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T -preserving homomorphisms of oriented graphs∗

J. Nešetřil†, E. Sopena, L. Vignal

Abstract. A homomorphism of an oriented graph G = (V, A) to an oriented graph G′ =
(V ′, A′) is a mapping ϕ from V to V ′ such that ϕ(u)ϕ(v) is an arc in G′ whenever
uv is an arc in G. A homomorphism of G to G′ is said to be T -preserving for some
oriented graph T if for every connected subgraph H of G isomorphic to a subgraph
of T , H is isomorphic to its homomorphic image in G′. The T -preserving oriented
chromatic number ~χT (G) of an oriented graph G is the minimum number of vertices
in an oriented graph G′ such that there exists a T -preserving homomorphism of G
to G′. This paper discusses the existence of T -preserving homomorphisms of oriented
graphs. We observe that only families of graphs with bounded degree can have bounded
T -preserving oriented chromatic number when T has both in-degree and out-degree at
least two. We then provide some sufficient conditions for families of oriented graphs for
having bounded T -preserving oriented chromatic number when T is a directed path or

a directed tree.

Keywords: graph, coloring, homomorphism

Classification: 05C

1. Introduction

The vertex set of a graph G is denoted by V (G). The edge set of an undirected
graph is denoted by E(G) and A(G) stands for the set of arcs of a digraph. A ho-
momorphism of a digraph G to a digraph G′ is a mapping ϕ from V (G) to V (G′)
such that ϕ(u)ϕ(v) is an arc in G′ whenever uv is an arc in G. Homomorphisms of
undirected graphs are defined in a similar way. Homomorphisms of digraphs and
undirected graphs have been studied as a generalization of graph coloring ([7],
[8], [9], [13], [17]). It is easy to see that an undirected graph U is k-colorable if
and only if U admits a homomorphism to the complete graph Kk. The chromatic
number of U can then equivalently be defined as the minimum number of vertices
in an undirected graph U ′ such that there exists a homomorphism of U to U ′.
Therefore, if a graph G has a homomorphism to a graph G′ we will say that G is
G′-colorable and the vertices of G′ will be called colors.
An orientation of an undirected graph U is a digraph obtained from U by

giving to every edge one of its two possible orientations. A digraph is an oriented
graph if it is an orientation of some undirected graph. Thus, oriented graphs are
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the second author visited KAM Charles University.
†Partially supported by GAUK and GAČR grants.
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digraphs which contain no opposite arcs. Homomorphisms of oriented graphs have
been studied in [12], [16], [18], [19]. The oriented chromatic number of an oriented
graphG is defined as the minimum number of vertices in an oriented graphH such
that there exists a homomorphism of G to H . The oriented chromatic number of
an undirected graph U is then defined as the maximum of the oriented chromatic
numbers of its orientations. In particular, we know that classes of graphs with
bounded genus, bounded degree or bounded treewidth have bounded oriented
chromatic number ([12], [19]). However, having bounded chromatic number is
not a sufficient condition for an undirected graph for having bounded oriented
chromatic number. For instance, the family of bipartite graphs has unbounded
oriented chromatic number ([12], [19]).
The oriented chromatic number of an oriented graph can also be defined via the

existence of oriented colorings: an oriented k-coloring of an oriented graph G is
a mapping c from V (G) to the set of colors {1, 2, . . . , k} such that (i) c(x) 6= c(y)
if xy ∈ A(G) (c is therefore a k-coloring of the underlying undirected graph of G)
and (ii) if xy, zt ∈ A(G) then c(x) = c(t)⇒ c(y) 6= c(z). The oriented chromatic
number of G then corresponds to the minimum k such that G has an oriented
k-coloring.

