Alessandro Fedeli
On the cardinality of functionally Hausdorff spaces

Commentationes Mathematicae Universitatis Carolinae, Vol. 37 (1996), No. 4, 797--801

Persistent URL: http://dml.cz/dmlcz/118886

Terms of use:
© Charles University in Prague, Faculty of Mathematics and Physics, 1996

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
On the cardinality of functionally Hausdorff spaces

ALESSANDRO FEDELI

Abstract. In this paper two new cardinal functions are introduced and investigated. In particular the following two theorems are proved:
(i) If X is a functionally Hausdorff space then $|X| \leq 2^{fs(X)\psi\tau(X)}$;
(ii) Let X be a functionally Hausdorff space with $fs(X) \leq \kappa$. Then there is a subset S of X such that $|S| \leq 2^\kappa$ and $X = \bigcup\{cl_{\tau\theta}(A) : A \in [S]^\leq\kappa\}$.

Keywords: cardinal functions, τ-pseudocharacter, functional spread

Classification: 54A25

A space X is said to be functionally Hausdorff if whenever $x \neq y$ in X there is a continuous real valued function f defined on X such that $f(x) = 0$ and $f(y) = 1$.

In the last years many results involving cardinal functions related to s (spread) have been obtained by several authors (see e.g. [8], [9], [10], [12]).

In this paper we give a result on the bound of the cardinality of functionally Hausdorff spaces using two new cardinal functions fs and $\psi\tau$ related to s and ψ respectively. Moreover we prove, for functionally Hausdorff spaces, a variant of a well-known result on spread due to Shapirovskii ([11, Theorem 3], [4, Theorem 5.1]).

We refer the reader to [1], [4] and [7] for notations and definitions not explicitly given. $\chi(X)$, $s(X)$ and $\psi(X)$ denote respectively the character, the spread and the pseudocharacter of a space X.

Let A be a subset of a space X:
(i) ([5], [6]) The τ-closure of A, denoted by $cl_\tau(A)$, is the set of all points $x \in X$ such that any cozero-set neighbourhood of x intersects A.
(ii) ([2]) The $\tau\theta$-closure of A, denoted by $cl_{\tau\theta}(A)$, is the set of all points $x \in X$ such that $cl_\tau(V) \cap A \neq \emptyset$ for every open neighbourhood V of x.

For every X and every $A \subset X$ we have $\overline{A} \subset cl_{\tau\theta}(A) \subset cl_\tau(A)$. It is clear that if X is completely regular then $\overline{A} = cl_{\tau\theta}(A) = cl_\tau(A)$ for every $A \subset X$.

Definition 1. Let X be a space. The functional spread of X, denoted by $fs(X)$, is the smallest infinite cardinal number κ such that for every open family U of X and every $A \subset \bigcup U$ there exist a $V \in [U]^\leq\kappa$ and a $B \in [A]^\leq\kappa$ such that $A \subset cl_{\tau\theta}(B) \cup \bigcup\{cl_\tau(V) : V \in V\}$.
Remark 2. Let \mathcal{U} be an open cover of a space X, let $s(X) \leq \kappa$. By a well-known result of Shapirovskii it follows that there are a $\mathcal{V} \in [\mathcal{U}]^{\leq \kappa}$ and an $A \in [X]^{\leq \kappa}$ such that $X = \overline{A} \cup \bigcup \mathcal{V}$. Since $s(Y) \leq s(X)$ for every subspace Y of X it easily follows that $fs(X) \leq s(X)$. However the above inequality can be proper as the following example shows. For every $x \in R$ let $\mathcal{B}_x = \{\{x\} \cup B(x, \frac{1}{n}) \cap \emptyset : n \in \mathbb{N}\}$ and let X be R with the topology generated by the neighbourhood system $\{\mathcal{B}_x\}_{x \in R}$. Then X is a functionally Hausdorff space such that $fs(X) = \omega < s(X)$.

