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A note on the structure of quadratic Julia sets

Karsten Keller

Abstract. In a series of papers, Bandt and the author have given a symbolic and topo-

logical description of locally connected quadratic Julia sets by use of special closed
equivalence relations on the circle called Julia equivalences. These equivalence relations
reflect the landing behaviour of external rays in the case of local connectivity, and do
not apply completely if a Julia set is connected but fails to be locally connected.
However, rational external rays land also in the general case. The present note shows

that for a quadratic map which does not possess an irrational indifferent periodic orbit
and has a connected Julia set the following holds: The equivalence relation induced
by the landing behaviour of rational external rays forms the rational part of a Julia
equivalence.

Keywords: quadratic Julia set, Julia equivalence, external ray

Classification: 58F03, 58F08, 54H20

1. Introduction

By the filled-in Julia set J0c of a quadratic map pc, defined on the Riemann
sphere by pc(z) = z2 + c, one understands the set of all points whose orbit
remains bounded. In the present note, we are especially interested in the Julia
set Jc defined to be the boundary of J0c and supporting the most interesting
behaviour of the map pc. For the background from complex dynamics, we refer
to the standard reference [8] and to [4], [5], [6], [20], [31], [24].
If Jc is connected, the dynamics of pc on Jc is strongly related to the topological

dynamical system (T, h,′ ): T denotes the unit-circle, which we identify with the

interval [0, 1[ by β ←→ e2πβi; β ∈ [0, 1[. Further, h is the angle-doubling map,
defined by h(β) = 2πβ mod 1 for β ∈ T , and ′ the rotation by 1800, given by

β′ = (β + 12 ) mod 1 for β ∈ T .
This arises as an immediate consequence of Douady and Hubbard’s funda-

mental results on the conformal representation of the complement of J0c in the
connected case:
There is a unique conformal map Φc from the complement of J0c onto the

complement of the unit disk in the Riemann sphere which conjugates pc and the
usual quadratic map p0. The map Gc with Gc(z) = Re(logΦc(z)) = log |Φc(z)|
— the so called Green’s function of J0c — assigns each point in the complement
of J0c a potential.

The fieldlines R
β
c of the potential, which are the curves consisting of all points

whose image with respect to Φc has argument equal to 2πβ, are called external
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rays and play the key role for the description of the connected Julia sets. An

external ray R
β
c lands at a point z of Jc if limr→1Φ

−1(re2πβi) exists and is equal

to z. Then z is called a landing point of R
β
c and β an external angle of z. It

is important for the subsequent considerations that R
h(β)
c and R

β′

c land at the

points pc(z) and −z if Rβ
c for β ∈ T lands at z.

If Jc is locally connected, then by Carathéodory’s theorem the inverse of Φc

continuously extends to the unit-circle and each external ray lands. Thus Jc

can be considered as the topological factor of T with respect to the equivalence

relation ≈ identifying two points β1, β2 ∈ T iff the external rays R
β1
c and R

β1
c

land at the same point of Jc. As shown in [2], [12] (compare [15]), ≈ satisfies the
following conditions:

1. it is closed (as a subset of T × T ) and the image of each equivalence class
with respect to h and with respect to ′ forms an equivalence class;

2. if two chords with end points β1, β2 ∈ T and end points β3, β4 ∈ T have
a non-empty intersection and if β1 ≈ β2 and β3 ≈ β4, then β1 ≈ β3;

3. each equivalence class is finite.

In general, we call an equivalence relation with 1., 2. and 3. Julia equivalence.
Our concept and the study of Julia equivalences in [2], [3], [12], [13], [14], [15]
is based on Thurston’s invariant lamination concept, which was developed in his
unpublished but widely circulated paper [32]. For the statements listed subse-
quently, we refer to [2], [3], [12], [13], and in particular to [15], the detailed but
unfortunately in German written presentation of the subject.