Let ~Pn denote the directed n-path, that is the oriented graph defined by

V (~Pn) = {x0, x1, . . . , xn} and A(~Pn) = {xixi+1, 0 ≤ i < n}. It is easy to
observe that if ϕ is a homomorphism of an oriented graph G to an oriented graph
G′ then for every directed 2-path uvw in G, ϕ(u)ϕ(v)ϕ(w) is a directed 2-path in

G′. We say that ϕ is ~P2-preserving. It is then natural to generalize this notion
as follows: let T be any oriented graph; a homomorphism of an oriented graph
G to an oriented graph G′ is said to be T -preserving if every connected subgraph
H of G which is isomorphic to a subgraph of T is isomorphic to its image under
ϕ in G′ (in other words, any two vertices of H must be assigned distinct colors).
A T -preserving oriented coloring of an oriented graph G will thus be an oriented
coloring such that any two vertices belonging to some subgraph isomorphic to a
subgraph of T are assigned distinct colors. We then define the T -preserving ori-
ented chromatic number ~χT (G) of an oriented graph G as the minimum number
of vertices in an oriented graph H such that there exists a T -preserving homo-
morphism of G to H . As before, the T -preserving oriented chromatic number
of an undirected graph is defined as the maximum of the T -preserving oriented
chromatic numbers of its orientations.
This paper is devoted to the study of T -preserving homomorphisms of orien-

ted graphs. This notion of preservation could be considered in the undirected
case. However, families of undirected graphs with bounded T -preserving chro-
matic number (for non trivial T ) must have bounded degree. To see that, let P2
denote the undirected 2-path and Sn the star with n branches (that is V (Sn) =
{x, y1, y2, . . . , yn} and E(Sn) = {xyi, 1 ≤ i ≤ n}). It is easy to observe that
if Sn admits a P2-preserving homomorphism to an undirected graph U then U
cannot have fewer than n + 1 vertices. In other words, the P2-preserving chro-
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matic number of stars is unbounded. On the contrary, everyoriented star has a
~P2-preserving homomorphism to ~P2 itself and has ~P2-preserving oriented chro-
matic number 3. Therefore, T -preserving homomorphisms can be studied in the
oriented case in a wider class of graphs. Note that P2-preserving homomorphisms
of undirected graphs were already considered in [15] and were called local homo-
morphisms. Nešetřil proved in [15] that for every connected undirected graph G,
automorphisms are the only P2-preserving homomorphisms of G to itself. Obvi-
ously, the same holds for T -preserving homomorphisms for every connected graph
T with at least two edges. For directed graphs the situation is more complicated.
For instance, one can easily see that for every directed graph T there exists a
directed graph GT with a non-injective T -preserving homomorphism of GT to
itself.
Let S+n (resp. S

−
n ) denote the oriented star with n branches and all arcs directed

outwards (resp. inwards). It is easy to check that S+n (resp. S
−
n ) has S

+
2 -preserving

(resp. S−
2 -preserving) oriented chromatic number n+ 1. Therefore, whenever an

oriented graph T has maximal in-degree and maximal out-degree at least 2, only
families of graphs with bounded degree can have bounded T -preserving oriented
chromatic number. But it is not difficult to prove that for every oriented graph
T , the family of graphs with degree at most k has bounded T -preserving oriented
chromatic number for every k. In the rest of the paper, we will thus restrict
ourselves to oriented graphs T having in-degree at most 1, that is directed paths

and directed trees (observe that it is not necessary to consider directed cycles ~Cn

since ~Pn-preserving homomorphisms are indeed ~Cn-preserving homomorphisms).
All the results we shall prove can obviously be restated for oriented graphs with
out-degree at most 1.

In Section 2 we introduce a new notion of acyclic coloring: a k-coloring of
an undirected graph is said to be p-acyclic if every p colors induce an acyclic
subgraph. We prove in particular that for every p, planar graphs with sufficiently
large girth can be p-acyclically colored (see Corollary 5). This notion of p-acyclic
coloring will be useful in the study of T -preserving homomorphisms.

In Section 3 we consider the case when T is a directed path. Our main results
here state that the family of undirected graphs with bounded p-acyclic chromatic

number have bounded ~Pp-preserving oriented chromatic number (see Theorem 7)
and that the family of oriented graphs with bounded out-degree have bounded
~Pp-preserving oriented chromatic number for every p (see Theorem 11).

In Section 4 we study T -preserving homomorphisms when T is a directed tree
(that is a rooted tree whose all arcs are directed from the root towards the leaves).
We prove that the family of oriented graphs with bounded p-acyclic chromatic
number and bounded out-degree have bounded T -preserving oriented chromatic

number for every directed tree T of depth at most ⌊p−1
2 ⌋ (see Theorem 14) and

show that both conditions are necessary.

