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Connected transversals to subnormal subgroups

Tomáš Kepka, Jon D. Phillips

Abstract. Subnormal subgroups possessing connected transversals are briefly discussed.

Keywords: subgroup, transversal

Classification: 20F22

In [8] J.D.H. Smith introduced the notion of a stably nilpotent quasigroup,
showing that a quasigroup Q is stably nilpotent if and only if the inner permu-
tation groups of Q are subnormal in the multiplication group of Q. Generalizing
this for abstract groups, we come by groups which are, in a certain sense, rela-
tively nilpotent with respect to a subgroup. The present short note collects some
basic information on such groups.

1. Preliminaries

1.1. Let H be a subgroup of a group G. Than LG(H) denotes the core and
NG(H) the normalizer of H in G. Further, NG,0(H) = H and NG,n+1(H) =
NG(NG,n(H)) for every n ≥ 0.
The subgroup H is said to be subnormal of depth at most n ≥ 0 in G if there

are subgroups H0, H1, . . . , Hn of G such that H0 = H , and Hn = G and Hi is
normal in Hi+1 for every 0 ≤ i ≤ n − 1.

1.2. Let G be a group. For n ≥ 0, Zn(G) denotes the nth member of the usual
central series. That is, Z0(G) = 1, and Zn+1(G)/Zn(G) = Z(G/Zn(G)).
Now, let H be a subgroup of G. We define two series of normal subgroups of G:

ZH,0(G) = Z∗
H,0(G) = LG(H), ZH,n(G) ⊆ Z∗

H,n+1(G) and Z∗
H,n+1(G)/ZH,n(G)

= Z(G/ZH,n(G)), ZH,n+1(G) = LG(H · Z∗
H,n+1(G)).

1.3 Remark. (i) A subgroup H is subnormal of depth at most n ≥ 0 in a
group G, provided that NG,n(H) = G. The converse is not true in general (see,
e.g., 4.1).
(ii) If G is a finite group, then subnormal subgroups form a sublattice in the

lattice of all subgroups of G (see, e.g., [6, Theorem 6.5]). This is not true in
general ([7, §13.1, p. 375]), albeit subnormal subgroups of arbitrary (i.e., even
infinite) groups are closed under finite intersections.
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2. Technical results

2.1 Lemma. Let H be a subgroup of a group G. Then:

(i) LG(H) = ZH,0(G) ⊆ ZH,1(G) ⊆ ZH,2(G) ⊆ . . . ;
(ii) LG(H) = Z∗

H,0(G) ⊆ Z∗
H,1(G) ⊆ Z∗

H,2(G) ⊆ . . . ;

(iii) ZH,n(G) ⊆ Z∗
H,n+1(G) ⊆ ZH,n+1(G) ⊆ Z∗

H,n+2(G) ⊆ . . . for every n ≥ 0;

(iv) ZH,n(G) ⊆ LG(NG,n(H)) for every n ≥ 0.

Proof: The first three assertions are clear from definition 1.2, (iv) is clear for
n = 0, and we shall proceed further by induction.

Let f : G → G = G/ZH,n(G), g : G → G̃ = G/LG(NG,n(H)) and h : G → G̃

denote the natural projections, g = hf . Then Z∗
H,n+1(G) = f−1(Z(G)) ⊆

g−1(Z(G̃)) = K, HK ⊆ NG,n(H)K ⊆ NG(NG,n(H)) = NG,n+1(H) and
ZH,n+1(G) = LG(H · Z∗

H,n+1(G)) ⊆ LG(HK) ⊆ LG(NG,n+1(H)). �

2.2 Lemma. Let H ⊆ K ⊆ G be subgroups of a group G. Then ZH,n(G) ⊆
ZK,n(G) and Z∗

H,n(G) ⊆ Z∗
K,n(G) for every n ≥ 0.

Proof: By induction on n (see the proof of 2.1 (iv)). �

2.3 Lemma. Let H be a subgroup of a group G. Then Zn(G) ⊆ Z∗
H,n(G) ⊆

ZH,n(G) for every n ≥ 0.