To each α ∈ T , there corresponds a unique Julia equivalence ≈α satisfying
the following property: There exists a point γ such that, with respect to h, one
preimage of α and one preimage of γ are ≈-equivalent and have maximal distance
among all pairs of ≈-equivalent points. (By the distance it is meant the inner
distance on the circle T .) Each Julia equivalence is equal to ≈α for some α ∈ T ,
and depending on α it can be described in a symbolic manner. For given points
α, β ∈ T , we call the sequence

Iα(β) = s1s2s3 . . . with si =











0 for hi−1(β) ∈ ]α2 ,
α+1
2 [

1 for hi−1(β) ∈ ]α+12 , α
2 [

∗ for hi−1(β) ∈ {α
2 ,

α+1
2 }

the itinerary of β with respect to α. The sequence α̂ = Iα(α) is said to be the
kneading sequence of α. In view of the result which shall be proved here, we only
recall the description of ≈α for α ∈ T with non-periodic kneading sequence. (For
the other cases we refer to [3], [15]). If α̂ is non-periodic, then for all β1, β2 ∈ T

the following holds:

β1 ≈α β2 iff either Iα(β1) = Iα(β2) or Iα(β1) = wuα̂ and Iα(β2) = wvα̂

for some 0-1-word w and some u, v ∈ {0, 1, ∗}.
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Before saying a little more about the relation of locally connected Julia sets and
the Julia equivalences, let us recall some definitions concerning a periodic orbit
{z = pm

c (z), pc(z), p
2
c(z), . . . , pm−1

c (z)} for a quadratic map pc: The value of the
derivative of pm

c in all points of the orbit coincides and is called the multiplier of
the orbit. The orbit is said to be attractive (respectively repelling, indifferent) if
its multiplier has absolute value greater than 1 (respectively less than 1, equal
to 1). Moreover, depending on whether the argument of the multiplier (relative
to 2π) is rational or irrational, one distinguishes rational indifferent and irrational
indifferent periodic orbits.

If pc possesses an attractive or rational indifferent orbit, then Jc is locally
connected (see [8], [6]) and there exists a periodic α ∈ T such that two external

rays R
β1
c , R

β1
c land at the same point iff β1 ≈α β2. (For more information on the

α, see [2], [15].)

If pc has an irrational indifferent periodic orbit or all periodic orbits for pc

are repelling, then c ∈ Jc. Assuming that then Jc is locally connected, the
identification defined by the landing behaviour of external rays is given by ≈α

for each external angle α ∈ T of c. In the case with an irrationally indifferent
orbit, the point α is unique, and only in this case it is non-periodic with periodic
kneading sequence (and J0c contains Siegel disks).

Roughly speaking, the topological ‘theory’ of locally connected quadratic Julia
sets forms the intersection of the ‘theory’ of (connected) quadratic Julia sets and
the ‘theory’ of Julia equivalences. On the one side, not each Julia equivalence
can be realized by a locally connected Julia set (see Section 4 in [13]), and on the
other side, if the Julia set Jc of a quadratic map pc is connected but fails to be
locally connected, it cannot be a topological factor of T .

In the latter, at least the external rays R
β
c with rational β land at a point of

Jc (see [20]), and the question arises, whether there exists a Julia equivalence

≈α such that at least for rational β1, β2 ∈ T the external rays R
β1
c , R

β2
c have

a common landing point if β1 ≈α β2. By the following Theorem, we shall give
a positive answer to this question in case that pc doesn’t possess an irrational
indifferent orbit. The irrational indifferent case is concerned with in [16].

Theorem. For c ∈ C, let the Julia set Jc be connected but not locally connected,

and assume that pc has no irrational indifferent periodic orbit. Then there exists

a point α ∈ T such that c forms an accumulation point of the external ray Rα
c

and such that for rational points β1, β2 ∈ T the following holds: β1 ≈α β2 iff the

external rays R
β1
c und R

β2
c land at the same point.