We finally discuss some problems related to our work in Section 5.
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2. p-acyclic colorings of undirected graphs

A coloring of an undirected graph U is said to be acyclic if every two colors
induce a forest (ie. the subgraph of U induced by the vertices with any two given
colors has no cycle). The acyclic chromatic number χa(U) is then defined as the
minimum number k such that U has an acyclic k-coloring. In [18] Raspaud and
Sopena proved the following:

Theorem 4 ([18]). If an undirected graph U has acyclic chromatic number at

most k then every orientation of U has oriented chromatic number at most k·2k−1.

Conversely, Kostochka et al. proved in [12] that if all the orientations of an
undirected graph U have bounded oriented chromatic number then U has bounded
acyclic chromatic number. The links between the oriented chromatic number and
other parameters of a graph (eg. maximum degree, arboricity) have also been
studied in [12]. Thomas [20] observed that every family of graphs defined by a
non-empty set of forbidden minors has bounded acyclic chromatic number and
thus bounded oriented chromatic number.
Borodin proved in [3] that every planar graph has acyclic chromatic number

at most 5. From Theorem 1 we get that every oriented planar graph has orien-
ted chromatic number at most 5 · 24 = 80 ([18]). The study of oriented planar
graphs is thus particularly challenging in this context. Despite many efforts, no
better upper bound is known up to now (we know that there exist oriented planar
graphs with oriented chromatic number at least 15). This upper bound can be
significantly decreased under some large girth assumptions ([16]).
We now introduce a generalization of the notion of acyclic coloring. We shall see

that this new notion is of interest in the study of T -preserving homomorphisms.
Recall that the girth g(U) of an undirected graph U is the length of a shortest
cycle in U . The girth of an oriented graph is then defined as the girth of its
underlying undirected graph.

Definition 2. Let U be an undirected graph; a coloring of U is said to be p-
acyclic if every cycle C in U uses at least p + 1 colors. The p-acyclic chromatic
number χ

p
a(U) of U is the minimum number k such that U has a p-acyclic k-

coloring.

Note that any p colors in a p-acyclic coloring induce a forest. Thus a graph
cannot have a p-acyclic coloring if its girth is less than p + 1. Observe that the
notion of 2-acyclic coloring corresponds to the usual notion of acyclic coloring.
It is easy to see that every undirected graph U with maximum degree k and

girth g(U) > p has bounded p-acyclic chromatic number for every p: for every

vertex x in U there are at most t = k((k− 1)⌊p/2⌋− 1)/(k− 2) distinct vertices at
distance at most ⌊p/2⌋ from x. We can thus color the graph U with t+1 colors in
such a way that every two vertices at distance at most ⌊p/2⌋ get distinct colors.
Such a coloring is obviously p-acyclic.
Clearly, every graph with bounded p-acyclic chromatic number has bounded
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q-acyclic chromatic number for every q < p. However, this hierarchy of p-acyclic
chromatic numbers is strict as we have the following:

Observation 3. For every p, there exist families of graphs with bounded p-
acyclic chromatic number and unbounded (p+ 1)-acyclic chromatic number.

To see that, we generalize a construction proposed by Kostochka and Mel’nikov
in [11]. Let Gn,p (n, p ≥ 2) denote the graph obtained by linking two vertices s
and t by n distinct paths of length p (observe that every cycle in Gn,p has length
2p). Let now Gp = {Gn,p;n ≥ 2}. We define a coloring c of Gn,p as follows:
c(s) = 0, c(t) = p and for every path sx1x2 . . . xp−1t, let c(xi) = i. The coloring
c is p-acyclic since every cycle in Gn,p uses exactly p+ 1 colors. Thus the family
Gp has p-acyclic chromatic number at most p+ 1. Suppose now that the (p+ 1)-

acyclic chromatic number of Gp is at most K. If n >
( K
p−1

)

then there exist two

paths in Gn,p whose internal vertices uses the same subset of colors. Thus Gn,p

contains a cycle using at most p+ 1 colors, a contradiction.
We know that the families of planar graphs and of graphs with bounded

treewidth have bounded 2-acyclic chromatic number ([12]). The graphs Gn,2

from the previous observation are obviously planar and have treewidth 2. This
shows that there exist planar graphs and graphs of treewidth 2 having arbitrari-
ly large 3-acyclic chromatic number. In particular, if we want to get families of
planar graphs with bounded p-acyclic chromatic number we have to make some
additional assumption, for instance on the maximal degree or on the girth. In [16]
Nešetřil et al. proved the following:

