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Structure resolvability
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Abstract. We introduce the general notion of structure resolvability and structure irre-
solvability, generalizing the usual concepts of resolvability and irresolvability.
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1. Introduction

In 1943 E. Hewitt [1] introduced the notion of resolvable space. A topological
space is said to be resolvable if it has two disjoint dense subsets. A topological
space is said to be irresolvable if it is not resolvable. We introduce the general
notion of structure resolvability and structure irresolvability.
Let X be a set and S be a family of subsets of X . The pair (X,S) is called a

structure (this differs a bit from the notion of structure in mathematical logic
and algebra). A subset A ⊂ X is called “dense” in (with respect to) S if A∩S 6= ∅
for each S ∈ S. We say that the structure (X,S) is resolvable if X contains two
disjoint subsets A1, A2 which are “dense” in S, i.e. Ai ∩ S 6= ∅ for every S ∈ S
and i = 1, 2. The structure (X,S) is said to be irresolvable if it is not resolvable,
i.e. there are no disjoint dense subsets with respect to S.
The notion of topological resolvability (irresolvability) introduced by Hewitt

becomes a particular case of the notion of resolvable (irresolvable) structure. To
see this we take the family of all nonempty open subsets of the given topological
space as S.
Structure resolvability affirms in some sense the simplicity of the structure

itself. Indeed if the structure S on the set X is irresolvable, then we can consider
that it is a rather complicated one: for any partition of X into two disjoint parts
there exists some element S of the structure that is hidden (i.e., is contained in)
in one of these parts.
We recall here two fundamental results of the theory of resolvable (irresolvable)

topological spaces. The first is an old one and the second is recent.

∗ This research was began during the visit of the second author to Morelia in December
1994. The second author thanks National University in Mexico and its Mathematical Institute
in Morelia for generous hospitality and support.
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1.1 El’kin’s criterion of topological irresolvability ([2]). The topology τ on
X is irresolvable if and only if τ contains a base of some (set-theoretic) ultrafilter
on X .

1.2 Illanes’ proposition for topological resolvability ([3]). If a space X is
m-resolvable for each natural number m, then it is ℵ0-resolvable.

We recall that the topology τ on X is called k-resolvable, where k is a car-
dinal number, if X contains k disjoint dense subsets. The topology τ is called
maximally resolvable if it is ∆(τ)-resolvable, where ∆(τ) = min {|V | : V ∈
τ, V 6= ∅}. This cardinal ∆(τ) is called the dispersion character of the topology
τ of the space X .
The well studied notion of topological resolvability (irresolvability) allows us

to ask the following questions about a given structure S.

1.3 Question. Does El’kin’s criterion of irresolvability hold for S?
1.4 Question. Does Illanes’ proposition hold for S?
1.5 Question. Is S maximally resolvable?

2. Examples of resolvable or irresolvable structures

2.1 Topological spaces. Many beautiful results have been obtained in this field.
We mention only some recent results:
W.W. Comfort (see [4]) proved resolvability of any Tychonoff countably com-

pact space without isolated points;
W.W. Comfort and J. van Mill [5] proved resolvability of any infinite Hausdorff

topological abelian group with only finitely many elements of order 2;
V.I. Malykhin [6] proved maximal resolvability of any Hausdorff totally

bounded topological group.

2.2 Various measure spaces. Is the family of all Lebesgue measurable subsets
of the real line resolvable? It is evident, that this does not hold. But what about
the family of all subsets having strictly positive measure? Yes, because every such
subset contains some closed subset of cardinality C, and it is not difficult to see
that an arbitrary family of cardinality C consisting of closed subsets of cardinality
C is resolvable — we can apply the Generalized Bernstein-Kuratovskii’s Lemma
[7, p. 514].

2.3 Algebraic groups. Let G be a group with the unit e and S = {A\{e} : A is
an infinite subgroup ofG}, i.e. S is the family of all infinite subgroups with deleted
unit. Is S resolvable? The answer is evident for many groups. Nevertheless, we
have

2.3.1 Proposition. Let Ω be a countably infinite Boolean group. Then the
family S mentioned above is not resolvable.

Indeed, for any partition Ω = Ω1 ∪Ω2 there exists an infinite subgroup B such
that B \ {e} is contained in one of the two parts Ω1,Ω2. See details in [8]. �
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3. Resolvability and irresolvability of one structure by means

of elements of another one

The introduced notion of resolvable structure has an essential inadequacy: the
dense subsets available in the case of resolvable structure can be extremely non-
constructive. As a rule, their existence is proved with the aid of the axiom of
choice. The desire of having dense subsets of rather simple good nature leads to
the following notion.