Moreover, α is not preperiodic and has a non-periodic kneading sequence, and

two rational points β1, β2 ∈ T form external angles of the same point iff Iα(β1) =
Iα(β2).
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2. Renormalization and Yoccoz’s result

Often, on a part of the complex plane, a holomorphic map behaviours like a
polynomial one. By their concept of a polynomial-like map, Douady and Hubbard
have given an exact mathematical description of this phenomenon (see [9] and
compare [24], [4], [6], [30]). For our purposes, we only need the concept for the
quadratic case. We are following the representation of the subject in McMullen’s
book [24].

Definition 1 (quadratic-like map). Let f be a proper holomorphic map between

simply connected domains U and V in C. (Proper means that the preimage of
each compact set is compact.) Then f is said to be quadratic-like if f has degree

2 and the closure of U forms a compact subset of V .

If f is a quadratic-like map, then the set J0(f) =
⋂

∞

j=1 f−j(V ) is called the

filled-in Julia set and its boundary J(f) the Julia set of f .

Of course, a quadratic map is quadratic-like in a neighbourhood of its filled-in
Julia set, and the two definitions of a (filled-in) Julia set are consistent. The rela-
tion of polynomial-like maps and polynomial maps is established by Douady and
Hubbard’s Straightening Theorem. For our purposes, we only need the following
partial statement of this Theorem:

Each quadratic-like map f having a connected Julia set is hybrid-equivalent to
a unique quadratic map pc; c ∈ C. This means the existence of a quasiconformal
conjugacy φ from a neighbourhood of J0(f) onto a neighbourhood of J0c with

∂φ = 0 on J0(f). (In fact, we only need that φ is a topological conjugacy
preserving the orientation and, obviously, such conjugacy transforms J0(f) into
J0c .)

One reason for the occurrence of self-similarity in quadratic iteration theory is
that often a high iterate of a given quadratic map has quadratic-like behaviour on
a part of the complex plane. If Jc is connected or, equivalently, if 0 is contained
in J0c , and the map pn

c for n ∈ N is quadratic-like anywhere, then it is quadratic-
like in a neighbourhood of 0. One comes to that what is called a renormalizable
quadratic map (see [24], [25], [21], [11]). Furthermore, we want to follow [24].

Definition 2 (renormalizable quadratic maps). Let pc for c ∈ C be a quadratic

map and let n ∈ N\{1}. Then pn
c is said to be renormalizable if there exist simply

connected domains U and V in C such that pn
c between U and V is quadratic-like

and p
jn
c (0) ∈ U for all j ∈ N0. The pair (U, V ) is called renormalization of pn

c .

If pc for c ∈ C is a quadratic map and pn
c is renormalizable, then the corre-

sponding (filled-in) Julia set does not depend on the renormalization (U, V ). This
justifies to use the notion J0(pn

c ) (J(p
n
c )) for the (filled-in) Julia set corresponding

to the renormalization of pn
c . Moreover, by the second property in the definition,

J(pn
c ) is connected, hence there exists a unique c̃n ∈ C such that pc̃n and pn

c are
hybrid-equivalent.
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By p
j
c(J
0(pn

c )); j = 0, 1, . . . , n−1 we have n topological copies of J0(pn
c ), which

are invariant with respect to pn
c and which we want to call the small filled-in Julia

sets.
Each of these sets contains a unique fixed point with respect to pn

c which is
mapped to a fixed point with external angle 0 by each conjugacy establishing the
hybrid-equivalence to a quadratic map. This fixed point is said to be the BETA
fixed point. There exists at most one further fixed point with respect to pn

c which
is called the ALPHA fixed point. (Different from the usual conventions, we write
‘ALPHA fixed point’ and ‘BETA fixed point’ since the notions α, β already have
been used for the points in T .)

Two different fixed small filled-in Julia sets intersect in at most one point.
This one is a repelling fixed point (see [24, Theorem 7.3]), and independent of the
choice of the small filled-in Julia sets, in each case it is a BETA fixed point or in
each case it is an ALPHA fixed point.