Theorem 4 ([16]). Let G be a planar graph with girth g ≥ 5d + 1 having no
vertex of degree one. Then G contains an induced (d+ 1)-path.

Using that result, we easily get the following:

Corollary 5. For every d > 1, if U is an undirected planar graph with girth
g ≥ 5d+ 1 then the d-acyclic chromatic number of U is at most d+ 1.

Proof: W.l.o.g. we may suppose that U has no vertex of degree one since no
such vertex belongs to a cycle. We proceed by induction on the number n of
vertices in U . This is certainly true if U has at most d + 1 vertices. Sup-
pose now that n > d + 1. By Theorem 4 we know that U contains an induced
(d+1)-path x0x1 . . . xd+1. Let f be any d-acyclic coloring of G \ {x1, . . . , xd}. If
f(x0) = f(xd+1) we color the vertices x1, . . . , xd with the d remaining colors. If
f(x0) 6= f(xd+1) we color the vertices x1, . . . , xd with any d distinct colors. The
(d+ 1)-coloring thus obtained is clearly d-acyclic. �

3. Path-preserving homomorphisms

In this section, we study T -preserving homomorphisms of oriented graphs when
the graph T is a directed path. We first consider T -preserving homomorphisms
of oriented forests:
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Proposition 6. Let U be an undirected forest. Then for every p, every orienta-

tion of U has ~Pp-preserving oriented chromatic number at most p+ 1.

Proof: Clearly every oriented tree has a homomorphism to ~Cp+1, the directed

cycle on p+ 1 vertices. Obviously, every such homomorphism is ~Pp-preserving.
�

Using that, we get the following result which generalizes Theorem 1 ([18])
introduced in Section 2:

Theorem 7. Let U be an undirected graph with p-acyclic chromatic number k.

Then the ~Pp-preserving oriented chromatic number of every orientation of U is

at most k · (p+ 1)(
k−1
p−1).

Proof: Suppose that U has p-acyclic chromatic number k and let c0 denote

a p-acyclic ,coloring of U which uses k colors. Let ~U be any orientation of U .
Recall that any p colors induce a forest in U . Moreover, every color i belongs to

t =
(k−1
p−1

)

subsets of p colors. We assume that for every i those subsets containing

i are ordered as σi
1, σ

i
2, . . . , σ

i
t. We now define a coloring c of ~U as follows: for

every x ∈ V (~U) let c(x) = (c0(x), c1(x), . . . , ct(x)) where for every i, 1 ≤ i ≤ t,

ci(x) corresponds to the ~Pp-preserving coloring by p+1 colors of the forest induced

by the p-subset σ
c0(x)
i (such a coloring exists by Proposition 6). We claim that

the coloring c thus defined is ~Pp-preserving. To see that, consider a directed path

x0x1 . . . xq of length q ≤ p in ~U . If all these vertices get distinct colors, there
is nothing to prove. Suppose that two vertices xi and xj get the same color.
The number of colors used for coloring x0, . . . , xq is then at most p, and there
exists at least one p-subset σ such that the whole path x0x1 . . . xq is contained in
the forest induced by σ. But then the colors assigned to xi and xj differ on the

component associated with σ, a contradiction. Thus c is indeed a ~Pp-preserving

oriented coloring of ~U which uses at most k · (p+ 1)(
k−1
p−1) colors. �

In case of oriented planar graphs, using Corollary 5 and Theorem 7 we get:

Corollary 8. If U is an undirected planar graph with girth g ≥ 5d + 1 then

the ~Pd-preserving oriented chromatic number of every orientation of U is at most
(d+ 1)d+1.