Definition 3. Let X be a functionally Hausdorff space and let $x \in X$. A family of open neighbourhoods of x is said to be a τ-pseudobase for x if $\bigcap\{\text{cl}_\tau(U) : U \in \mathcal{U}\} = \{x\}$. Let $\psi_\tau(x, X) = \min\{|\mathcal{U}| : \mathcal{U} \text{ is a } \tau\text{-pseudobase for } x\} + \omega$, the τ-pseudocharacter of X is defined as follows: $\psi_\tau(X) = \sup\{\psi_\tau(x, X) : x \in X\}$.

Remark 4. It is obvious that for every Tychonoff space X we have $\psi_\tau(X) = \chi(X)$. Moreover $\psi_\tau(X) \leq \chi(X)$ for every functionally Hausdorff space X. In fact let $x \in X$ and let \mathcal{B}_x be a local base at x, we claim that $\bigcap\{\text{cl}_\tau(B) : B \in \mathcal{B}_x\} = \{x\}$. Let us consider a point $y \in X \setminus \{x\}$, since X is functionally Hausdorff there is a continuous mapping $f : X \to \mathbb{I}$ such that $f(x) = 0$ and $f(y) = 1$. Let $B \in \mathcal{B}_x$ such that $B \subset f^{-1}([0, \frac{1}{2}))$, then $\text{cl}_\tau(B) \subset f^{-1}([0, \frac{1}{2}])$. Hence $y \notin \text{cl}_\tau(B)$.

The above inequality can be proper. Let τ be the euclidean topology on R and let X be R with the topology $\sigma = \{V \setminus C : V \in \tau, C \subset R \text{ and } |C| \leq \omega\}$. Then X is a functionally Hausdorff space such that $\psi_\tau(X) = \omega < \chi(X)$.

A relation between ψ_τ and fs is given in the following

Proposition 5. If X is a functionally Hausdorff space then $\psi_\tau(X) \leq 2^{fs(X)}$.

Proof: Let $fs(X) = \kappa$ and $x \in X$. Since X is functionally Hausdorff then for every $y \in X \setminus \{x\}$ there are open sets U_y and V_y such that $x \in U_y$, $y \in V_y$ and $\text{cl}_\tau(U_y) \cap \text{cl}_\tau(V_y) = \emptyset$. Since $fs(X) = \kappa$ we can find $A, B \in [X \setminus \{x\}]^{\leq \kappa}$ such that $X \setminus \{x\} \subset \text{cl}_\tau(A) \cup \bigcup\{\text{cl}_\tau(V_y) : y \in B\}$.

Let $C = \{C \subset A : x \notin \text{cl}_\tau(C)\}$, for every $C \in C$ take a cozero-set $G(C)$ such that $x \in G(C)$ and $\text{cl}_\tau(G(C)) \subset X \setminus \text{cl}_\tau(C)$. Set $A = \{G(C) : C \in C\}$, $B = \{U_y : y \in B\}$ and $\mathcal{U} = A \cup B$. Clearly $|\mathcal{U}| \leq 2^\kappa$. We claim that the family \mathcal{U} of open neighbourhoods of x is a τ-pseudobase for x. Let us take $z \in X \setminus \{x\}$. If $z \in \bigcup\{\text{cl}_\tau(V_y) : y \in B\}$ then there is an $y \in B$ such that $z \notin \text{cl}_\tau(U_y) \supset \bigcap\{\text{cl}_\tau(U) : U \in \mathcal{U}\}$. If $z \in \text{cl}_\tau(A)$ let $B_z = \{B_\lambda : \lambda \in \Lambda\}$ be the family of all open neighbourhoods of z, choose a point $x_\lambda \in \text{cl}_\tau(B_\lambda \cap V_z) \cap A$ for every $B_\lambda \in B_z$ and set $C = \{x_\lambda : \lambda \in \Lambda\}$. Clearly $C \subset A$, $z \in \text{cl}_\tau(A)$ and $x \notin \text{cl}_\tau(A)$. Therefore $C \in C$ and $z \notin \text{cl}_\tau(G(C)) \supset \bigcap\{\text{cl}_\tau(U) : U \in \mathcal{U}\}$. Hence $\bigcap\{\text{cl}_\tau(U) : U \in \mathcal{U}\} = \{x\}$.

