some papers) if it has a fundamental sequence
of bounded sets and in its strong dual E′

β each 0-sequence is equicontinuous. For

this class let us prove the following

Lemma 2.3. Let E be a (df )-space and consider the following properties: 1◦ E
is an (HM)-space; 2◦ P(E) = B(E); 3◦ E′

β is of the type (HM).

Then 1◦ ⇐⇒ 2◦ and 3◦ =⇒ 1◦.

Proof: If P(E) = B(E), then E′
p = E′

β is a Fréchet space (E
′
p is the dual E′

equipped with the topology of precompact convergence) and each E′
p-precompact

subset is equicontinuous. Then E is topologically embedded in (E′
p)

′
p and since

(E′
p)

′
p is by [13] an (HM)-space, E is of the same kind, as its subspace, by [15].

Hence, 2◦ =⇒ 1◦. The converse is true for each lts .
To prove that 3◦ =⇒ 1◦, notice that P(E′

β) = B(E′
β), i.e. strongly bounded

subsets in the dual E′ of E are equicontinuous (since precompact subsets are such
for (df)-spaces). So, E is quasi-barrelled, hence a (DF)-space. By [2], E is then
an (HM)-space. �

This Lemma is a slight generalization of the respective proposition for (DF)-
spaces from [2]. Applying the Lemma and the fact that the property “being an
(HM)-space” is three-space-stable in the class of quasinormable spaces, we obtain
the following

Proposition 2.4. If (∗) is a short exact sequence of (df )-spaces, then E is an
(HM)-space if and only if F and E/F are of that type.

Proof: It just remains to prove that E/F is an (HM)-space if E is of that type.
Indeed, since the quotient-map q : E → E/F lifts bounded sets with closure, one
has P(E/F ) = B(E/F ). �

Remark 2. Let us prove that in the class of (df)-spaces, from 1◦, i.e. 2◦, it doesn’t
follow 3◦. From [6] it follows that there exists a so-called (dF)-space which is
not a (DF)-space. Namely, (dF)-space is by Corollary 1.7 [6] a complete k-space
with a fundamental sequence of compact subsets, i.e. an (HM)-space which is
equal to its full ultrapower (E = (E)D) [11], [15]. It is obviously a Db space [18],
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a fortiori a (df)-space. If its strong dual E′
β were an (HM)-space, by the proof of

3◦ =⇒ 1◦, it would follow that E is a (DF)-space, which is a contradiction.

In the following diagram we have the relationship between the four classes of
spaces:

(DF) =⇒ Db =⇒ (df)

⇑

(dF)

while the classes of (DF) and (dF)-spaces are incomparable. So, in the class of
complete Db (resp. (df)) spaces, the property “being an (HM)-space” is equivalent
to “being a (dF)-space”. Concerning (dF)-spaces we have

Proposition 2.5. If (∗) is a short exact sequence of (df )-spaces, then E is a
(dF)-space if and only if F and E/F are of that type.

Proof: If E is a (dF)-space, then by Proposition 1.9 [6] F and E/F are of the
same kind (we assume that F is a closed subspace). Conversely, if F and E/F are
(dF)-spaces, then they are complete (HM)-spaces, hence E is of the same type by
the Proposition 2.4 and Proposition 1.3 [19]. �

We do not know whether the property (HM) is three-space-stable in the general
case.

Remark 3. As we have already said, three-space-stability of (DC)-spaces, which
are in close relationship with (HM)-spaces, was investigated in [5]. In this context
the following question was posed in [4]: is there an (F )-space E without (DC ),
such that its strong bidual E′′ possesses (DC )? A. Peris in his dissertation showed
that the answer was negative. We give here an alternate proof of this fact.
Let E be an (F)-space, such that E′′ has (DC). Then E′′ is a distinguished (F)-

space, such that bounded subsets of its strong dual E′′′
β are metrizable. According

to Theorem 6 [9], the spaces E and E′′/E are distinguished and the quotient-map
q : E′′ → E′′/E lifts bounded sets with closure (and also without closure —
Theorem 8 [9]). So we have a short exact sequence of (F)-spaces