Proof: Clearly, Zn(G) ⊆ Z∗
1,n(G) ⊆ Z1,n(G) and we can use 2.2. �

2.4 Lemma. Let H be a subgroup of a group G. Then:

(i) ZH,0(G) = G iff H = G;
(ii) ZH,1(G) = G iff Ǵ ⊆ H ;
(iii) ZH,n(G) = G for n ≥ 0 iff G = H · Z∗

H,n(G);

(iv) if G is nilpotent of class at most n ≥ 0, then ZH,n(G) = G;
(v) if ZH,n(G) = G for n ≥ 0, then NG,n(H) = G (and hence H is subnormal
of depth at most n in G).

Proof: The first assertions are easy, (iv) follows from 2.3, and (v) follows from
2.1 (iv). �

2.5 Lemma. Let H be a subgroup of a group G such the LG(H) = 1. Then:

(i) Z∗
H,1(G) = Z(G) and ZH,1(G) = LG(HZ(G));

(ii) ZH,1(G) = G iff G is abelian;
(iii) ZH,2(G) = G iff Ǵ ⊆ HZ(G).

Proof: Obvious. �
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2.6 Lemma. Let H be a subgroup of a group G. Then:

(i) HZH,n(G) = HZ∗
H,n(G) for every n ≥ 0;

(ii) if K is a subgroup conjugate to H , then ZH,n(G) = ZK,n(G) and Z∗
H,n =

Z∗
K,n(G) for every n ≥ 0.

Proof: The assertions follow easily from definition 1.2. �

2.7 Proposition. Let H be a subgroup of a group G. The following conditions
are equivalent for n ≥ 1:

(i) Z∗
H,n(G) = G;

(ii) ZH,n(G) = G;
(iii) HZH,n(G) = G;
(iv) HZ∗

H,n(G) = G;

(v) Ǵ ⊆ ZH,n−1(G);
(vi) Ǵ ⊆ HZH,n−1(G);
(vii) Ǵ ⊆ HZ∗

H,n−1(G).

Proof: (i) implies (ii) by 2.1 (iii); (ii) implies (iii) and (v) implies (vi) trivially;
(iii) implies (iv) and (vi) implies (vii) by 2.6 (i).
We now show (iv) implies (v). Put N = ZH,n−1(G). We have G = G/N =

HZ∗
H,n(G)/N = HZ(G), and hence (G)́ ⊆ H , Ǵ ⊆ HN = HZ∗

H,n−1(G)

and N = LG(HZ∗
H,n−1(G)) = HZ∗

H,n−1(G). Consequently Ǵ ⊆ N . Finally,

we show (vii) implies (i). Since Ǵ ⊆ HZ∗
H,n−1(G), we have ZH,n−1(G) =

HZH,n−1(G), Ǵ ⊆ ZH,n−1(G) and Z∗
H,n(G) = G (see 1.2). �

2.8. Let H be a subgroup of a group G, n ≥ 0, N = ZH,n(G), N
∗ = Z∗

H,n(G),

G = G/N , and H = HN/N ⊆ G.

(i) HN = HN∗, N = LG(HN∗) = LG(HN) and this implies that L
G
(H) =

1 and H=̃H/H ∩ N .
(ii) Z∗

H,n+1(G)/N = Z(G) = Z∗
H,1
(G), ZH,n+1(G) = LG(H ·Z∗

H,n+1(G)) and

ZH,n+1(G)/N = L
G
(HZ(G)) = Z

H,1(G).