3.1 Definition. Let X be a set. Let S and B be two families of subsets of X .
The structure S is called B-resolvable if there exist disjoint subsets B1, B2 ∈ B
dense with respect to S, i.e. Bi ∩ S 6= ∅ for every S ∈ S and i = 1, 2.

If B is an algebra, i.e., X \B ∈ B if B ∈ B, then the structure S is B-resolvable
if there exists B ∈ B such that B ∩ S 6= ∅, (X \ B) ∩ S 6= ∅ for every S ∈ S.

3.2 Borel or Baire resolvable topology. Let, for example the first structure S
be a topology τ on X and the second B be the family of all Borel subsets of (X, τ)
or the family of all subsets with the Baire property, i.e. having a form U∆N , where
U is an open subset, N is a subset of the first category and ∆ is the operation
of symmetric difference. In this situation the topological space (X, τ) is called
Borel (Baire) resolvable if there exists a Borel (Baire) subset B such that both B
and its complement X \B are dense in the space (X, τ). Generally speaking, the
classical context of resolvability of topological spaces leads to dissatisfaction with
the classical examples of resolvable topological spaces: compact spaces, spaces of
countable character (Hewitt [1], M. Katětov [9]): dense subsets in these spaces
were extremely nonconstructive. El’kin’s criterion of irresolvability of topological
spaces mentioned above has also essentially the same nature. The notion of B-
resolvable structure S should partially offset this dissatisfaction.
The notion of resolvable (irresolvable) structure becomes a particular case of

B-resolvability, namely, when B is the family of all subsets of X .

4. Results and problems on B-resolvable structure

We concentrate our attention on B-resolvability of the topological space (X, τ)
when B is the σ-algebra of all Borel subsets of (X, τ) generated by open (equiva-
lently, by closed) subsets of (X, τ) and then we discuss Borel resolvability of the
σ-algebra of all subsets with the Baire property, i.e. representable in the form
V∆N , where V is an open subset and N is a nowhere dense subset of X and
then we discuss Baire resolvability. It is clear that Borel resolvability is stronger
than Baire resolvability and that Baire irresolvability is stronger than Borel irre-
solvability because every Borel subset has the Baire property. The idea of Borel
resolvability was raised by S. Watson during the visit of the second author to
Toronto in July–August 93. Both authors would like to mention the stimulating
role of S. Watson and express their gratitude to him. This area has been inves-
tigated very little. We mention only J. Ceder’s article [10] of 1966 in which he
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considered the question of the resolvability of complete separable metric spaces
into uncountably many disjoint dense Borel subsets.
In what follows we will pay more attention to Borel resolvability.
All spaces are assumed to have no isolated points.

4.1 Proposition. Every T1-space with σ-discrete π-base is maximally Borel re-
solvable.

Proof: First let us prove that a space Z with σ-disjoint π-base is maximally
resolvable, i.e. ∆(Z)-resolvable, in the usual sense. It is enough to prove maximal
resolvability of an open subset of cardinality ∆(Z). Let V be such a subset. It
is easy to see that V has a π-base of cardinality not greater than |V |. But in
this case V is maximally resolvable — we can apply the Generalized Bernstein-
Kuratovskii’s Lemma [7, p. 514].
Now let us return to Borel resolvability. Let B =

∑
{Bn : n ∈ ω} be a π-base

of open subsets of the space X and let each family Bn be discrete. Let ∆ =
min{|B| : B ∈ B} be the dispersion character of the space X . Let {Yα : α ∈ ∆}
be a disjoint system of dense subsets. Of course, |Yα ∩ B| ≥ ∆ for every α ∈ ∆
and B ∈ B. Now we will follow for every α ∈ ∆ a usual induction process. From
each B ∈ B1 we will choose a point a(B) ∈ B ∩ Yα. Let us note that the set
M1 = {a(B) : B ∈ B1}, is discrete, closed and nowhere dense. Hence we may
chose one point a(B) from (B \M1)∩Yα for each B ∈ B2 and so on for all natural
numbers. After finishing this inductive process we obtain sets {Mk : k ∈ ω}. Let
Mα = ∪{Mk : k ∈ ω}. Then Mα ⊂ Yα and these sets Mα are disjoint dense
and Fσ. �

4.2 Corollary. Every metrizable space is maximally Borel resolvable.

Let us introduce the notion of the resolvability degree rd of a structure S.
We say that rd(S) ≥ m if there exist m disjoint dense subsets with respect to S
(i.e. intersecting each S ∈ S). We say that rdB(S) ≥ m if there exist m disjoint
subsets belonging to B, all dense in S.

