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Moscow spaces, Pestov-Tkačenko Problem,

and C-embeddings

A. Arhangel’skii

Abstract. We show that there exists an Abelian topological group G such that the ope-
rations in G cannot be extended to the Dieudonné completion µG of the space G in

such a way that G becomes a topological subgroup of the topological group µG. This
provides a complete answer to a question of V.G. Pestov and M.G. Tkačenko, dating
back to 1985. We also identify new large classes of topological groups for which such an
extension is possible. The technique developed also allows to find many new solutions to
the equation υX × υY = υ(X × Y ). The key role in the approach belongs to the notion
of Moscow space which turns out to be very useful in the theory of C-embeddings and
interacts especially well with homogeneity.

Keywords: Moscow space, Dieudonné completion, Hewitt-Nachbin completion, C-em-
bedding, Gδ-dense set, topological group, Souslin number, tightness, canonical open
set

Classification: Primary 54D50, 54D60; Secondary 54C35

§0. Introduction

In 1985 V.G. Pestov and M.G. Tkačenko asked the next question [15], [20]:

Problem 0.1. Let G be a topological group, and µG the Dieudonné completion
of the space G. Can the operations in G be extended to µG in such a way that
µG becomes a topological group containing G as a topological subgroup?

Recall that the Dieudonné completion µG of G is the completion of G with
respect to the maximal uniformity on G compatible with the topology of G. It
is well known that the Dieudonné completion of a topological space X is always
contained in the Hewitt-Nachbin completion υX of X (see [9], [13]). In fact, µX
is the smallest Dieudonné complete subspace of υX containing X (this is a part of
the folklore; see below the proof of Proposition 1.4 for details.) Moreover, if there
are no Ulam-measurable cardinals, then υX and µX coincide (see [9]). Therefore,
the next question, also belonging to Pestov and Tkačenko, is almost equivalent
to Problem 0.1:

Problem 0.2. Let G be a topological group, and υG the Hewitt-Nachbin com-
pletion of the space G. Can the operations on G be extended to υG in such a way
that υG becomes a topological group containing G as a topological subgroup?
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Clearly, if there exists an Ulam-measurable cardinal τ , then for any discrete
groupG of cardinality τ the answer to Problem 0.2 is in negative (since in this case
the Hewitt-Nachbin completion υG is a non-discrete non-homogeneous space).
Even a consistent counterexample to Problem 0.1 was not known, though large

classes of topological groups were found for which the answer to Problem 0.1 is
in positive (see [21], [22], [2]).
Below we answer Problem 0.1 in the negative. However, the technique devel-

oped for that allows to identify new amazingly large classes of topological groups
for which the answer to Problem 0.1 is positive. Incidentally, our approach also
brings to the light a rather astonishing fact that the equality υG×υH = υ(G×H)
holds for many classes of topological groups. This extends results of I. Glicksberg
[12], W.W. Comfort [6], W.W. Comfort and S. Negrepontis [7], M. Hušek [14] (see
also [5], [10]).
All spaces considered are assumed to be Tychonoff. Notation and terminology

are as in [9]. In particular, a space X is called homogeneous if for any two points
x and y of X there exists a homeomorphism h of X onto itself such that h(x) = y.
If A is a subset of a space X then Gδ-closure of A in X is defined as the set of
all points x ∈ X such that every Gδ-subset of X containing x intersects A. If X
is the Gδ-closure of A, we say that A is Gδ-dense in X . If the Gδ-closure of A
coincides with A, we say that A is Gδ-closed .

§1. Moscow spaces, C-embeddings, and Rajkov completion
The following notion was introduced in [1]. A space X is called a Moscow

space, if, for each open subset U of X , the closure of U in X is the union of a
family of Gδ-subsets of X .
Clearly, the notion of a Moscow space generalizes the notion of a perfectly κ-

normal space introduced independently by R. Blair [4], E.V. Stchepin (see [17]),
and T. Terada [18] under different names. A space X is called perfectly κ-normal
if the closure of any open set (that is, every canonical closed set) is a zero-set.
The class of Moscow spaces is much wider than the class of perfectly κ-normal
spaces, since every first countable space, and even every space of countable pseu-
docharacter is a Moscow space while not every first countable compact space is
perfectly κ-normal.
The notion of a Moscow space plays a crucial role in the theory of C-embed-

dings. Recall that a subspace Y of a space X is said to be C-embedded in X ,
if every continuous real-valued function f on Y can be extended to a continuous
real-valued function on X . It is well known ([11]) that if a dense subspace Y of a
space X is C-embedded in X , then Y is Gδ-dense in X . The converse statement
is easily seen to be not true.
Obviously, every dense subspace of a Moscow space is a Moscow space. Here

is one of our key results on Moscow spaces.

