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On strong laws for generalized

L-statistics with dependent data

David Gilat, Roelof Helmers

Abstract. It is pointed out that a strong law of large numbers for L-statistics estab-
lished by van Zwet (1980) for i.i.d. sequences, remains valid for stationary ergodic data.
When the underlying process is weakly Bernoulli, the result extends even to generalized
L-statistics considered in Helmers et al. (1988).

Keywords: L-statistic, GL-statistic, strong law of large numbers, stationary ergodic pro-
cess

Classification: 60F, 62G, 28D

Let X1, X2, . . . denote a (real-valued) ergodic stationary process (ESP) defined
on a single probability space (Ω, A, P ). The marginal distribution of the ESP is the
common distribution function (df) F of the Xi’s. To begin with define (ordinary)
L-statistics by

Ln =

n
∑

i=1

Xi:n

∫ i/n

(i−1)/n
Jn(s) ds

where Jn : (0, 1) → R, n = 1, 2, . . . are Lebesgue-integrable functions and for
n = 1, 2, . . . , X1:n ≤ . . . ≤ Xn:n denote the ordered X1, . . . , Xn. For a Lebesgue-
integrable function J : (0, 1)→ R, define the parameter

θ = θJ(F ) =

∫ 1

0
J(s)F−1(s) ds

where F−1(s) = inf{x : F (x) ≥ s}, for 0 < s < 1. Our first main result –
Theorem 1 below – asserts that a strong law of large numbers for linear combi-
nations of order statistics Ln obtained by van Zwet (1980) for the case of i.i.d.
processes X1, X2, . . . , remains valid (with essentially the same proof) if the i.i.d.
assumption is replaced by the much weaker requirement that X1, X2, . . . is an
ESP. Formally, we have the following SLLN for L-statistics with dependent data
which complements Theorem L of Aaronson et al. (1996):

Theorem 1. Let {Xn}n≥1 be an ESP. Let 1 ≤ p ≤ ∞, p−1 + q−1 = 1, and

suppose that Jn ∈ Lp for n = 1, 2, . . . and F−1 ∈ Lq. If there is a function
J ∈ Lp such that

lim
n→∞

∫ t

0
Jn(s) ds =

∫ t

0
J(s) ds
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for every t ∈ (0, 1) (i.e. Jn → J weakly in Lp (for 1 ≤ p < ∞) and weak∗ in L∞

(for p =∞)), and if either

(i) 1 < p ≤ ∞ and
sup
n

||Jn||p < ∞,

or

(ii) p = 1 and {Jn, n = 1, 2, . . . } is uniformly integrable.

Then
lim

n→∞
Ln = θ,

with probability 1.

Proof: The proof follows exactly the argument given by van Zwet (1980) (cf. the
proofs of his Lemma 2.1, Theorem 2.1 and Corollary 2.1) without any changes.
We only have to recall the well-known fact that by the ergodic theorem the SLLN
and the Glivenko-Cantelli theorem is not only true for i.i.d. sequences, but remains
valid for ESP. �

To extend Theorem 1 to generalized L-statistics (GL-statistics), their definition,
as in Helmers et al. (1988), will first be reviewed. For a positive integer m, let
h (the kernel) be a measurable function from Rm to R, and let W1:n ≤ · · · ≤
W(n)m:n denote the ordered values of h(Xi1 , · · · , Xim) taken over the (n)m =

n(n− 1) · · · (n−m+ 1) m-tuples (i1, · · · , im) of distinct indices from {1, · · · , n}.
Given a sequence Jn : (0, 1)→ R (n = 1, 2, · · · ), of Lebesgue-integrable functions,
form the sequence of statistics

GLn =

(n)m
∑

i=1

Wi:n

∫ i/(n)m

(i−1)/(n)m
Jn(s) ds.