0→ E
i
→ E′′ q

→ E′′/E → 0

in which q lifts bounded sets. Applying 26.12 [17], the dual sequence

0→ (E′′/E)′β
qt

→ (E′′)′β
it
→ E′

β → 0

is topologically exact. Since E′′′
β is a (DF)-space, quotient-map it lifts bounded

sets with closure. As far as bounded sets in E′′′
β are metrizable, bounded sets in

E′
β have the same property, and so the space E satisfies (DC).
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3. Three-space-problem for inductively semireflexive spaces

Recall the definition of inductively semireflexive [3], i.e. b-reflexive spaces [7].
Let (E, t) be an lcs . Denote by TE′ the topology on the dual E′ which has a

base of the 0-neighbourhoods formed of t-equivorous discs (i.e. absolutely convex
sets which absorb all t-equicontinuous subsets of E′). This topology is exactly the
inductive limit topology of the family {E′

U◦ | U ∈ Ut(0) } of Banach spaces and it

is finer then the strong topology β(E′, E). If (E′, TE′)′ = E, then the space (E, t)
is said to be inductively semireflexive. This property is in close relationship with
(HM)-spaces [2], [13], and on the other hand with ultrabornological spaces [7].
Observe that the following is valid:

Lemma 3.1. If (E, t) is a Fréchet or a (df )-space (in particular, a (DF) or a Db
space), then it is inductively semireflexive if and only if it is semireflexive.

Proposition 3.2. Let (∗) be a short exact sequence of Fréchet spaces. If F and
E/F are (inductively) semireflexive, then E is of the same kind. The converse is
true if the quotient-map q : E → E/F lifts bounded sets.

Proof: The first part of the proposition follows from Lemma 3.1 and Proposi-
tion 4.3 [19]. As a (closed) subspace of a semireflexive space E is always of the
same kind, it remains to prove that under given circumstances the quotient E/F
possesses the same property. Indeed, according to 26.12 [17], the sequence

0→ (E/F )′β → E′
β → F ′

β → 0

is topologically exact. Then it is F ′
β = F ′

τ (since E′
β/F ◦ = F ′

β and τ(E′, E)/F ◦ =

τ(F ′, F )), and also β(E′, E)|F ◦ = β(F ◦, E/F ) (because of the exactness) and
τ(E′, E)|F ◦ ≤ τ(F ◦, E/F ). Therefore, β(F ◦, E/F ) ≤ τ(F ◦, E/F ) and the space
E/F is (inductively) semireflexive. �

Notice that in such a way in the following diagram

(HM) =⇒ (inductively) semireflexive

⇓ ⇓

(DC) =⇒ distinguished

the upper two properties are three-space-stable in the class of (F)-spaces, while
the lower two are not [5].

Proposition 3.3. If 0→ F
i
→ E

q
→ E/F → 0 is a short exact sequence of (df )-

spaces (particularly (DF) or Db spaces), then E is (inductively) semireflexive if
and only if F and E/F are of the same kind.

Proof: Suppose that F and E/F are inductively semireflexive and let us prove
that E is such. According to Lemma 3.1 and Proposition 4.2 [19] , it is suf-
ficient to prove that in the dual F ′ we have β(E′/F ◦, F ) = β(E′, E)/F ◦. As
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(E′/F ◦, β(E′/F ◦, F )), as metrizable, is a bornological space, each 0-sequence
{x′n} is equicontinuous, i.e. there exists an equicontinuous subset A ⊂ E′ such that
{x′n} ⊂ it(A), wherefrom it follows that the set {x′n} is β(E′, E)/F ◦-bounded.
Conversely, suppose that E is (inductively) semireflexive. Since the quotient-

map q lifts bounded sets with closure, as with (DF)-spaces, we obtain that the
sequence

0→ (E/F )′β
qt

→ E′
β

it
→ F ′

β → 0

is topologically exact. As in the proof of Proposition 3.2 we conclude that the
space E/F is (inductively) semireflexive. �

Remark 1. The previous proposition is a slight generalization of Proposition 4.3
[19].