Definition 3. If pn
c for c ∈ C and n ∈ N is renormalizable, then pn

c is called

simply renormalizable if two small filled-in Julia sets do not cut in an ALPHA
fixed point.

Moreover, pc for c ∈ C is said to be infinitely renormalizable if pn
c is renormal-

izable for infinitely many n ∈ N.

In view of the proof of our result, we need two important facts on infinitely
renormalizable quadratic maps pc. The first one says that there exist infinitely
many n ∈ N such that pn

c is simply renormalizable (see [24, Theorem 8.4]), and the
second one is the following celebrated result on the local connectivity of quadratic
Julia sets by Yoccoz.

Yoccoz’s result. Let pc be a quadratic map which does not possess an indif-

ferent periodic orbit. If Jc fails to be locally connected, then pc is infinitely

renormalizable.

3. Proof of the result

Preparations for the proof. To prepare the proof of our result, let us list some
statements which can be found in our papers [2], [3], [13], [15] in the main or are
well known. Subsequently, we consider dynamical properties of a point in T only
with respect to h and so will indicate this not any more.
Let us start saying a little more one the rational points in T . A point β ∈ T is

rational iff it is periodic or preperiodic. (In our terminology, preperiodic means
to have a finite orbit, but to be non-periodic.)
It is easy to see that in the first case the reduced fraction corresponding to β

has an odd denominator and that in the second case it has an even denominator.
We have mentioned that for pc; c ∈ C with connected Julia set and a rational

β ∈ T the external ray R
β
c lands at a point z of Jc. In fact, it is known that z

belongs to a repelling or rationally indifferent periodic orbit if β is periodic and
z is preperiodic else (see [20]).
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I. In the following, we will deal with chords having their end points at the circle.
Let us make some arrangements concerning these chords. First of all, a chord
with end points β1 and β2 is denoted by β1β2. As the length of a chord we take
the inner distance of its end points in T , where the circumference of the circle is
measured by 1. Also chords of length 0 consisting of only one point are allowed.
We shall say that two chords S1, S2 crosses each other if they are different and

have a common interior point. A chord S divides the disk into two open parts.
Two subsets of the disk are said to be separated by S if they lie in different parts.
Finally, a point of T is called between β1, β2 ∈ T if the distance of β1 and β2 is

different from 1
2 and the point is contained in the smaller open interval with end

points β1, β2.

We have mentioned that our Julia equivalences are based on Thurston’s theory
of invariant laminations. In fact, the Julia equivalences are constructed from
special invariant laminations, and it is efficient to use the construction here.
If X is a subset of T , then the application of a map f to the convex hull of

X , i.e. the set {
∑k

i=1 aixi|k ∈ N, xi ∈ X, ai ∈ R+,
∑k

i=1 ai = 1}, is defined to
be the convex hull of f(X) in the following. A (quadratic) invariant lamination
L is a set of mutually non-crossing chords whose union

⋃

L is closed, such that
for all S ∈ L the following holds: h(S), S′ ∈ L, and there exists a chord S with
h(S) = S.
The complement of

⋃

L in the disk divides into connectedness components.
The closure of such component is said to be a gap of L. A gap is convex, and it
is called polygonal if its intersection with T is finite.

Here we only consider invariant laminations related to ≈α for points α ∈ T

which are not preperiodic and have a non-periodic kneading sequence. In this
case we use the following notations:
If w = w1w2 . . . wj is a word consisting of symbols 0 and 1 — a 0-1-word —

and β is a point in T , then lαw(β) denotes the unique point whose j-th iterate is
equal to β and whose itinerary starts with w, when this point exists. (For the
empty word w, let lαw(β) = β.)

Moreover, let Bα
∗ = {l

α
w(

α
2

α+1
2 ) | w is a 0-1-word}, and let B

α be the closure
of Bα

∗
, i.e. the union of Bα

∗
with the set of all accumulation chords (including

degenerate one-point chords). We denote the latter set by ∂Bα.

