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Arithmetical classification of the set

of all provably recursive functions

Vı́tězslav Švejdar

Abstract. The set of all indices of all functions provably recursive in any reasonable
theory T is shown to be recursively isomorphic to U × U , where U is Π2-complete set.
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Let arithmetical language be the language {+, ·, 0, S,<} with symbols for addi-
tion, multiplication, zero, successor and ordering, let standard model of arithmetic
be the structure N = 〈N,+N, ·N, 0N, SN, <N〉 of natural numbers. Let n, the n-
th numeral, be the closed term S(S(. . (0). . ) with n occurrences of the symbol S.

A set A ⊆ Nk is definable inN if A has the form { [n1, . . , nk] ; N |= ϕ(n1, . . , nk) }
for some arithmetical formula ϕ(x1, . . , xk). A classical result (which can be seen
as a version of Gödel First Incompleteness Theorem, see e.g. [7]) says that the re-

cursively enumerable (r.e.) sets are exactly those subsets of Nk that are definable
in N by Σ1-formulas. Σ1-formulas are formulas of the form ∃ vλ(x1, . . , xk, v)
where λ is bounded, and bounded formulas are formulas containing only quanti-
fiers of the form ∀x<y or ∃x<y (i.e. containing only bounded quantifiers).
An axiomatic theory T contains Robinson’s arithmetic Q if the language of T

contains the arithmetical language and all axioms of Q are provable in T . A theory
T is Σ1-sound if all Σ1-sentences provable in T hold in N. For the rest of the
paper a theory means a recursively axiomatizable Σ1-sound theory containing Q.

Definition 1. A function f : N → N is provably recursive in T if there exists a
Σ1-formula ϕ(x, y) such that

(i) f = { [n,m] ; N |= ϕ(n,m) }, i.e. ϕ defines the graph of f in N.
(ii) T ⊢ ∀x∃ ! yϕ(x, y).

By the classical result mentioned above any function provably recursive in T
has r.e. graph and hence is recursive. Thus functions provably recursive in T
can be viewed as those recursive functions the totality of which is known to the
theory T . It is worth mentioning that if ϕ and f are as in Definition 1 then the
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equivalence f(n) = m⇔ T ⊢ ϕ(n,m) holds for any pair n, m of natural numbers:
⇒ is Σ-completeness, ⇐ follows from Σ1-soundness of T .
For T being Peano arithmetic PA, powerful methods capable of showing that

some particular recursive functions are not provably recursive were developed in
the late 70-ties ([8]) and later. Nice examples are e.g. in [5], more can be found in
[4] or in [2]. Similar results were obtained also for subsystems of PA and for other
theories. The importance of provably recursive functions lies in the fact that if f
is recursive but not provably recursive in T then the statement the function f is

total is an example of a true statement unprovable in T . Thus the methods for
showing that some particular recursive function is not provably recursive in T are
a source of independent statements, a source which is an alternative to the Gödel
Second Incompleteness Theorem and which can yield statements that are more
interesting from the “mathematical” point of view.
Can the existence of recursive functions that are not provably recursive in T

be shown by a structural argument, i.e. by showing that the two sets
{ f ; f is total } and { f ; f is provably recursive in T }

have index sets with different arithmetical classifications? We show that it indeed
is the case. While the index set of the former set is known to be Π2, we shall
show that the index set of the latter set is neither Π2 nor Σ2.
In [6] the set ΩBound of all indices of all general recursive functions with

bounded range is investigated and its precise position in arithmetical hierarchy is
found. The result obtained for ΩBound is in [6] extended to some other index sets
and could be extended also to the index set of all provably recursive functions.
Thus our results cannot be claimed to be completely new. Rather, we present a
logical version of a proof from [6] and apply it to index sets not mentioned in [6].

Lemma 1. There exists a general recursive function h : N2 → N which is
universal for the set of all functions provably recursive in T . More specifically,

the set { h(a, ·) ; a ∈ N } equals the set of all functions that are provably recursive
in T .

Here an in the sequel by h(a, ·) we mean the function n 7→ h(a, n) (with a
being constant). This function is sometimes also denoted by λnh(a, n). A simple
diagonal argument shows that h is not provably recursive in T .

