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An elementary proof of a theorem

on sublattices of finite codimension

Marek Wójtowicz

Abstract. This paper presents an elementary proof and a generalization of a theorem due
to Abramovich and Lipecki, concerning the nonexistence of closed linear sublattices of
finite codimension in nonatomic locally solid linear lattices with the Lebesgue property.
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In 1990 Y.A. Abramovich and Z. Lipecki proved, by means of Boolean algebra
techniques and Liapunov’s convexity theorem, the following result ([1, Theorem 2];
cf. [3, Example 27.8]):

Let X = (X, τ) be a Hausdorff locally solid linear lattice such that:

(i) X is nonatomic and Dedekind complete,
(ii) X has the Lebesgue property.

Then X contains no proper closed sublattices of finite codimension.

(By a sublattice of a linear lattice we always mean a linear sublattice. X has the
Lebesgue property (or, τ is a Lebesgue topology on X) provided that for every
MS-sequence (xα) in X with xα ↓ 0 we have xα → 0(τ). For other undefined
notions and basic results concerning linear lattices (= Riesz spaces) in this paper
we refer the reader to the monographs [2], [3]).

Here we give an elementary and short proof of a more general result, namely, we
show that the two assumptions in the above theorem, i.e. that τ is Hausdorff and
X is Dedekind complete are superfluous. It should be noted that every infinite
dimensional linear lattice possesses sublattices of arbitrary finite codimension ([1,
Theorem 3]).

Theorem. Let X be a nonatomic linear lattice, and let Y be a sublattice of X
with dimX/Y < ∞. Then Y is order dense in X .
If, additionally, τ is a Lebesgue topology on X , then Y is τ -dense in X .
In particular, the topological dual X ′ of any nonatomic locally solid linear lattice

(X, τ) with the Lebesgue property is nonatomic (equivalently, X has no nontrivial
continuous Riesz homomorphisms X → R).

Order denseness of Y in X is understood in the sense of ([2, Definition 1.9]), i.e.
that Y+ \ {0} is cofinal in X+ \ {0}.
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Proof: Let Q denote the quotient map X → X/Y . Since X is nonatomic,
every principal ideal Ae = {x ∈ X : |x| ≤ λe for some λ ≥ 0}, e ∈ X+, is
of infinite dimension. If Y were not order dense in X , then Ae ∩ Y = {0} for
some e ∈ X+, and hence Q restricted to Ae would be a linear isomorphism;
thus dimAe ≤ dimQ(X) < ∞, a contradiction. This proves the first part of the
theorem, and since for Lebesgue topologies order denseness implies topological
denseness, the second part also follows; the particular case is implied by ([2,
Theorem 3.13]; [3, Theorem 18.3 (iii)]). �

Examples. 1. Let K be a topological Hausdorff space. The lattice C(K) is
nonatomic whenever K has no isolated points, thus every such lattice has the
property described in the first part of the Theorem.

2. Let Sp denote the nonatomic sublattice, consisting of all step functions, of the
(nonatomic) lattice Lp = Lp(0, 1), 0 < p < ∞. It is easily seen that Sp endowed
with the p-norm topology has the Lebesgue property, and hence Sp possesses
the property described in the second part of the Theorem without being even
σ-Dedekind complete (compare with (i) above).

3. This example seems to be known; we include it for completeness of the paper.
Let 1 < p < ∞. Since every continuous linear functional f on the lattice Lp is
order continuous ([2, Theorems 9.1, 22.1 and 22.4]), any family of seminorms (qf )
of the form qf (x) = |f |(|x|), x ∈ Lp, determines a Lebesgue topology on Lp ([2,
p. 40]). This topology is Hausdorff whenever the family (qf ) is total.
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