Both Bα and ∂Bα form invariant laminations, and ≈α is the equivalence
relation which identifies two points β and γ iff there exists a sequence β0 =
β, β1, . . . , βj−1, βj = γ such that all chords βi−1βi for i = 1, 2, . . . , j belong to
Bα or, equivalently, belong to ∂Bα. There is no difference between the equiva-
lence relation generated by Bα to that generated by ∂Bα since all gaps for Bα

are polygonal if the kneading sequence of α is non-periodic (see Section 7 in [2],
where the notion Sα is used instead of Bα). Let us say more about the structure
of Bα.
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Lemma 1 (The structure of Bα). For a point α ∈ T , which is not preperiodic and

has a non-periodic kneading sequence, one of the following two cases is satisfied:

1. [α]≈α
consists of one point, ∂Bα = Bα, and α

2
α+1
2 is the longest chord of

∂Bα;

2. [α]≈α
consists of α and a point γ 6= α, such that α

2
γ+1
2 and

α+1
2

γ
2 are the

longest chord of ∂Bα. Moreover, ∂Bα is the closure of {lαw(
α
2

γ+1
2 ) | w is

a 0-1-word} ∪{lαw(
α+1
2

γ
2 ) | w is a 0-1-word}.

Proof: With exception of the last part in 2., the above statements are verified
in Section 7 of [2]. We want to give an outline of the corresponding arguments,
what is necessary for understanding the rest of the present proof.
If [α]≈α

is a single set, α
2

α+1
2 cannot be isolated in Bα

∗
since all gaps of Bα

are polygonal. Thus by continuity argument it follows that all elements of Bα
∗ are

contained in ∂Bα.

If the equivalence class [α]≈α
contains more than one point, then it must consist

of two points, where the point different from α is denoted by γ here. The gap
of ∂Bα whose intersection with T is symmetric with respect to ′ must forms a

‘rectangle’ spanned by the angles α
2 ,

α+1
2 ,

γ
2 and

γ+1
2 . Moreover,

α
2

γ+1
2 and

γ
2

α+1
2

are the longest chord of ∂Bα. Their length d is at least 13 .

Since the length of the preimage of a chord with length a is equal to a
2 or

1−a
2 and since α

2
γ
2 has length

1
2 − d, one easily sees that lαw(

α
2

γ
2 ) has length

2−j(12 − d) when w is a 0-1-word of length j. This yield the following: If (wi)
∞

i=1

is a sequence of 0-1-words such that (lαwi
(α2

α+1
2 ))

∞

i=1 converges to a chord S, then

also (lαwi
(α2

γ+1
2 ))

∞

i=1 converges to S. This completes the proof of Lemma 1. �

All gaps in Bα are polygonal. So, if {β1, β2, . . . , βk = β0} is an equivalence
class of ≈α whose elements are given in an anticlockwise cyclic order, then the
chords βi−1βi for i = 1, 2, . . . , k must belong to ∂Bα. Moreover, Thurston has
shown that the ‘angles’ of a periodic polygonal gap of an invariant lamination lie
at a common orbit (see [32, proof of II.5.3], compare Proposition 5.3 in [2]). Let
us summarize:

Lemma 2 (Equivalence classes containing periodic or preperiodic points).
Assume that α ∈ T is not preperiodic and has a non-periodic kneading se-

quence. Further, let β ∈ T be periodic respectively preperiodic. Then each point

in [β]≈α
is periodic respectively preperiodic. (In the first case, all periods are

equal.) Moreover, if β is periodic and β1, β2, . . . , βk = β0 = β are the points of

the equivalence class [β]≈α
, given in an anticlockwise cyclic order, then all chords

βi−1βi for i = 1, 2, . . . , k are contained in ∂Bα. �

II. As shown in [2], [3], for each point α ∈ T \ {0} there exists a unique periodic
point α different from α and satisfying ≈α=≈α. In each case, α and α have the
same period. The set of all chords αα for periodic α 6= 0 plays an important role
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for the description of the Mandelbrot set (compare [18], [32], [7], [3]). For the
proof of our result, we only need the following statements:

Lemma 3. If δ 6= 0 is periodic, then δ is equal to the unique point η 6= δ with

the property that the chords hi(δ)hi(η) for i ∈ N ∪ {0} do not cross δ
2

δ+1
2 and

η
2

η+1
2 .