Proof of Lemma 1: Consider the following algorithm to compute h:

Read inputs a and n.

Find least d ≥ a such that d is a proof in T of some sentence of the form

∀x∃ ! yϕ(x, y) with ϕ in Σ1.
Find m such that N |= ϕ(n,m). Output the number m.

It is easy to verify that h has the desired properties. �

Let, as in [9], ϕe be the e-th partial recursive function and We be the e-th r.e.
set. Let U be the set { e ; We is infinite }. The set U is known to be Π2-complete.
For A,B ⊆ N, let A×B denote the set { c(i, j) ; i ∈ A and j ∈ B } where c is the
pairing function, and let A denote the complement of A.
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Theorem 1. The set A = { e ; ϕe is provably recursive in T } is recursively iso-
morphic to U × U .

Proof: Since A is a cylinder (verification is left to the reader) it is sufficient to
prove A ≤m U × U and U × U ≤m A.
Let h be the function from Lemma 1. For any e, the function ϕe is provably

recursive if and only if

ϕe is total & ∃ a∀x(ϕe(x) = h(a, x)),

where the left conjunct is known to be Π2 and the right one is Σ2 (the condition
ϕe(x) = h(a, x) is Π1 because it says that any computation of ϕe on input x yields
the result h(a, x)). Thus A is an intersection of a Π2- and a Σ2-set. Since U is
Π2-complete and U is Σ2-complete it is evident that A ≤m U × U .
To prove U × U ≤m A it is sufficient to find a partial recursive function ψ

of three variables such that, for each x and y, the function ψ(x, y, ·) is provably
recursive in T iff Wx is infinite and Wy is finite. Consider the following algorithm
to compute ψ:

Read inputs x, y and v.

Find an element of Wx which is greater than v.

Find a := sup{ z ; ∃w≤vT (y, z, w) }.
Output the number 1 + max{h(0, v), . . , h(a, v)}.

Here T (y, z, w) is the Turing predicate. T is primitive recursive and satisfies
Wy = { z ; ∃wT (y, z, w) } for each y. We suppose that for each x and w there
is at most one z such that T (y, z, w). Hence the set in the third line of our
algorithm is finite and the instruction “Find a := sup{. . }” is correct. Note that
the algorithm does nothing with the element ofWx found in the second line. This
instruction is there only to ensure that the algorithm starts cycling in cases it is
supposed to do so. The function ψ can be verified to have the following properties:

– the function ψ(x, y, ·) is total iff Wx is infinite
– if Wx is infinite, Wy is finite and a = maxWy then ψ(x, y, ·) differs from
the function v 7→ 1 + max{h(0, v), . . , h(a, v)} on a finite set and hence is
provably recursive
– if Wx and Wy are both infinite then ψ(x, y, ·) is total but different from
all functions h(a, ·), a ∈ N .

Thus ψ is as required. �

Besides the fact that recursive functions that are not provably recursive in T
do exist for each theory T in question (which follows already from Lemma 1) we
mention two further consequences of our theorem.

Corollary 1. It is known, see e.g. [4] or [2], that primitive recursive functions are
exactly those functions that are provably recursive in IΣ1, where IΣ1 is Peano
arithmetic with the induction scheme restricted to Σ1-formulas. Thus it follows
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from Theorem 1 that the set of all indices of all primitive recursive functions is
recursively isomorphic to U × U .

Corollary 2. S. Buss proved in [1] that the polynomial time computable func-

tions are exactly those functions that are Σb1-definable in the theory S12. A func-
tion f is Σb1-definable in T if there is a Σ

b
1-definition ϕ(x, y) of its graph such that

T ⊢ ∀x∃ ! yϕ(x, y) (see [1] for the definition of the theory S12, for the definition of
Σb1 -formulas and for more information). An inspection of our proof shows that

it works also for Σb1-definable functions. Thus we have two sets of functions con-

nected to the theory S12: all polynomial time computable (i.e. Σb1-definable in S12)
functions, and all functions provably recursive in S12. We cannot claim that these
two sets are equal, but each has an index set recursively isomorphic to U × U .
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