(iii) Z∗
H,n+m(G)/N = Z∗

H,m
(G) and ZH,n+m(G)/N = Z

H,m
(G) for every

m ≥ 1.
2.9. Let H be a subgroup of a group G. Put Hn = H ∩ZH,n(G) for every n ≥ 0.
Then LG(H) = H0 ⊆ H1 ⊆ H2 ⊆ . . . and Hn is normal in G.
2.10 Lemma. Let H be a subgroup of a group G such that LG(H) = 1 and let
α = [G : HZ(G)]. Then:

(i) ZH,1(G) = LG(HZ(G)) can be embedded into the Cartesian product of
α copies of Z(G);

(ii) ZH,1(G) is an abelian group;
(iii) H1 (see 2.9) can be embedded into the Cartesian product of α− 1 copies

of Z(G) (α − 1 = α for α infinite).
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Proof: Put N = ZH,1(G). For every x ∈ G, N = Nx = LG(H
x · Z(G)),

Hx ∩ Z(G) ⊆ LG(H
x) = LG(H) = 1, H

x · Z(G) is the direct product of Hx and
Z(G) and consequently the restriction fx of the natural projection Hx · Z(G)→
Z(G) to N is a homomorphism of N onto Z(G) (we have Z(G) ⊆ N).
Now, let A be a right transversal to HZ(G) in G such that 1 ∈ A. Define a

homomorphism f : N → Π
α
Z(G) by f(u) = Π

a∈A
fa(u), u ∈ N . If u ∈ Ker(f), then

aua−1 ∈ H for every a ∈ A. Consequently, u ∈ H and if x ∈ G, x = zva, a ∈ A,
v ∈ H , z ∈ Z(G), then xux−1 = zvaua−1v−1z−1 = vaua−1v−1 ∈ H . Thus
u ∈ LG(H) = 1 and we have proved that f is injective. Finally, for g = Π

a6=1
fa we

get Ker(g) ∩ H = 1, and hence g|H1 is injective. �

2.11 Proposition. Let H be a subgroup of a group G and let αn = [G : H ·
ZH,n+1(G)] for every n ≥ 0. Then ZH,n+1(G)/ZH,n(G) is an abelian group which
can be embedded into the Cartesian product of αn copies of Z(G/ZH,n(G)) =
Z∗

H,n+1(G)/ZH,n(G).

Proof: The result follows by an easy combination of 2.10 and 2.8 (i),(ii). �

2.12 Corollary. Let H be a subgroup of a group G such that ZH,n(G) = G for
some n ≥ 0. If H is soluble of derived length m ≥ 0, then G is also soluble and
its derived length is at most n+m.

2.13 Lemma. Let H be a subgroup of a group G such that ZH,2(G) = G. Then
H ⊆ LG(H).

Proof: By 2.10, H/LG(H) is abelian. �

2.14 Proposition. Let H be a subgroup of a finite group G such that [G : H ]
is a power of a prime p and LG(H) is a p-group. Then G = ZH,n(G) for some
n ≥ 0 iff G is a p-group.

Proof: If G is a p-group, then G is nilpotent and our result follows from 2.3.
Now assume that ZH,n(G) = G. We shall proceed by induction on card(G).
Further, considering the factor G/LG(H), we can restrict ourselves to the case
LG(H) = 1. Then H ∩ Z(G) = 1, [HZ(G) : H ] = card(Z(G)), and hence Z(G)
is a p-group. From this, N = ZH,1(G) is a p-group by 2.10 (i). Since N 6= 1
(otherwise G = 1), G/N is a p-group by induction. �

2.15. Let H be a subgroup of a group G such that G/ZH,n(G) is a two element
group for some n ≥ 0.

(i) If n = 0, then G/LG(H) is a two element group, which means that H is
normal and of index 2 in G.

(ii) Assume that n ≥ 1. Clearly, ZH,n+1(G) = Z∗
H,n+1(G) = G and Ǵ ⊆

ZH,n(G) = H · Z∗
H,n(G). Put N = ZH,n−1(G), G = G/N and G =

HN/N = HZ∗
H,n−1(G)/LG(HZ∗

H,n−1(G)). We have L
G
(H)=1, Z(G) =
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Z∗
H,n(G)/N , (G)́ ⊆ ZH,n(G)/N = H ·Z(G) and G/HZ(G)=̃G/ZH,n(G),

so that G/HZ(G) is a two element group.
(iii) Assume that n = 1 and that LG(H) = 1 (cf. (ii)). Then ZH,2(G) =

Z∗
H,2(G) and Ǵ ⊆ ZH,1(G) = HZ(G). Take w ∈ G − HZ(G) and put

W = Z(G) ∪ wZ(G). Then w2 = uz for suitable u ∈ H , z ∈ Z and
w−1uw = w−1w2z−1w = u. This implies that u ∈ LG(H) = 1, so that
w2 ∈ Z(G) and we see that W is an abelian subgroup of G, W ∩ H = 1
and G = HW .