Moreover, if αγ is an accumulation chord of B∗ = {δδ | δ is periodic and δ 6= 0}
(such that α, γ are not preperiodic), then the following holds:

(i) the kneading sequences of α and γ coincide and are non-periodic,

(ii) ≈α=≈γ , and

(iii) if δδ ∈ B∗ separates 0 and αγ, then lαw(δδ) is contained in the invariant
lamination Bα for each 0-1-word w.

Proof: The first statement is an immediate consequence of Lemma 3 in [3]. So
let αγ be an accumulation chord of B∗.
Then (ii) and α̂ = γ̂ follow from Theorem 1(a) and Theorem 2 in [3]. (That

what in the present paper is B∗, is denoted by S∗ in [3].) Moreover, by Lemma 3 in
[3] and Theorem 1 in [3], two different nonperiodic points with periodic kneading
sequence cannot be end points of an accumulation chord of B∗, and by Theorem 1
in [13] an accumulation point of B∗ has a non-periodic kneading sequence. This
shows (i).

Finally, if δδ is given as in (iii), then by Theorem 2(b) in [3] we have δ ≈α δ,
and by the Corollary in [3], no element of the orbits of δ, δ lies between α

2 and
γ+1
2 or between γ

2 and
α+1
2 . Thurston’s argument mentioned above Lemma 2

leads to the statement that δδ ∈ Bα, and the rest is obvious. �

III. The last Lemma in preparation of the proof of our result is based on the
fact that each repelling periodic point in a connected Julia set has at least one
periodic external angle (see [20]). If δ ∈ T is periodic, the we denote its periodic

preimage by δ̇ and its preperiodic one by δ̈.

Lemma 4. Let c ∈ C and let pn
c be simply renormalizable for n > 1. Further,

let z be the ALPHA fixed point in J0(pn
c ).

Then there exists a unique periodic point α such that Rα̇
c and Rα̇

c land at z

(and Rα̈
c and Rα̈

c land at −z).

Proof: Since pn
c is simply renormalizable, the period of z is equal to n. At first

we note that z has more than one periodic external angle. To show this, let φ be
a map establishing the hybrid-equivalence of pn

c and pc̃n between neighbourhoods
of J0(pn

c ) and J0pc̃n
. (Compare the notion below Definition 2.) If Rη

c lands at z,

then also R
hn(η)
c = pn

c (R
η
c ) lands at z, but hn(η) must be different from η.

Otherwise, by the action of φ there would exist a path δ in the complement
of J0pc̃n

with the properties that pc̃n(z) would be accessibly by δ, and that δ and

pc̃n(δ) would have a common end segment. Then, by Lindelöf’s Theorem (see
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Theorem 6.3 and Corollary 6.4 in [24]), 0 would be an external angle of pc̃n(z),
which contradicts the assumption that z is an ALPHA fixed point.

Let now β1, β2 be periodic points in T such that they form external angles of
a common point in the orbit of z and have maximal distance with this property.
Then one easily sees that the distance of β1 and β2 is not less than

1
3 , and that

the chords hi(β1)h
i(β2); i ∈ N ∪ {0} do not cross β1β2 and β′

1β
′

2.
Let d be the length of β1β2. Then, following an argument of Thurston (see

[32]), one obtains that no of the chords hi(β1)h
i(β2); i ∈ N can be shorter than

1
2 − d and so no point in the orbits of β1 and β2 lies between β1 and β′

2 or

between β2 and β′

1. In fact, assuming that i0 would be the first number such that

hi0(β1)h
i0(β2) has length d0 < 1

2 − d. Then hi0(β1)h
i0(β2) would have length

1−d0
2 > d, which is impossible.