Theorem 6. If X is a functionally Hausdorff space then $|X| \leq 2^{fs(X)}$.

Proof: Let $fs(X) = \kappa$, and for each $x \in X$ let \mathcal{V}_x be a τ-pseudobase for x with $|\mathcal{V}_x| \leq \kappa$. Construct a sequence $\{A_\alpha : \alpha < \kappa^+\}$ of subsets of X and a sequence of open collections $\{\mathcal{V}_\alpha : 0 < \alpha < \kappa^+\}$ such that:
(i) \(|A_\alpha| \leq 2^\kappa\) for every \(\alpha < \kappa^+\);
(ii) \(V_\alpha = \{V : V \in V_x, x \in \bigcup_{\beta < \alpha} A_\beta\}\), \(0 < \alpha < \kappa^+\);
(iii) If \(W\) is a family of \(\leq \kappa\) elements of \(V_\alpha\) and \(K_\lambda, \lambda < \kappa\), are subsets of \(\bigcup_{\beta < \alpha} A_\beta\) with \(|K_\lambda| \leq \kappa\) and \(X \neq \bigcup_{\lambda < \kappa} \text{cl}_{\tau_\theta}(K_\lambda) \cup \bigcup\{\text{cl}_{\tau}(W) : W \in W\}\), then \(A_\alpha \setminus (\bigcup_{\lambda < \kappa} \text{cl}_{\tau_\theta}(K_\lambda) \cup \bigcup\{\text{cl}_{\tau}(W) : W \in W\}) \neq \emptyset\).

Let \(A = \bigcup_{\alpha < \kappa^+} A_\alpha\). It is enough to show that \(A = X\). Suppose not and let \(z \in X \setminus A\). Let \(V_z = \{V_\lambda : \lambda \in \Lambda\}\), \(|\Lambda| \leq \kappa\), since \(\{z\} = \bigcap\{\text{cl}_{\tau}(V_\lambda) : \lambda \in \Lambda\}\) it follows that \(X \setminus \{z\} = \bigcup\{X \setminus \text{cl}_{\tau}(V) : \lambda \in \Lambda\}\).

For every \(\lambda \in \Lambda\) let \(S_\lambda = A \cap (X \setminus \text{cl}_{\tau}(V_\lambda))\), and for every \(y \in S_\lambda\) let \(U_y \in V_y\) such that \(z \notin \text{cl}_{\tau}(U_y)\). Since \(fs(X) \leq \kappa\) there are \(B_\lambda, C_\lambda \in [S_\lambda]^{\leq \kappa}\) such that \(S_\lambda \subset \text{cl}_{\tau_\theta}(C_\lambda) \cup \bigcup\{\text{cl}_{\tau}(U_y) : y \in B_\lambda\}\).

Let \(B = \bigcup\{B_\lambda : \lambda \in \Lambda\}\), hence \(A = \bigcup\{S_\lambda : \lambda \in \Lambda\} \subset \bigcup\{\text{cl}_{\tau_\theta}(C_\lambda) : \lambda \in \Lambda\} \cup \bigcup\{\text{cl}_{\tau}(U_y) : y \in B\}\) and \(z \notin \bigcup\{\text{cl}_{\tau_\theta}(C_\lambda) : \lambda \in \Lambda\} \cup \bigcup\{\text{cl}_{\tau}(U_y) : y \in B\}\) (clearly \(z \notin \bigcup\{\text{cl}_{\tau}(U_y) : y \in B\}\), moreover for every \(\lambda \in \Lambda\) \(V_\lambda\) is an open neighbourhood of \(z\) such that \(\text{cl}_{\tau}(V_\lambda) \cap C_\lambda = \emptyset\), so \(z \notin \bigcup\{\text{cl}_{\tau_\theta}(C_\lambda) : \lambda \in \Lambda\}\).