Theorem 1.1. If a Moscow space Y is a Gδ-dense subspace of a homogeneous
space X , then X is also a Moscow space and Y is C-embedded in X .
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Proof: Let U be an open subset of X and x a point in the closure of U . Since X
is homogeneous, we may assume that x ∈ Y . Then x ∈ U ∩ Y and, since Y is a
Moscow space, there exists a Gδ-set Q in the space Y such that x ∈ Q ⊂ U ∩ Y .
Thus, there exists a countable family {Un : n ∈ ω} of open subsets of X such that
their intersection P = ∩{Un : n ∈ ω} satisfies the condition x ∈ P ∩ Y ⊂ Ū .
We claim that P ⊂ Ū . Indeed, assume the contrary. Then P \Ū is a non-empty

Gδ-subset in X , and since Y is Gδ-dense in X , it follows that (P \ Ū) ∩ Y is not
empty. On the other hand, (P \ Ū) ∩ Y = (P ∩ Y ) \ Ū = ∅. This contradiction
shows that x ∈ P ⊂ Ū . Thus, X is a Moscow space. It remains to add that every
Gδ-dense subset Y of a Moscow space X is C-embedded in X ([22], see also [19]).

�
The theorem does not remain true if we drop the assumption that X is homo-

geneous. To see this, take Y to be an uncountable discrete space and let X be its
Alexandroff one-point compactification.
Recall that the Rajkov completion ρG of a topological groupG is the completion

of G with respect to the natural two-sided uniformity of the topological group G.
It is well known that ρG can be interpreted as a Rajkov complete topological
group, containing G as a dense subgroup ([16]). The Gδ-closure of G in ρG will
be denoted by ρωG. Observe that the Gδ-closure of a subgroup in a topological
group H is again a subgroup of H .
The next theorem is one of our main results.

Theorem 1.2. Let G be a Moscow topological group. Then the operations on
G can be extended to the Dieudonné completion µG of G in such a way that µG
becomes a topological group containing G as a topological subgroup.

To prove Theorem 1.2, we need two preliminary results.

Proposition 1.3. LetG be a Moscow topological group. Then ρωG is a Dieudon-
né complete Moscow topological group in which G is C-embedded.

Proof: Every Gδ-closed subspace of a Dieudonné complete space is a Dieudonné
complete space ([9]). Of course, ρωG is Gδ-closed in ρG. It remains to refer to
Theorem 1.1. �

Now we need a standard piece of technique (see [22], [20], [2]).

Proposition 1.4. Let Z be a Dieudonné complete topological group and G a
dense subgroup of Z, C-embedded in Z. Then there exists a subgroup M of Z
such that G ⊂M and the space M is the Dieudonné completion µG of G.

Proof: Let M be the smallest Dieudonné complete subspace of Z such that
G ⊂M (such subspaceM exists since the intersection of any family of Dieudonné
complete subspaces of Z is a Dieudonné complete space [9]). Since G is C-
embedded in M , it follows that M is the Dieudonné completion of G.
It remains to show that M is a subgroup of Z. First, M ⊂ M−1, since

G ⊂ M−1 ⊂ Z and M−1 is homeomorphic to M and, therefore, Dieudonné
complete. It follows that M−1 ⊂ (M−1)−1 =M . Hence, M =M−1.
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For every a ∈ G we have: G ⊂ aG ⊂ aM ⊂ aZ = Z which implies that
M ⊂ aM . Hence, a−1M ⊂ M . Since G = G−1, it follows that aM ⊂ M . Now
take any b ∈ M . Then G ⊂ Mb. Indeed, take any a ∈ G. Then ab−1 ∈ M , that
is, ab−1 = c, for some c ∈ M . It follows that a = cb ∈ Mb. Hence, G ⊂ Mb.
Obviously,Mb ⊂ Z andMb is homeomorphic to M . Therefore,Mb is Dieudonné
complete, which implies that M ⊂ Mb. Hence, Mb−1 ⊂ M . Since M = M−1,
it follows that Mb ⊂ M , for each b ∈ M . Now it is clear that M is closed under
multiplication. Hence, M is a subgroup of Z. �

Proof of Theorem 1.2: It is enough to refer to Propositions 1.3 and 1.4. �

Let us call a topological group G a PT -group, if the operations on G can
be extended to the Dieudonné completion µG in such a way that G becomes a
topological subgroup of µG. Now Pestov-Tkačenko Problem can be reformulated
as follows: is every topological group a PT -group? According to Theorem 1.2,
every Moscow group is a PT -group.
Since every space is C-embedded in its Dieudonné completion ([9], [11]), Propo-

sition 1.4 can be reformulated as follows:

Theorem 1.5. A topological group G is a PT -group if and only if it is C-
embedded in some Dieudonné complete topological group.

A topological group G will be called a strong PT -group if it is C-embedded in
ρωG.

Corollary 1.6. Every strong PT -group is a PT -group.

Proof: By Proposition 1.3, ρωG is a Dieudonné complete topological group.
Now it follows from Theorem 1.5 that if G is a strong PT -group, then G is a
PT -group. �

The converse is not true ([3]). We can reformulate Proposition 1.3 and Theo-
rem 1.2 as follows:

Theorem 1.7. Every Moscow topological group is a strong PT -group.

Obviously, every Rajkov complete topological group is also a strong PT -group
while it need not be a Moscow group (see Example 2.6 below and [3]).

Now we are going to define a cardinal invariant of tightness type for topological
groups. Recall that a right topological group is a group with a topology on it such
that the multiplication on the right is continuous. Recall also that a canonical
open subset of a space X is any open set U in X such that U is the interior of its
closure.
Let G be a right topological group, and U ⊂ G. A subset A of G is called

an ω-deep subset of U if there exists a Gδ-subset P of G such that e ∈ P and
AP ⊂ U . We say that the g-tightness tg(G) of a right topological group G is
countable (and write tg(G) ≤ ω), if for each canonical open subset U of G and
each x ∈ Ū there exists an ω-deep subset A of U such that x ∈ Ā.
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Note, that if G is a topological group such that the tightness t(G) is countable,
or the Souslin number c(G) is countable, or the pseudocharacter of G is countable,
or G is extremally disconnected, then the g-tightness of G is countable ([3]).

Theorem 1.8. Every right topological group G of countable g-tightness is a
Moscow space.

Proof: Take any open subset U of G, and any x ∈ Ū . Obviously, we may assume
that U is a canonical open subset of G. Since tg(G) ≤ ω, there exists an ω-deep
subset A of U such that x ∈ Ā. Now we can fix a Gδ-subset P of G such that
e ∈ P and AP ⊂ U . Then x ∈ xP ⊂ AP ⊂ Ū , and xP is a Gδ-subset of G. Thus,
G is a Moscow space. �

Theorem 1.8 does not generalize to arbitrary topological spaces. It is really
amazing how many topological conditions, which are innocently weak in the gene-
ral case of arbitrary topological spaces, turn out to be sufficient for a topological
group to be a Moscow space. We list some of these conditions in the next state-
ment.
First, we recall a definition given by M.G. Tkačenko [19]. The o-tightness of

a space X is countable (that is, ot(X) ≤ ω) if for each family γ of open sets and
each x ∈ ∪γ there exists a countable subfamily η of γ such that x ∈ ∪η. Clearly,
if t(X) ≤ ω or c(X) ≤ ω, then ot(X) ≤ ω.

Theorem 1.9. Let G be a topological group satisfying at least one of the follow-
ing conditions: 1) t(G) ≤ ω; 2) c(G) ≤ ω; 3) ot(G) ≤ ω; 4) points in G are Gδ-s;
5) G is κ-metrizable; 6) G is perfectly κ-normal; 7) G is extremally disconnected;
8) G is a subgroup of a topological group G such that G is a k-space; 9) G is
totally bounded; 10) G is a subgroup of an almost metrizable group. Then G is
a strong PT -group.