3. Connected transversals to subnormal subgroups

3.1. In this section, let H be a subgroup of a group G such that there exist
H-connected transversals A, B to H in G (i.e., A, B are left transversals and
[A, B] ⊆ H).

3.2 Lemma.

(i) HZH,n(G) = HZ∗
H,n(G) = NG,n(H) for every n ≥ 0.

(ii) ZH,n(G) = LG(NG,n(H)) for every n ≥ 0.

Proof: This is clear for n = 0 and we shall proceed by induction on n.
Put N = ZH,n(G) and consider the factors G = G/N and H = HN/N . Then

L
G
(H) = 1, and so N

G
(H) = HZ(G) by [3, Proposition 2.7]. This implies that

NG(HN) = HZ∗
H,n+1(G). However, HN = NG,n(H) by the induction and we

have NG,n+1(H) = HZ∗
H,n(G) = HZH,n(G) (2.6 (ii)). The rest is clear. �

3.3 Proposition. The following conditions are equivalent for n ≥ 1:

(i) ZH,n(G) = G;
(ii) HZH,n−1(G) is normal in G;
(iii) H ⊆ ZH,n−1(G);
(iv) Hn−1 = H (see 2.9);
(v) H is subnormal of depth at most n in G;
(vi) NG,n(H) = G;
(vii) NG(H) is subnormal of depth at most n − 1 in G.

Proof: (i) implies (ii) by 2.7 (ii),(vi) (in fact, Ǵ ⊆ HZH,n−1(G)); (ii) implies
(iii), since ZH,n−1(G) = LG(HZH,n−1(G)); (iii) implies (iv) trivially; (iv) implies
(ii), since ZH,n−1(G) = LG(HZH,n−1(G)); (i) implies (vi) by 2.1 (iv); (vi) implies
(vii) and (vii) implies (v) trivially; (vi) implies (i) by 3.2 (ii).
We now show (ii) implies (i). The existence of H-connected transversals easily

yields that Ǵ ⊆ HZH,n−1(G) (consider the factor G/ZH,n−1(G)), and the result
follows from 2.7.
We proceed by induction on n to show (v) implies (vi). If n = 1, then H is

normal in G and (vi) is clear. Let n ≥ 2 and let LG(H) = 1 (considering the factor
G/LG(H), we can restrict ourselves to this case). There is a subgroupK of G such
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that H is a normal subgroup ofK andK is subnormal of depth at most n−1 in G.
Put L = LG(K), G = G/L and K = K/L. Then L

G
(K) = 1 and K is subnormal

of depth at most n−1 in G. Consequently, N
G,n−1(K) = G and NG,n−1(K) = G.

On the other hand, K ⊆ NG(H) = HZ(G) ([3, Proposition 2.7]), and hence
NG(H) = KZ(G) is normal in NG(K). We have proved thatNG(H) is subnormal
of depth at most n− 1 in G. Using the induction hypothesis again (for NG(H)),
we get NG,n(H) = NG,n−1(NG(H)) = G. �

3.4 Proposition. Suppose that G = 〈A, B〉 and that G/ZH,n(G) is a two ele-
ment group for some n ≥ 0. Then n = 0 and H is a normal subgroup of index 2
in G.
Proof: Assume on the contrary, n ≥ 1. With respect to 2.15, we can in fact
assume that n = 1 and LG(H) = 1. Then ZH,1(G) = HZ(G) and H ∩Z(G) = 1.
By [1, Lemma 1.4], Z(G) ⊆ A∩B. Now, let a ∈ A and z ∈ Z(G). Then az = bu for
some b ∈ A and u ∈ H . We have u = b−1az and c−1uc = c−1b−1cb·b−1c−1ac·z =
c−1b−1cb ·b−1az ·a−1c−1ac ∈ H for every c ∈ B. This shows that u ∈ LG(H) = 1
and az = b ∈ A. Now, since [G : HZ(G)] = 2, it is clear that A = Z(G) ∪ aZ(G)
for each a ∈ A−Z(G). Quite similarly, B = Z(G)∪bZ(G) for each b ∈ B−Z(G).
In particular, both A and B are abelian subgroups of G (see 2.15 (iii)).
Finally, let a ∈ A. Then a−1b ∈ H for some b ∈ B and, for every c ∈