Since J0(pn
c ) is the only small filled-in Julia set which contains 0, the points

β1, β2 must be external angles of z and so β′

1, β′

2 external angles of −z. The
above statement follows from Lemma 3 now. �

The main part of the proof. Let c ∈ C be given, such that Jc is connected
but fails to be locally connected and pc does not possess an irrational indifferent
periodic orbit. Further, let ≈ be the equivalence relation on the rational points

in T which is defined to identify two points β1, β2 if the external rays R
β1
c , R

β2
c

land at the same point.

By Yoccoz’s resultat, pc is infinitely renormalizable, and we find an increasing
sequence (ni)i∈N satisfying the following properties:

1. pni

c is simply renormalizable;
2. J0c (p

ni+1
c ) does not contain a point with period less than or equal to ni.

Consequently,
⋂

i∈N
J0c (p

ni

c ) contains no periodic, thus no preperiodic point. The
statements listed and the fact that all periodic orbits of pc are repelling can be
found in [24] (see Theorems 8.1, 8.4 and 7.8).

Now in each case let zi; i ∈ N be the ALPHA fixed point in J0(pni

c ). This one
exists by the following reason: Since all periodic orbits for pc are repelling, also pd

with d = c̃ni possesses only repelling periodic orbits. (Compare the notion below

Definition 2.) The two fixed points of the quadratic map pd coincide iff d = 1
4 ,

but then the corresponding double fixed point is rationally indifferent.

Further, for each n ∈ N let αi ∈ T be the periodic point such that Rα̇i

c and

R
α̇i

c land at zi, which is uniquely defined by Lemma 4.

By 2., in each case the chords ˙αi+1 ˙αi+1, ¨αi+1 ¨αi+1 separate the chords α̇iα̇i

and α̈iα̈i. Moreover, by (αi)i∈N we have a sequence of periodic points with the
property that, for each i ∈ N, the chord αiαi separates the point 0 and the chord
αi+1αi+1. Subsequently, we want to assume that, in dependence on i, the period
of αi monotonically increases.
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Let us consider the points α = limn→∞ αn and γ = limn→∞ γn. Since the
intersection of the sets J(pni

c ) does not contain a periodic or preperiodic point,
α and γ cannot be periodic or preperiodic. Moreover, by Lemma 3 the kneading
sequence of α und γ is non-periodic, and one has ≈α=≈γ. Of course, it is possible
that α and γ coincide.

By Lemma 3, A = {lαw(αiαi) | w ∈ {0, 1}
∗, i ∈ N} is a subset of Bα. Moreover,

∂Bα is contained in the closure of A. This follows from Lemma 1 and the fact
that, for each 0-1-word w, the (possibly equal) chords lαw(

α
2

γ+1
2 ), l

α
w(

γ
2

α+1
2 ) form

accumulation chords of the set {lα
w0(αiαi) | w is a 0-1-word} ∪{l

α
w1(αiαi) | w is

a 0-1-word}.
Let us show that the end points of each chord in A are equivalent with respect

to ≈. But first note that a chord connecting two ≈-equivalent rational points
β1, β2 cannot have a point common with

α
2

α+1
2 .

Indeed, since α
2

γ+1
2 and γ

2
α+1
2 are (one-side) accumulation chords of the set

{α̇iα̇i|i ∈ N}∪{α̈iα̈i|i ∈ N}, we can assume that β1 lies between
α
2 and

γ
2 , and β2

between α+1
2 and γ+1

2 . If the external rays R
β1
c und R

β2
c would land commonly

at a point x, then x would be periodic or preperiodic and would be contained in
each small filled-in Julia set J0(pni

c ). This is impossible.