Note that when m = 1 and h(x) = x, GLn reduces to the ordinary L-statistic Ln.
Next, the form of the limiting value of GLn (to be proved to exist a.s. under

appropriate conditions) will be identified. To this end, let Y1, Y2, · · · be indepen-
dent F -distributed random variables. For the kernel h : Rm → R consider the
distribution function

HF (y) = PF {h(Y1, · · · , Ym) ≤ y}, y ∈ R

and for a Lebesgue-integrable function J : (0, 1)→ R, form the parameter

η = η
J,h
(F ) =

∫ 1

0
J(s)H−1

F (s) ds

where here, as before, H−1
F (s) = inf{y : HF (y) ≥ s}.
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Note again that for m = 1 and h(x) = x, the parameter η reduces to the
previous θ. For interesting parameters of form η, obtained by appropriate choices
of J and h, see the examples in Helmers et al. (1988).
To imitate van Zwet’s argument in the extension of Theorem 1 to GL-statistics,

a strong law for the U-statistic

1

(n)m

(n)m
∑

i=1

Wi:n =
1

(n)m

∑

1≤i1 6=i2 6=...6=im≤n

h(Xi1 , . . . , Xim)

is needed. Unfortunately no such strong law is available for general ESP’s (see
Example 4a in Aaronson et al. (1996)). Thus a more stringent mixing condition
than mere ergodicity has to be imposed on the data X1, X2, · · · . Recall that
the stationary sequence {Xn}n≥1 is called weakly Bernoulli (WB) (also known

as absolutely regular) if d(m) = sup
{

d(m, k) : k ≥ 1
}

→ 0 as m → ∞, where
d(m, k) is the supremum of

n
∑

i=1

∣

∣P (Ai ∩ Bi)− P (Ai)P (Bi)
∣

∣

over all families of disjoint sets Ai ∩ Bi, i = 1, · · · , n, where Ai ∈ σ(X1, · · ·Xk)
and Bi ∈ σ(Xk+m+1, · · · ). The kernel h has to be also somewhat restricted: For
data with marginal distribution F , it is required that the kernel h : Rm → R be
bounded by an F-integrable product, i.e. that |h(x1, . . . , xm)| ≤ f(x1) . . . f(xm)
where f : R → R+ and

∫

f(x) dF (x) < ∞.

Proposition 1 (Theorem U(iii) in Aaronson et al. (1996)). Let {Xn}n≥1 be a
weakly Bernouilli ESP with marginal F and let h : Rm → R be measurable and
bounded by an F -integrable product. Then:

lim
n→∞

1

nm

∑

1≤i1,... ,im≤n

h(Xi1 , . . . , Xim) = EF h(Y1, . . . , Ym)

with probability 1.

Corollary 1. Under the conditions of the Proposition:

lim
n→∞

1

(n)m

∑

1≤i1 6=i2 6=...6=im≤n

h(Xi1 , . . . , Xim) = EF h(Y1, . . . , Ym)

with probability 1.

Proof: Since
(n)m
nm → 1 as n → ∞ (m fixed), it suffices to prove that

limn→∞
1

nm

∑′ h(Xi1 , . . . , Xim) = 0 a.s., where
∑′ indicates summation over all
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m-tuples (i1, . . . , im) with ij = ik for some j 6= k.
By assumption |h(x1, . . . , xm)| ≤ f(x1) . . . f(xm), so it suffices to establish

(*) lim
n→∞

1

nm

∑ ′Zi1 . . . Zim = 0 a.s.

where {Zn}n≥1 = {f(Xn)}n≥1 is a nonnegative integrable ESP.
The key ingredient in the proof of (*) is a very special case of a result of Aaronson
(1981). This special case is presented here (with a simplified proof) for the sake
of completeness.

Lemma 1. Suppose {Zn}n≥1 is a nonnegative integrable ESP and let α > 1.

Then: 1nα

∑n
i=1 Zα

i → 0 with probability 1.

Proof: Given ǫ > 0, choose M > 0 sufficiently large for Ui = Zα
i I{Zi > M} to

satisfy EU
1/α
i < ǫ (this is possible since 0 ≤ Zi and EZi < ∞).

Let Vi = Zα
i − Ui = Zα

i I{Zi ≤ M}. Then both {Un}n≥1 and {Vn}n≥1 are
nonnegative ESP’s with {Vn}n≥1 uniformly bounded by M . Consequently,

1

nα

n
∑

i=1

Zα
i =

1

nα

n
∑

i=1

Ui +
1

nα

n
∑

i=1

Vi ≤

(

1

n

n
∑

i=1

U
1/α
i

)α

+
1

nα−1

(

1

n

n
∑

i=1

Vi

)

because α > 1. Now, by the ergodic theorem, the second term tends to zero a.s.
and the first term has an almost sure limit smaller than ǫα (by the choice of M).
Since ǫ > 0 is arbitrary, the lemma follows. �

To complete the proof of (*), hence of the Corollary, let Sn = Z1 + . . . + Zn,
Sn,j = Sn − Zj (j = 1, . . . , n). Since Zi ≥ 0, it is evident that

∑′Zi1 . . . Zim ≤

m
∑

k=2

n
∑

j=1

Zk
j Sm−k

n,j .