Choose \(\alpha \in \kappa^+\) such that \(B \cup \bigcup\{C_\lambda : \lambda \in \Lambda\} \subset \bigcup\{A_\beta : \beta < \alpha\}\). Now \(X \neq \bigcup\{\text{cl}_{\tau_\theta}(C_\lambda) : \lambda \in \Lambda\} \cup \bigcup\{\text{cl}_{\tau}(U_y) : y \in B\}\) by (iii) \(A_\alpha \setminus (\bigcup_{\lambda < \kappa} \text{cl}_{\tau_\theta}(C_\lambda) : \lambda \in \Lambda\} \cup \bigcup\{\text{cl}_{\tau}(U_y) : y \in B\}) \neq \emptyset\). Since \(A \subset \bigcup\{\text{cl}_{\tau_\theta}(C_\lambda) : \lambda \in \Lambda\} \cup \bigcup\{\text{cl}_{\tau}(U_y) : y \in B\}\) we have a contradiction. \(\square\)

Remark 7. The above theorem can be proved using elementary submodels (our approach follows that of [13, 14, 3]). Let \(\kappa = fs(X)\psi_\tau(X)\) and let \(\tau\) and \(G\) be the topology on \(X\) and the family of all cozero sets of \(X\) respectively. For every \(x \in X\) let \(B_x\) be a \(\tau\)-pseudobase for \(x\) such that \(|B_x| \leq \kappa\) and let \(\psi : X \to \mathcal{P}(\tau)\) be the map defined by \(\psi(x) = B_x\) for every \(x \in X\). Let \(M\) be an elementary submodel such that \(|M| = 2^\kappa\), \(X, \tau, G, \psi \in M\) and \(M\) is closed under \(\kappa\)-sequences.

Observe that for every \(x \in X \cap M\) it follows that \(B_x \subset M\). We claim that \(X \subset M\) (and hence \(|X| \leq 2^\kappa\)). Suppose not, choose a point \(z \in X \setminus M\) and let \(B_z = \{B_\lambda : \lambda \in \Lambda\}\), \(|\Lambda| \leq \kappa\). Since \(\{z\} = \bigcap\{\text{cl}_{\tau}(B_\lambda) : \lambda \in \Lambda\}\) it follows that \(|X \setminus \{z\} = \bigcup\{X \setminus \text{cl}_{\tau}(B_\lambda) : \lambda \in \Lambda\}\). Let \(S_\lambda = X \cap \Lambda \cap (X \setminus \text{cl}_{\tau}(B_\lambda))\) for every \(\lambda \in \Lambda\). For every \(y \in S_\lambda\) let \(U_y \in M\) such that \(y \in U_y\) and \(z \notin \text{cl}_{\tau}(U_y)\). \(\{U_y : y \in S_\lambda\}\) is a family of open subsets of \(X\) such that \(S_\lambda \subset \bigcup\{U_y : y \in S_\lambda\}\). Since \(fs(X) \leq \kappa\) there are \(A_\lambda \in [S_\lambda]^{\leq \kappa}\) and \(Y_\lambda \in [U_\lambda]^{\leq \kappa}\) such that \(S_\lambda \subset \text{cl}_{\tau_\theta}(A_\lambda) \cup \bigcup\{\text{cl}_{\tau}(V) : V \in V_\lambda\}\). Let \(V_\lambda = \bigcup\{\text{cl}_{\tau}(V) : V \in V_\lambda\}\), observe that \(V = \{V_\lambda : \lambda \in \Lambda\}, A = \{\text{cl}_{\tau_\theta}(A_\lambda) : \lambda \in \Lambda\} \subset M\) and \(M\) is closed under \(\kappa\)-sequences so \(V, A \in M\). Set \(V = \bigcup V\) and \(A = \bigcup A\), by elementarity it follows that \(A \cup V \in M\). Now \(z \in X \setminus (A \cup V)\) so by elementarity there is some \(x \in X \cap M\) such that \(x \notin A \cup V\). Since \(X \cap M \subset A \cup V\) we have a contradiction.