Remark 2. Semireflexivity is a property which depends only on the dual pair, while
inductive semireflexivity depends on the topology of the given space. So, for the
spaces mentioned in Lemma 3.1 semireflexivity and inductive semireflexivity are
equivalent only for the given topology. For example, if (E, t) is a semireflexive
space, then (E, p) has the same property for each topology p which is compatible
with the dual pair 〈E, E′〉. For inductive semireflexivity it is not the case.

4. Three-space-problem for spaces with minimal or the finest topology

As is well known, it is said that an lts E has minimal topology [20] if there is
no strictly coarser linear (Hausdorff) topology on E. The minimal topology on E
will be denoted by tmE .

Proposition 4.1. Let (∗) be a short exact sequence of lts . Then E has minimal
topology if F and E/F have minimal topologies.

Proof: Let F and E/F have minimal topologies tmF , resp. tm(E/F ) and let t

be the topology of E. According to [19], t is a Hausdorff topology and tmE ≤ t.
Furthermore, tmE |F ≤ tmF = tF and tmE/F ≤ t/F = tm(E/F ); also tmF ≤

tmE |F (because of minimality) and tm(E/F ) ≤ tmE/F , so we have the equality

of topologies t = tmE on the base of [19, p. 23]. �

Remark. The converse of the previous proposition is true in the category of locally
convex spaces (see Example 6, Chapter IV of [20]). According to [8] it is an open
question whether a quotient of an lts with minimal topology is again with minimal
topology.

Proposition 4.2. Let (∗) be a short exact sequence of lts (lcs). Then the space
E has the finest linear (locally convex) topology if and only if F and E/F obeys
this property.

Proof: The finest locally convex topology on the spaceX will be denoted by TX .
Suppose that spaces F and E/F have topologies TF and TE/F , respectively. If t is
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the topology of the space E, then from t ≤ TE it follows TF = t|F ≤ TE |F = TF
(since the finest locally convex topology induces such a topology on a subspace)
and also t/F ≤ TE/F ≤ TE/F = t/F . As in the previous proof, from t ≤ TE ,

t|F = TE |F and t/F = TE/F it follows that t = TE .
The converse is Example 7 in Chapter II of [20].
The proof is the same for the finest linear topology. �
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rem, Duke Math. J. 40 (1973), 845–856.

[7] Buchwalter H., Espaces ultrabornologiques et b-reflexivite, Publ. Dép. Mat. Lyon 8 (1971),
91–106.

[8] Dierolf S., A note on the lifting of linear and locally convex topologies on a quotient space,

Collect. Math. 31 (1980), 193–198.
[9] Dierolf S., On the three-space-problem and the lifting of bounded sets, Collect. Math. 44
(1993), 81–89.

[10] Grothendieck A., Sur les espaces (F) et (DF), Summa Bras. Math. 3 (1954), 57–123.
[11] Heinrich S., Ultrapowers of locally convex spaces and applications I, Math. Nachr. 118

(1984), 285–315.
[12] Henson C.W., Moore L.C., Jr., The nonstandard theory of topological vector spaces, Trans.

Amer. Math. Soc. 172 (1972), 405–435.
[13] Henson C.W., Moore L.C., Jr., Invariance of the nonstandard hulls of locally convex spaces,

Duke Math. J. 40 (1973), 193–205.
[14] Kadelburg Z., Ultra-b-barrelled spaces and the completeness of Lb(E, F ), Mat. Vesnik 3

(16) (31) (1979), 23–30.
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[17] Meise R., Vogt D., Einführung in Funktionalanalysis, Vieweg, Wiesbaden, 1992.
[18] Noureddine K., Nouvelles classes d’espaces localment convexes, Publ. Dép. Mat. Lyon 10

(1973), 105–122.
[19] Roelcke W., Dierolf S., On the three-space-problem for topological vector spaces, Collect.

Math. 32 (1981), 13–35.
[20] Shaefer H.H., Topological Vector Spaces, Springer, Berlin-Heidelberg-New York, 1970.

Faculty of Mathematics, Studentski trg 16, Beograd, Yugoslavia

E-mail : kadelbur@matf.bg.ac.yu

Faculty of Sciences, Radoja Domanovića 12, Kragujevac, Yugoslavia
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