Let a 0-1-word w and an i ∈ N be given, such that lαw(αi) ≈ lαw(αi), and let
β1 = lα0w(αi), β2 = lα0w(αi). Then one obtains β′

1 = lα1w(αi) and β′

2 = lα1w(αi).
Moreover, by the even shown one has the following: If among the external rays

R
β1
c , R

β2
c , R

β′

1
c und R

β′

2
c two land at a common point, then these rays are R

β1
c

and R
β2
c or R

β′

1
c and R

β′

2
c .

Since pc maps two to one, from this it follows β1 ≈ β2 and β′

1 ≈ β′

2. Now,
by induction on the length of a 0-1-word w, one easily shows that the ends of a
chord in A are ≈-equivalent.

Two rational points in T are equivalent with respect to ≈α iff the chord con-
necting them, and its iterates, have no common point with α

2
α+1
2 . Thus the

restriction of ≈α to the rationals contains ≈, and it remains to show that each
≈α-equivalence class containing a rational point forms a subset of a ≈-equivalence
class.
So let β ∈ T be periodic with period m and let β1, β2, . . . , βk = β0 = β be the

points of the equivalence class [β]≈α
, given in an anticlockwise cyclic order. By

Lemma 2, we find points γ1, γ2, . . . , γk = γ0 and δ1, δ2, . . . , δk = δ0 satisfying the
following properties:

1. for all i = 1, 2, . . . , k, the point βi lies between γi−1 and δi,
2. the chords γiδi; i = 1, 2, . . . , k are elements of A,
3. the first m − 1 iterates of α

2 and
α+1
2 are not contained in one of the

intervals [γi−1, δi].

Finally, let U be the bounded simply connected domain which is separated from
the rest of the complex plane by the equipotential of the niveau 1 (of Gc) and
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the external rays R
γi

c ; i = 1, 2, . . . , k and R
δi

c ; i = 1, 2, . . . , k together with their
landing points.

By construction, on the union of the intervals [γi−1, δi]; i = 1, 2, . . . , k the
map hm is injective. Moreover, since all points of [β]≈α

have period m, the set
⋃k

i=1[γi−1, δi] is contained in the interior of h
m(

⋃k
i=1[γi−1, δi]).

Therefore, the closure of U forms a subset of pm
c (U), and pm

c is injective on U .
(Take into considerations that pc doubles the potential.) Thus there exists a
point z ∈ Jc satisfying {z} =

⋂

i∈N
p−im
c (U), where pm

c is regarded as a map
on U now. This is an immediate consequence of the Wolff-Denjoy Theorem,
which says the following: If f is a conformal map on a domain V in C which is
conformally equivalent to the open disk and contains the closure of f(V ), then
(fn)n∈N converges uniformly on compact subsets to a constant function (compare
Theorem 3.2 in [20]).

All p−im
c (U); i = 1, 2, . . . , k contain an end segment of each external ray R

βi

c ;
i = 1, 2, . . . , k, hence z is the landing point of each external ray and the points
βi; i = 1, 2, . . . , k are ≈-equivalent.

Obviously, c is an accumulation point of at least one of the external rays Rα
c ,

R
γ
c , but of no other one. Taking into consideration that each equivalence class
of preperiodic points is iterated into an equivalence class of periodic points, one
completes that ≈ and the restriction of ≈α=≈γ to the set of rational points
coincide.

The last statement in the Theorem is a property of the symbolic description of
≈α in the Introduction: A rational point β ∈ T cannot have an itinerary ending
with α̂. Otherwise, by the symbolic description of ≈α, the point α would be
≈α-equivalent to a periodic or preperiodic point, which contradicts Lemma 2.

�
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matiques d’Orsay 84-02 (1984) (première partie) and 85-02 (1985) (deuxième partie).

[9] Douady A., Hubbard J., On the dynamics of polynomial-like mappings, Ann. Sci. Ecole
Norm. Sup. (4) 18 (1985), 287–343.



406 K.Keller

[10] Goldberg L., Milnor J., Fixed points of polynomial maps I/II, Ann. Scient. Ec. Norm. Sup.,
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