Unlike the case of acyclic chromatic numbers and oriented chromatic numbers

([12]), an undirected graph with bounded ~Pp-preserving oriented chromatic num-
ber may have unbounded p-acyclic chromatic number. For instance, the family G2
from Observation 3 has unbounded 3-acyclic chromatic number although every

orientation of a graph Gn,2 in G2 has ~Pp-preserving oriented chromatic number
at most 6 for every p ≥ 1. To see that, observe that such an orientation contains

no subgraph isomorphic to ~Pp for every p ≥ 4. Hence we only need to consider
~P3-preserving oriented colorings. The coloring f defined by f(s) = 0, f(t) = 5
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and for every internal vertex xi, 1 ≤ i ≤ n, f(xi) = 1 (resp. 2,3,4) if xi is linked
to s, t by the arcs sxi and txi (resp. sxi and xit, xis and txi, xis and xit) is

obviously ~P3-preserving and uses at most 6 colors.
Recall that an undirected graph U is d-degenerate if every subgraph of U con-

tains a vertex with degree at most d. It is folklore to prove that every d-degenerate
graph has chromatic number at most d+ 1.

One other way to obtain families of graphs with bounded ~Pp-preserving orien-
ted chromatic numbers is to consider families of oriented graphs with bounded
out-degree (or, similarly, with bounded in-degree). For undirected graphs, the
existence of orientations with bounded out-degree ensures that the chromatic
number is bounded as shown by the following easy observation:

Observation 9. Let U be an undirected graph; if U can be oriented in such a
way that every vertex x in U has out-degree at most d then χ(G) ≤ 2d+ 1.

To see that, observe that if every vertex has out-degree at most d in the corre-

sponding orientation ~U of U , then there exists a vertex x with in-degree at most d.
Thus, the total degree of x is at most 2d. Since this property is obviously true for
every subgraph of U , we get that U is 2d-degenerate and thus (2d+ 1)-colorable.
However, families of oriented graphs with bounded out-degree have not necess-

arily bounded p-acyclic chromatic number. For instance, every graph Gn,p from
Observation 3 can be oriented in such a way that every vertex has out-degree at
most 2, although the family Gp has unbounded (p+1)-acyclic chromatic number.
We will now prove that Observation 9 can be generalized to the case of oriented

chromatic numbers:

Theorem 10. Let G be an oriented graph with out-degree at most d. Then G

has oriented chromatic number at most 22d(d+1)+1 − 1.

Proof: Let UG be the undirected graph defined by V (UG) = V (G) and xy is an
edge in UG if and only if x and y are joined in G by a directed path of length 1 or 2.
Clearly UG can be oriented in such a way that every vertex has out-degree at most
d(d+1). By Observation 9, UG has chromatic number at most t = 2d(d+1)+ 1.
Let now Ht be the oriented graph defined as follows: the vertices of Ht are all
the tuples of the form (i; a1, . . . , ai−1) with 1 ≤ i ≤ t (i is called the identity of
the vertex) and aj ∈ {0, 1} for every j, 1 ≤ j < i. Let a = (i; a1, . . . , ai−1) and
b = (j; b1, . . . , bj−1) be two vertices in Ht with i < j. There is arc from a to b if

bi = 0 and an arc from b to a otherwise. Observe that the graph Ht has 2
t − 1

vertices and that all the arcs in Ht link vertices with distinct identities.
Let now c be any given t-coloring of UG. We denote by Vi the set of vertices x
such that c(x) = i and by Gi,j the (oriented) subgraph of G induced by Vi ∪ Vj .
From the definition of UG we get that Gi,j contains no directed 2-path. In other
words, either all the arcs are directed from Vi to Vj or from Vj to Vi. We then
define a mapping ϕc from V (G) to V (Ht) as follows: for every x ∈ Vi, 1 ≤ i ≤ t,
let ϕc(x) = (i; a1, . . . , ai−1) where for every j, 1 ≤ j < i, aj = 0 if there is
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an arc from Vj to x in G and aj = 1 otherwise. From above, ϕc is clearly a
homomorphism from G to Ht. �

This result can be extended to the ~Pp-preserving oriented chromatic number:

Theorem 11. Let G be an oriented graph with out-degree at most d. For every

p ≥ 3, the ~Pp-preserving oriented chromatic number of G is at most

(22d(d+1)+1 − 1) ·

(

1 + 2d3 ·
dp−2 − 1

d − 1

)

.