4.3 Proposition. For every infinite T1-space X and for the space exp(X)
of all nonempty closed subsets of X with the Vietoris’ topology we have

rdBorel(exp(X)) ≥ rd(X).

Proof: is very easy: let Y be a disjoint system of dense subsets of X . For every
Y ∈ Y let Fin(Y ) be the family of all finite subsets of Y . It is evident that
Fin(Y ) is an Fσ-set which is dense in exp(X). �

Let us formulate the following proposition for the completeness of our exposi-
tion.

4.4 Proposition. For every infinite T1-space X and for the space exp(X) of
closed subsets of X with the Vietoris’ topology we have rdBorel(exp(X)) ≥ ℵ0.

Proof: Let ak be the k-th in order prime natural number, k ∈ ω. Put Ak =
{ai

k : i = 1, 2, . . . }. It is clear that Ak ∩ Am = ∅ if k 6= m. For every k ∈ ω let
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Ek = {Y : Y ⊂ X, |Y | ∈ Ak} ⊂ expX . Then Ek ∩ Em = ∅ if k 6= m and each Ek

is dense in expX . Moreover each Ek is an Fσ-subset of expX . �

4.5 Proposition. Let each subset of the first category in a space X be a nowhere
dense subset. Then X is not Baire resolvable, hence, not Borel resolvable.

Proof: Let A be a dense subset with the Baire property, i.e. A = V∆N , where V
is an open subset and N is a subset of the first category. Then A = (V \N1)∪N2,
where N1, N2 are subsets of the first category. If V 6= ∅ and N is a subset of the
first category and, by hypothesis, it is nowhere dense, then IntA 6= ∅, so X \ A
is nowhere dense. If V = ∅ and N2 is a nowhere dense set, then A is a nowhere
dense set, so we have a contradiction to the assumption of density of A. �

4.6 Corollary. The following spaces are not Baire resolvable, (hence, not Borel
resolvable), because in each of these spaces subsets of the first category are
nowhere dense.

(1) The Stone-Čech remainder ω⋆ = βω\ω of the countable discrete space.
(2) The Stone space of the Boolean algebra of Lebesgue measurable subsets
of the segment [0, 1].

(3) A Souslin continuum.

Let us note that a Souslin continuum has always some nonempty interval that
satisfies the condition of Proposition 4.5.
We point out that all these spaces are Hausdorff compacta and that a Souslin

continuum is even a perfectly normal compact space. Thus we see a big difference
between Borel resolvability and usual resolvability, in which each compact space
is maximally resolvable.

4.7 Proposition. Let X be a Tychonoff space and C(X) be the set of all con-
tinuous real-valued functions. Then

(a) the space C(X) with the uniform convergence topology u is maximally
Borel resolvable,

(b) the space C(X) with the pointwise convergence topology p is 2ℵ0 -Borel
resolvable.

Proof: (a) is true because Cu(X) is a metric space and by Corollary 4.2 it is
maximally Borel resolvable. Let us prove (b). Let Y be a countably infinite
subset of X . Then the restriction map f ∈ Cp(X) −→ f |Y ∈ Cp(Y ) is an open
map. But the image of this map (it is a subset of Cp(Y )) is a metric space and

hence, by Corollary 4.2 it is maximally, (in this case, 2ℵ0) -Borel resolvable. Let

{Kα : α ∈ 2ℵ0} be a disjoint system of dense Fσ-subsets in it. Thus {f−1(Kα) :

α ∈ 2ℵ0} are disjoint dense Fσ-subsets in Cp(X). �

4.8 Problem. Is Cp(X) maximally Borel resolvable?

Let us note that V.V. Tkachuk proved maximal resolvability of Cp(X) for each
Tychonoff space X . His proof is not very difficult.
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A Cp(X) is a pair (C(X), p), where p is the topology of pointwise convergence.
The topology of uniform convergence u is stronger than p. As this topology u is
metric so it is maximally resolvable, i.e. ∆(u)-resolvable. But it is easy to prove
that ∆(p) = ∆(u) = |C(X)|. This implies maximal resolvability of Cp(X).