B, c−1a−1bc = c−1a−1ca · a−1b ∈ H . Thus a−1b ∈ LG(H) = 1 and a = b ∈ B.
We have proved that A = B and consequently G = 〈A, B〉 = A is an abelian
group, H = 1, ZH,1(G) = G and G/ZH,1(G) is trivial, a contradiction. �

3.5 Lemma. Suppose that LG(H) = 1, H is not abelian, every proper factor
group of H is cyclic and that G = 〈A, B〉. Then ZH,n(G) 6= G for every n ≥ 0,
i.e., H is not subnormal in G (see 3.3).

Proof: Put N = ZH,1(G) (= LG(HZ(G)), G = G/N and H = HN/N=̃H/H1,

H1 = H ∩ N . If H1 6= 1, then H is cyclic, and so A = B is an abelian subgroup
of G by [1, Corollary 2.3]. However, this implies that G = A is an abelian
group, H = 1, H ⊆ N = HZ(G) and H = H1 is abelian by 2.10 (iii), which is
a contradiction.
We have proved that H1 = 1, so that N = H1Z(G) = Z(G) and H=̃H .

Proceeding by induction, we get ZH,m(G) = Zm(G) for every m ≥ 0. Now,
if ZH,n(G) = G for some n ≥ 0, then G (and hence H) is nilpotent. But in
such a case, Z(H) 6= 1, H/Z(H) is cyclic and this implies that H is abelian
a contradiction. �

3.6 Proposition. Suppose that every proper factorgroup of H is cyclic, that H
is subnormal in G and that G = 〈A, B〉. Then Ǵ ⊆ NG(H) and H is subnormal
depth at most 2 in G. Moreover, if H is not abelian, then Ǵ ⊆ H and H is

normal in G.

Proof: First, assume that LG(H) 6= 1. ThenH = H/LG(H) is a cyclic subgroup
of G = G/LG(H) and Ǵ ⊆ H by [1, Theorem 2.2].
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Next, let LG(H) = 1. Then H is abelian by 3.5 and if H is cyclic, then we can
use [1, Theorem 2.2] again to show that H = 1 and G is abelian. Finally, if H is

not cyclic, than H=̃Z
(2)
p for a prime p and the result follows from [5, Lemma 4.2].

�

3.7 Remark. According to [2], G is soluble, provided that G is finite and H=̃S3.
On the other hand, by 3.5, if LG(H) = 1 and G = 〈A, B〉, then H is not subnormal
in G.
3.8 Proposition. Suppose that LG(H) = 1 and G is nilpotent of class at most 2.
Then [A, B] = 1 and A, B are isomorphic subgroups of G.

Proof: [A, B] ⊆ H ∩ Ǵ ⊆ H ∩ Z(G) ⊆ LG(H) = 1. The rest follows from [4,
Lemma 2.3]. �

4. Examples

4.1. Let G be the subgroup of S6 (the symmetric group on {1,2, . . . ,6}) generated
by the following permutations: (1 2), (3 4), (5 6), (1 3)(2 4), (1 3 5)(2 4 6).
Further, let K = 〈(1 2), (3 4), (5 6)〉 ⊆ G and H = 〈(1 2)〉 ⊆ K. Then H is

normal in K, K is normal in G, card(G) = 48, K=̃Z
(3)
2 , H=̃Z2, LG(H) = 1

and H is subnormal of depth 2 in G. On the other hand, NG(H) = 〈K,(3 5)(4
6)〉, card(NG(H)) = 16, K = LG(NG(H)), NG,2(H) = NG(NG(H)) = NG(H),
G/K=̃S3 and Z(G) = 1. Now, ZH,n(G) 6= G for every n ≥ 0 and there exist no
H-connected transversals to H in G (see 2.4 (v) and 3.3).