Consequently,

1

nm

∑′Zi1 . . . Zim ≤

m
∑

k=2

1

nk

n
∑

j=1

Zk
j (

Sn,j

n
)m−k.

For each fixed 2 ≤ k ≤ m,

(i) 1
nk

∑n
j=1Zk

j → 0 a.s. by the Lemma; for each fixed j ≥ 1 and 2 ≤ k ≤ m

(ii) (
Sn,j

n )
m−k → (EZ1)

m−k a.s. by the ergodic theorem.

It is now easily seen from (i) and (ii) that for each k = 2, . . . , m
1

nm

∑n
j=1 Zk

j Sm−k
n,j → 0 a.s., hence so does the sum of m− 1 (k = 2, . . . , m) such

terms.

The extension of Theorem 1 to GL-statistics is now readily available.
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Theorem 2. Suppose {Xn}n≥1 is a weakly Bernoulli ESP with marginal F and
let h, HF , Jn, J , GLn and η be as defined above. Suppose h is bounded by an
F -integrable product. If Jn and J satisfy the conditions of Theorem 1 and if
H−1

F ∈ Lq, then
lim

n→∞
GLn = η

with probability 1.

Proof: The argument is completely analogous to the proof of Theorem 1. Note
that the only probabilistic ingredient in the proof of Theorem 1 is the strong
law and the Glivenko-Cantelli theorem for the sequence of empirical distribu-
tions based on observations from the stationary ergodic process. The rest is
purely function-analytic. The function-analytic part of the proof of Theorem 2
is exactly the same as in van Zwet (1980). Since the appropriate strong law
has already been established in the Corollary, the only missing link is an appro-
priate Glivenko-Cantelli type result. To state it, recall the distribution-function
HF (y) = PF

{

h(Y1, · · · , Ym) ≤ y
}

(here as before Y1, Y2, · · · are independent
F -distributed r.v.’s) corresponding to the kernel h, and consider the associated
empirical distribution-function

Hn(y) =
1

(n)m

∑

1≤i1 6=i2 6=···6=im≤n

1
{

h(Xi, · · · , Xim) ≤ y
}

.

For each fixed y, Hn(y) is a U-statistic based on the indicator-kernel hy : R
m → R

defined by

hy(x1, · · · , xm) =

{

1 h(x1, · · · , xm) ≤ y

0 otherwise.

Since hy is bounded and the underlying ESP is assumed to be WB, it follows
by the Corollary that Hn(y) → HF (y) a.s. as n → ∞. That this almost sure
convergence is uniform in y over R, i.e. that

lim
n→∞

sup
y∈R

∣

∣Hn(y)− HF (y)
∣

∣ = 0 a.s.

is now established by a purely analytic argument as in the standard proof of the
classical Glivenko-Cantelli theorem. �

Remarks.

1. In view of Example 4a in Aaronson et al. (1996), Theorem 2 is false for
general ESPs, even if the kernel h is bounded.

2. It is clear from van Zwet (1980) that the L-statistic Ln in Theorem 1
(similarly for GLn in Theorem 2; cf. Corollary 4.1 of Helmers et al. (1988))
can be replaced by the more general statistic

n
∑

i=1

g(Xi:n)

∫ i/n

(i−1)/n
Jn(s) ds,
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for any Borel measurable function g : R → R, provided the assumption
F−1 ∈ Lq is modified to g ◦ F−1 ∈ Lq , and the limiting parameter θ

(η for Theorem 2) is adjusted accordingly. Note that for i.i.d. sequences
X1, X2 . . . Theorem 2 can also be inferred from Corollary 3.1 of Helmers
et al. (1988).

Added in proof: Proposition 1 quotes Theorem U(iii) in Aaronson et al. from
a 1994 preprint. Between then and the publication of the paper in 1996, the
manuscript has evidently been revised so that our Corollary 1 is stated as Theorem
U(iii) in the published version of the paper. Since Aaronson et al. give only a hint
as to why our Corollary 1 follows from our Proposition 1 (the version of Theorem
U(iii) at our disposal when working on the present paper), we decided to publish
a full proof.
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