4.9 Proposition. A separable pseudocompact Tychonoff T1-space is Borel re-
solvable.

Proof: Let S be a countable dense subspace in such a space X . Then S has
empty interior and hence S and X \ S are two disjoint dense Borel subsets of X .

�

Let us note that it is still unknown if every pseudocompact Tychonoff T1-space
is resolvable in the usual sense (this question is due to Comfort [4]).

4.10 Proposition. A dyadic compact space is Borel resolvable.

Proof: Let X be a dyadic compact space. Since the Souslin number of X is
countable there exists a family A of closed Gδ-subsets with empty interior such
that ∪A is dense in X . It is known ([12]) that in a dyadic compact space every
family A of Gδ-subsets has a countable subfamily B such that ∪B = ∪A. So
K = ∪B is dense in X . But IntK = ∅ because X is compact and we can apply
Baire’s theorem. Finally, we have a dense in X Borel subset, namely the Fσ-set
K, with empty interior; hence, X \ K is another dense Borel subset. �

Let us recall that the Souslin number c(X) of a space X is the supremum of
cardinalities of disjoint families of non-empty open subsets of X . A space X for
which c(X) = ℵ0 is said to satisfy the countable chain condition or to be a c.c.c.
space.
Recall that when we consider (usual or set-theoretic) structure resolvability we

may ask whether El’kin’s criterion of irresolvability and Illanes’ proposition hold.
With the appropriate modification these questions also arise in the case of Borel
and Baire resolvability of topological spaces.
Let us note that for countable T1-spaces, usual resolvability and Borel re-

solvability are the same. So, all countable T1-examples with respect to usual
resolvability or irresolvability fit with respect to Borel resolvability or Borel irre-
solvability.
Let us now consider the main theorems of the theory of usual topological re-

solvability. Are they true for Borel resolvability?
Hewitt’s criterion of irresolvability ([1]) states that a space is irresolvable

iff it contains a nonempty open subset in which every subspace dense in itself is

irresolvable.

4.11 Proposition. Hewitt’s criterion is not true for Borel irresolvability.

Proof: If this criterion were true, it would look like: if a space is Borel irresolv-
able then it has a nonempty open subset V in which it is impossible that B1 = B2
for two disjoint dense in itself Borel subsets B1, B2 ⊂ V . �
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However, ω⋆ is Borel irresolvable by Corollary 4.6, nevertheless each nonempty
open subset in it contains a copy of the absolute pK of the simplest Cantor
discontinuum K = Dω in which there are two disjoint dense Fσ subsets. Indeed,
the following lemma is valid.

4.12 Lemma. The absolute pK is Borel resolvable.

Proof of lemma: Let p: pK −→ K be the irreducible (continuous) map from
pK onto K. In K there are two disjoint dense Fσ-subsets M1, M2 which are a
countable sums of nowhere dense subsets. Then p−1(M1) and p−1(M2) are two
disjoint dense Fσ-subsets in pK. �

4.13 Question. Let X , Y be coabsolute spaces. Is it true that X is Borel
resolvable if and only if Y is Borel resolvable?

However we have to note that one part of Hewitt’s criterion remains true, of
course: a space is Borel irresolvable if it contains a nonempty open subset V in
which it is impossible that B1 = B2 for two disjoint Borel subsets B1, B2 ⊂ V .
Now we want to formulate an analog of Hewitt’s criterion for Borel irresolv-

ability, but we need a definition.

4.14 Definition. A space is called hereditarily Borel irresolvable if each non-

empty open subspace of it is Borel irresolvable.

(This definition is analogous to Illanes’ definition for usual irresolvability [3].)

4.15 Hewitt’s criterion for Borel irresolvability for spaces with c.c.c.

A space with c.c.c. is Borel irresolvable iff this space contains a nonempty here-

ditarily Borel irresolvable open subset.