Remark 8. The \(w\)-compactness degree of a space \(X\), denoted by \(wcd(X)\), is the smallest infinite cardinal \(\kappa\) such that for every open cover \(U\) of \(X\) there is a \(V \in [U]^{\leq \kappa}\) such that \(X = \bigcup\{\text{cl}_{\tau}(V) : V \in V\}\). In [2] it is shown that \(|X| \leq 2^{wcd(X)}\chi(X)\) for every functionally Hausdorff space \(X\). It is worth noting that Theorem 6 can give a better bound than the above result. The space \(X\)
in Remark 4 is a functionally Hausdorff space such that $|X| = 2^{fs(X)\psi_r(X)} < 2^{wed(X)_\chi(X)}$.

A fundamental result of Shapirovskii on spread says that if X is a Hausdorff space with $s(X) \leq \kappa$ then there is a subset S of X such that $|S| \leq 2^\kappa$ and $X = \bigcup \{A : A \in [S]^{\leq \kappa}\}$.

We conclude this paper with the following

Theorem 9. Let X be a functionally Hausdorff space with $fs(X) \leq \kappa$. Then there is a subset S of X such that $|S| \leq 2^\kappa$ and $X = \bigcup \{\text{cl}_{\tau_0}(A) : A \in [S]^{\leq \kappa}\}$.

Proof: By Proposition 5 it follows that $\psi_r(X) \leq 2^\kappa$, so for every $x \in X$ there is a τ-pseudobase B_x for x such that $B_x \leq 2^\kappa$. Let τ and \mathcal{G} be the topology on X and the family of all cozero-sets of X respectively. Moreover let $\psi : X \to \mathcal{P}(\tau)$ be the map defined by $\psi(x) = B_x$ for every $x \in X$. Take an elementary submodel \mathcal{M} of cardinality 2^κ such that $X, \tau, \mathcal{G}, \psi \in \mathcal{M}$ and which is closed under κ-sequences. $X \cap \mathcal{M}$ is a subset of X with the required properties. Let $x \in X$, we may assume that $x \notin X \cap \mathcal{M}$. We claim that there is a subset A of X such that $|A| \leq \kappa$ and $x \in \text{cl}_{\tau_0}(A)$. Observe that $B_y \subseteq \mathcal{M}$ for every $y \in X \cap \mathcal{M}$. Now for every $y \in X \cap \mathcal{M}$ take a $B_y \subseteq B_y$ (so $B_y \subseteq \mathcal{M}$) such that $x \notin \text{cl}_{\tau}(B_y)$. Since $fs(X) \leq \kappa$ it follows that there are $A, B \subseteq [X \cap \mathcal{M}]^{\leq \kappa}$ such that $X \cap \mathcal{M} \subseteq \text{cl}_{\tau_0}(A) \cup \{\text{cl}_{\tau}(B_y) : y \in B\}$. Since $A \subseteq [\mathcal{M}]^{\leq \kappa}$ and \mathcal{M} is closed under κ-sequences it follows that $A \in \mathcal{M}$ and hence $\text{cl}_{\tau_0}(A) \in \mathcal{M}$. Moreover $\{\text{cl}_{\tau}(B_y) : y \in B\} \subseteq [\mathcal{M}]^{\leq \kappa}$ and again $\{\text{cl}_{\tau}(B_y) : y \in B\} \in \mathcal{M}$. Therefore $\text{cl}_{\tau_0}(A) \cup \{\text{cl}_{\tau}(B_y) : y \in B\} \in \mathcal{M}$, hence $X = \text{cl}_{\tau_0}(A) \cup \{\text{cl}_{\tau}(B_y) : y \in B\}$ and $x \in \text{cl}_{\tau_0}(A)$. □

References

Dipartimento di Matematica Pura ed Applicata, Università, 67100 L’Aquila, Italy

(Received January 19, 1996)