Proof: Let c1 be an oriented coloring of G using at most 2
2d(d+1)+1 − 1 colors

(such a coloring exists by Theorem 10). We define the undirected graph UG as
follows: V (UG) = V (G) and xy ∈ E(UG) if and only if x and y are joined in G
by a directed q-path, 3 ≤ q ≤ p. Every vertex in UG has degree at most

q = d3 + d4 + · · ·+ dp = d3 ·
dp−2 − 1

d − 1
and thus UG has chromatic number at most 2q + 1. Let c2 be a coloring of
UG using at most 2q + 1 colors. The oriented coloring of G defined by c(x) =

(c1(x), c2(x)) for every vertex x is then clearly ~Pp-preserving and uses at most

(22d(d+1)+1 − 1) · (2q + 1) colors. �

Since every planar graph has oriented chromatic number at most 80 ([18]) we
get:

Theorem 12. Every oriented planar graph G with out-degree at most d has
~Pp-preserving oriented chromatic number at most

80 ·

(

1 + 2d3 ·
dp−2 − 1

d − 1

)

.

Proof: The proof is similar to that of Theorem 11 by using an oriented 80-
coloring c1.

�

By a result of Nash-Williams [14] we know that every planar graph can be
oriented in such a way that every vertex has out-degree at most 3. Therefore,
by bounding the out-degree of oriented planar graphs we still get a large class of
oriented graphs.

4. Tree-preserving homomorphisms

In this section we consider the case when T is a directed tree, that is a tree whose
arcs are all directed from the root towards the leaves (directed trees are sometimes
called branchings in the literature). The maximal length of a directed path in T is
called the depth of T . We will first study T -preserving homomorphisms of oriented
forests and then T -preserving homomorphisms of oriented graphs in general. Our
first result is the following:
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Theorem 13. Let T be a directed tree with depth q and G be an oriented forest
with out-degree at most d. The T -preserving oriented chromatic number of G is
then at most (q + 1) · dq.

Proof: W.l.o.g. we suppose that G is an oriented tree. We will proceed in two
steps. We first associate with G an undirected graph UG whose chromatic number
is bounded. We then construct a T -preserving homomorphism of G by combining

a coloring c1 of UG and a ~Pq-preserving oriented coloring c2 of G (such a coloring
exists by Proposition 6).

Step 1. Let UG be the undirected graph defined by V (UG) = V (G) and xy ∈
E(UG) if and only if there exist two directed paths zx1 . . . xℓ−1x and zy1 . . . yℓ−1y
in G with the same length ℓ ≤ q and having no vertex in common except z (two
such paths will be called vertex-disjoint in the following). We claim that the graph
UG thus obtained is (d

q − 1)-degenerate. To see that, assume on the contrary
that there exists a subgraph U ′ of UG such that every vertex in U ′ has degree at
least dq . By a result of Dirac [5], U ′ contains a cycle of length at least dq + 1.
Let us denote such a cycle by C = (u0, u1, . . . , um, u0), m ≥ dq. By definition of
UG, for every edge uiui+1 (taken modulo m) in C, there exists a vertex zi and

two vertex-disjoint directed paths ~Pziui and
~Pziui+1 of the same length ℓi ≤ q.

Since every vertex in G has out-degree at most d, no vertex can be joined to
more than dq vertices by vertex-disjoint directed paths of length q in G (this
bound can be achieved by a vertex x which is a leaf in a complete d-ary directed
tree subgraph of G). Thus there are at least two distinct vertices among the zi’s.

The (generally not simple) closed path ~P−1
z0u0

~Pz0u1
~P−1
z1u1 . . . ~Pzm−1um

~P−1
zmum

~Pzmu0

(where ~P−1 denotes the path ~P taken in opposite direction) then contains a cycle,
a contradiction since G is a tree. Therefore, there exists a coloring c1 of UG using
at most dq colors.