Proof: Let us suppose that a spaceX doesn’t contain any nonempty hereditarily
Borel irresolvable open subset. Then every nonempty open subset contains a
nonempty Borel resolvable open subset. As c(X) = ℵ0, we can find a countable
family of such open Borel resolvable subsets, whose union is dense in X . It is
easy to verify that we have obtained two disjoint dense Borel subsets. �

Theorem of Comfort and Feng ([10]) states that if a space is covered by
resolvable subspaces then it is also resolvable.

4.16 Proposition. Theorem of Comfort and Feng is not true for Borel resolv-

ability.

Proof: Indeed, a Souslin continuum is a union of its closed separable subspaces
that are Borel resolvable (because they are metric compact spaces). �

However we have to note that one part of Theorem of Comfort and Feng
remains true: a Borel resolvable space is, of course, a union of two Borel subsets.
Now we formulate a weak analog of Theorem of Comfort and Feng for Borel

resolvability.
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4.17 Proposition. If a space with c.c.c. is covered by a family of open Borel

resolvable subspaces, then it is Borel resolvable.

And what about El’kin’s criterion of irresolvability?
This criterion has to look like (in the general case of B-resolvability): a space

(X, τ) is B-irresolvable iff the topology τ contains a base for some ultrafilter in
the family B.

4.18 Proposition. If a space (X, τ) contains a nonempty hereditarily Borel ir-
resolvable open subspace, then El’kin’s criterion of irresolvability is fulfilled for

this space, i.e. the topology τ contains a base for some ultrafilter in the family of
all Borel subsets.

Proof: We may suppose that every non-empty open subspace is Borel irresolv-
able. Let ξ be a maximal centered family of open subsets. Let us prove that
ξ contains a base for some ultrafilter in the family of all Borel subsets. Indeed,
let Y, Z be two disjoint Borel subsets and Y ∪ Z = X . Let W = X \ (Int(Y ) ∪
Int(Z)). If Int(W ) 6= ∅, then Int(Y ∩ Int(W )) ⊂ Int(Y ) ∩ Int(W ) = ∅, hence
Int(Y ∩ Int(W )) = ∅. Analogously Int(Z ∩ Int(W )) = ∅. So Int(W ) contains
two mutually complementary Borel subsets with empty interior, hence Int(W ) is
Borel resolvable — a contradiction. Thus, now we may assume that Int(W ) = ∅,
hence Int(Y ) ∪ Int(Z) is dense in X , and one of these two subsets belongs to ξ.

�

It is evident that ω∗, the Stone space of Boolean algebra of Lebesgue mea-
surable subsets of the segment [0, 1], and a Souslin continuum, all contain some
nonempty open Borel irresolvable subspaces (see also Proposition 5). Hence,
El’kin’s criterion of irresolvability is fulfilled for these spaces.
Two more propositions on El’kin’s criterion of irresolvability.

4.19 Proposition. Let each subset of the first category in the space (X, τ) be
a nowhere dense subset. Then this space is not Baire resolvable and τ contains a
base for an ultrafilter in the family of all subsets with the Baire property.

Proof: According to Proposition 4.5 each nonempty open subspace of (X, τ) is
hereditarily Borel irresolvable. Therefore we may end our proof having referred
to the previous Proposition 18. However we may give a direct proof as well.
Let ξ be a maximal centered family of open subsets in such a space. Let B be

any subset with the Baire property. Then B = V∆N , where V is open and N is
of the first category and hence nowhere dense. If V ∈ ξ then V \ N ∈ ξ hence
B ∈ ξ as B ⊃ V \ N . If V /∈ ξ then V ∪ N /∈ ξ, hence B /∈ ξ as B ⊂ V ∪ N . So ξ
is an ultrafilter in the family of all subsets with the Baire property, and of course,
ξ is an ultrafilter in the family of all Borel subsets. �

We do not believe that El’kin’s criterion is true for Borel resolvability in general
topological spaces, but it is true for spaces with c.c.c.
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4.20 Proposition. A space with c.c.c. is Borel irresolvable iff its topology con-

tains a base for some ultrafilter in the family of all Borel subsets.

Proof: According to Hewitt’s criterion (see Proposition 15) we may suppose
that a space contains a non-empty open hereditarily Borel irresolvable subspace
and we may refer now to Proposition 19. �

The situation with Illanes’ assertion is analogous.

4.21 Proposition. If a space with c.c.c. is m-Borel resolvable for each natural
number m, then it is ℵ0-Borel resolvable.

Proof: It is in fact the repetition of Illanes’ proof, with some changes. �
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