4.2. Let G be the subgroup of S18 generated by A = {id, (1 2)(3 10 15 4 9 16)(5
12 17 6 11 18)(7 8)(13 14), (1 3 11 7 9 17 13 15 5)(2 10 18)(4 12 14)(6 8 16), (1
4 11 14 3 12 7 10 17 2 9 18 13 16 5 8 15 6), (1 5 10 14 6 9 7 11 16 2 12 15 13 17
4 8 18 3), (1 6 10 7 12 16 13 18 4)(2 11 15)(3 8 17)(5 9 14), (1 7 13)(2 8 14)(3
9 15)(4 10 16)(5 11 17)(6 12 18), (1 8 13 2 7 14)(3 16 9 4 15 10)(5 18 11 6 17
12), (1 9 5 7 15 11 13 3 17)(2 16 12)(4 18 8)(6 14 10), (1 10 5 14 9 6 7 16 11 2
15 12 13 4 17 8 3 18), (1 11 4 14 12 3 7 17 10 2 18 9 13 5 16 8 6 15), (1 12 4 7
18 10 13 6 16)(2 17 9)(3 19 11)(5 15 8), (1 13 7)(2 14 8)(3 15 9)(4 16 10)(5 17
11)(6 18 12), (1 14 7 2 13 8)(3 4)(5 6)(9 10)(11 12)(15 16)(17 18), (1 15 17 7 3
5 13 9 11)(2 4 6)(8 10 12)(14 16 18), (1 16 17 14 15 18 7 4 5 2 3 6 13 10 11 8 9
12), (1 17 16 14 18 15 7 5 4 2 6 3 13 11 10 8 12 9), (1 18 16 7 6 4 13 12 10)(2
5 3)(8 11 9)(14 17 15)} and let H be the stabilizer of 1 in G. Then LG(H) = 1,
card(H) = 972 = 2235, H is not nilpotent, A is an H-selfconnected transversal to
H in G = 〈A〉, card(G) = 17496 = 2337, and ZH,3(G) = G (cf. 2.13).

4.3. Let G be the subgroup of S6 generated by A = {id, (1 2)(3 4)(5 6), (1 3
5)(2 4 6), (1 4 5 2 3 6), (1 5 4 2 6 3), (1 6 4)(2 5 3)} and let H be the stabilizer

of 1 in G. Then LG(H) = 1, H=̃Z
(2)
2 , A is an H-selfconnected transversal to H

in G = 〈A〉, card(G) = 24, ZH,2(G) = G, card(Z(G)) = 2, G is not nilpotent,

card(NG(H)) = 8, NG(H) = HZ(G) = ZH,1(G)=̃Z
(3)
2 and G/ZH,1(G)=̃Z3 (cf.

2.4 (iv) and 3.4).
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4.4. Let G be the subgroup of S6 generated by A = {id, (1 2 3)(4 5 6), (1 3 2)(4
5 6), (1 4)(2 6 3 5), (1 5 3 6)(2 4), (1 6 2 5)(3 4)} and let H be the stabilizer of
1 in G. Then LG(H) = 1, H=̃S3 is soluble, A is an H-selfconnected transversal
to H in G = 〈A〉, card(G) = 36, G 6= ZH,n(G) for every n ≤ 0 and H is not
subnormal in G (see 3.5).

4.5. Let G be the subgroup of S4 generated by (1 2), (3 4), (1 3 2 4), (1 4 2 3),
let H be the stabilizer of 1 in G and let A = {id, (1 2)(3 4), (1 3)(2 4), (1 4)(2
3)}. Then LG(H) = 1, H=̃Z2, A is an H-selfconnected transversal to H in G,

A=̃Z
(2)
2 is a subgroup of G, G is a dihedral eight-element group, ZH,1(G)=̃Z

(2)
2

and G/ZH,1(G)=̃Z2 (cf. 3.4).
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