Step 2. Let c2 be the ~Pq-preserving oriented coloring of G defined in the proof
of Proposition 6. We claim that the oriented coloring c of G defined by c(x) =
(c1(x), c2(x)) for every vertex x is T -preserving. To see that suppose that u and
v are two vertices in G belonging to some connected subgraph G′ isomorphic to a
subgraph of T . Let r denote the unique vertex of G′ with in-degree zero (the root
of the corresponding subgraph of T ). It is not difficult to check that c2(u) = c2(v)
if and only if u and v have the same “level” in G′, that is u and v are linked to r
by two directed paths of the same length. But in that case, u and v are joined by
two vertex-disjoint directed paths ru1 . . . uℓ−1u and rv1 . . . vℓ−1v in G and thus
c1(u) 6= c1(v). The coloring c is therefore T -preserving and uses at most (q+1)·dq

colors. This concludes the proof. �

From Theorem 13 we then get:
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Theorem 14. Let T be a directed tree with depth q and U be an undirected
graph with (2q + 1)-acyclic chromatic number at most k. Then every orientation
of U with out-degree at most d has T -preserving oriented chromatic number at

most k · [(q + 1) · dq](
k−1
2q ).

Proof: The proof is similar to that of Theorem 7. Let c0 denote a (2q+1)-acyclic

coloring of U which uses k colors. Let ~U be any orientation of U with out-degree
at most d. Recall that any 2q + 1 colors induce a forest in U . Moreover, every

color i belongs to t =
(k−1
2q

)

subsets of 2q + 1 colors. We assume that for every i

those subsets containing i are ordered as σi
1, σ

i
2, . . . , σ

i
t. We now define a coloring

c of ~U as follows: for every x ∈ V (~U) let c(x) = (c0(x), c1(x), . . . , ct(x)) where
for every i, 1 ≤ i ≤ t, ci(x) corresponds to the T -preserving coloring of the forest

induced by the (2q+1)-subset σ
c0(x)
i (such a coloring exists by Theorem 13). We

claim that the coloring c thus defined is T -preserving. Therefore consider two

vertices u and v belonging to some connected subgraph ~U ′ of ~U isomorphic to a
subgraph of T . If u and v get distinct colors, there is nothing to prove. Suppose
that u and v get the same color. There exist two vertex-disjoint paths in G of
the form zu1 . . . uαu and zv1 . . . vβv with α < q and β < q (one of them may
be empty if u and v are linked by a directed path). The number of colors used
in these two paths is thus at most 2q + 1 and there exists at least one (2q + 1)-
subset such that these two paths are contained in the forest induced by σ. But
then the colors assigned to u and v differ on the component associated with σ,

a contradiction. Thus c is indeed a T -preserving oriented coloring of ~U which uses

at most k · [(q + 1) · dq ](
k−1
2q ) colors. �

In case of planar graphs, using Corollary 5 and Theorem 14 we get:

Corollary 15. Let T be a directed tree with depth q and U be an undirected
planar graph with girth g ≥ 10q+6. Then every orientation of U with out-degree
at most d has T -preserving oriented chromatic number at most 2 · (q + 1)2q+2 ·

d2q
2+q.

We end this section by showing that having bounded out-degree and bounded
p-acyclic chromatic number are both necessary conditions in Theorem 14. Recall
that S+2 denotes the directed tree on three vertices {a, b, c} with the arcs ab and ac.
As observed in Section 1, having bounded out-degree is necessary (even for trees)

since oriented stars with all arcs directed outwards have unbounded S+2 -preserving
oriented chromatic number. Let now Hn be the oriented graph defined as follows:
V (Hn) = {u1, u2, . . . , un}∪{vij ; 1 ≤ i < j ≤ n} andE(Hn) = {vijui, vijuj ; 1 ≤

i < j ≤ n}. Clearly Hn has out-degree at most 2 and S+2 -preserving oriented
chromatic number at least n since all the ui’s must be assigned distinct colors. It
is not difficult to check that the 3-acyclic oriented chromatic number k of Hn is
such that k(k + 1) ≥ n. To see that, suppose on the contrary that there exists a
3-acyclic coloring of Hn using k colors with k(k+1) < n. Then there are at least
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k + 2 vertices among the ui’s, say ui1 , ui2 , . . . , uik+2, which get the same color α.

Moreover, at least two vertices vi1j1 and vi1j2 (with j1, j2 ∈ {i2, i3, . . . , ik+2}) get
the same color β and thus the 6-cycle ui1vi1j1uj1vj1j2uj2vi1j2ui1 uses at most 3
colors, a contradiction.

5. Discussion

In this paper we were essentially interested in proving the existence of T -
preserving homomorphisms for some special oriented graphs T . Thus, most of
the bounds we have established can surely be improved by using more accurate
arguments.

We end this paper by listing some open questions related to our work.

1. What is the minimum integer function g(p) such that every planar graph with
girth at least g(p) has bounded p-acyclic chromatic number? By Observation 3
we know that g(p) > 2p − 3 for every p. However, by using techniques inspired
from [4], we can prove for instance that every planar graph with girth g ≥ 12
has 3-acyclic chromatic number at most 5, but we have no general result on this
problem yet.

2. Our definition of p-acyclic colorings forces to consider graphs with girth at
least p+1. An alternate definition of p-acyclic coloring could be the following: let
us say that a k-coloring of a graph G is weakly p-acyclic if every cycle C in G uses
at least min(|C|, p+1) colors (where |C| denotes the length of C). This definition
allows to consider p-acyclic colorings of graphs with any girth. Which families of
graphs have bounded weak p-acyclic chromatic number? In particular, what is
the minimum integer function g′(p) such that every planar graph with girth at
least g′(p) has bounded weak p-acyclic chromatic number? By Observation 3 we
still have g′(p) > 2p − 3 for every p.

3. We proved in Section 3 that every planar graph with sufficiently large girth

has bounded ~Pn-preserving oriented chromatic number. What is the minimum
integer function h(n) such that every planar graph with girth at least h(n) has

bounded ~Pn-preserving oriented chromatic number? Christian Szegedy (Bonn)
observed that h(n) > n for every n. To see that, we construct an oriented planar

graph Gn,p for every n ≥ 3, p ≥ 1 with girth n and ~Pn-preserving oriented
chromatic number strictly greater than p. This graph is obtained as follows: let
y, x1, x2, . . . , xp be p+1 distinct vertices. For every i, 1 ≤ i ≤ p, we add a directed
⌊n
2 ⌋-path from y to xi and a directed ⌊

n
2 ⌋-path (resp. (⌊

n
2 ⌋+1)-path) if n is even

(resp. odd) from xi to y. The graph Gn,p thus obtained has clearly girth n and
since any two vertices in {y, x1, x2, . . . , xp} are joined by a directed path of length

at most n we get that Gn,p has ~Pn-preserving oriented chromatic number at least
p+ 1.



136 J. Nešeťril, E. Sopena, L. Vignal

References

[1] Albertson M., Berman D., An acyclic analogue to Heawood’s theorem, Glasgow Math. J.
19 (1978), 163–166.

[2] Alon N., McDiarmid C., Read B., Acyclic colorings of graphs, Random Structures and
Algorithms 2 (1991), 277–289.

[3] Borodin O.V., On acyclic colorings of planar graphs, Discrete Math. 25 (1979), 211–236.
[4] Borodin O.V., Kostochka A.V., Nešeťril J., Raspaud A., Sopena E., On the maximum
average degree and the oriented chromatic number of a graph, preprint, 1995.

[5] Dirac G.A., Some theorems on abstract graphs, Proc. London. Math. Soc. 2 (1952), 69–81.
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[17] Nešeťril J., Zhu X., On bounded treewidth duality of graph homomorphisms, J. Graph

Theory, to appear.
[18] Raspaud A., Sopena E., Good and semi-strong colorings of oriented planar graphs, Inf.

Processing Letters 51 (1994), 171–174.
[19] Sopena E., The chromatic number of oriented graphs, Research Report 1083–95, Univ.

Bordeaux I, 1995.
[20] Thomas R., Personal communication, 1995.

J. Nešeťril:
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