Proof: In cases 1), 2), 3), 4), and 7) this follows from Theorems 1.7 and 1.8. The
cases 5) and 6) are taken care of by Theorem 1.7. If G satisfies 8), then G satisfies
3) [20]. In the cases 9) and 10) G is also a Moscow group [22] (see also [2]). It
remains to refer to Theorem 1.7. Theorem 1.5 generalizes Uspenskij’s result ([22])
who proved that if the o-tightness of a topological group G is countable, then it
is a Moscow space and a PT -group. �

§2. A non-PT -group and the formula υG× υH = υ(G×H)

First, we need the next notion and two simple results about it, similar to a
result in [5]. Let Y be a subspace of X , and P a class of spaces. We will call
X a minimal P-extension of Y if Y is dense in X , X ∈ P , and every subspace
T of X such that Y ⊂ T and T ∈ P coincides with X . Thus, X is a minimal
Dieudonné extension of Y if Y is dense in X , X is Dieudonné complete, and
every Dieudonné complete subspace of X containing Y coincides with X . The
next assertion is obvious.
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Proposition 2.1. The Dieudonné completion of X is a minimal Dieudonné ex-
tension of X .

Proposition 2.2. If Xi is a minimal Dieudonné extension of Yi, i = 1, . . . , k,
then X = Π{Xi : i = 1, . . . , k} is a minimal Dieudonné extension of Y = Π{Yi :
i = 1, . . . , k}.

Proof: We may assume that k = 2, that is, X = X1 × X2 and Y = Y1 × Y2.
Clearly, X is Dieudonné complete and Y is dense in X . Let T be a Dieudonné
complete space such that Y ⊂ T ⊂ X .
First, we show that Y1 × X2 ⊂ T . Assume the contrary. Then there exists

(a, b) ∈ Y1 × X2 such that (a, b) is not in T . Then F = {x ∈ X2 : (a, x) ∈
T } = ({a} ×X2) ∩ T is a closed subspace of T containing Y2 and F 6= X2, since
b ∈ X2 \ F . Clearly, F is Dieudonné complete. This contradicts minimality of
X2. It follows that Y1 ×X2 ⊂ T . Now it remains to repeat the above argument
with X2 in the role of Y1 and Y1, X1 in the roles of Y2, X2. Hence, T = X1×X2.

�

We need another simple statement which should be by now obvious.

Proposition 2.3. A topological group G of Ulam non-measurable cardinality is
a strong PT -group if and only if µG = ρωG(= υG).

Theorem 2.4. Let G1 and G2 be strong PT -groups of Ulam non-measurable
cardinality. Then the formula υ(G1 × G2) = υG1 × υG2 holds if and only if
G1 ×G2 is a strong PT -group.

Proof: Necessity. Since Gi is a strong PT -group, υGi coincides with ρωGi, by
Proposition 2.3. Therefore, υG1×υG2 is the Gδ-closure of G1×G2 in ρG1×ρG2.
Since υ(G1 × G2) = υG1 × υG2 and ρG1 × ρG2 = ρ(G1 × G2), it follows that
υ(G1 × G2) = ρω(G1 × G2). Hence G1 × G2 is C-embedded in ρω(G1 × G2),
which means that G1 ×G2 is a strong PT -group.
Sufficiency. First of all, υG1 and υG2 are also topological groups, since G1
and G2 are PT -groups of Ulam non-measurable cardinality. Therefore, G

∗ =
υG1 × υG2 is a topological group as well. Since Gi is Gδ-dense in υGi, it follows
that G1 × G2 is Gδ-dense in G

∗. Consequently, since G1 × G2 is a strong PT -
group, G1 × G2 is C-embedded in G

∗. Since G∗ is Hewitt-Nachbin complete, it
follows that υ(G1 ×G2) = G

∗. Thus, υ(G1 ×G2) = υG1 × υG2. �

Corollary 2.5. For any strong PT -group G and any compact group F such that
|G| and |F | are Ulam non-measurable, the product G× F is a strong PT -group.

Proof: Indeed, it was established in [7] that the formula υ(X × Y ) = υX × υY

holds whenever X and Y are spaces of Ulam non-measurable cardinality at least
one of which is compact. It remains to refer to Theorem 2.4. �

We now present an example of two strong PT -groups whose product is not
a PT -group. The construction by which this is achieved is a modification of
M. Hušek’s construction in [14].
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Example 2.6. Let X be a zero-dimensional pseudocompact non-compact topo-
logical group. Fix a covering η of X satisfying the next three conditions:

1) Every element of η is an open and closed subset of X ;
2) No finite subfamily of η covers X ;
3) The union of any finite subfamily of η belongs to η.

Consider the space G = Cη(X) of all continuous functions on X with values
in the discrete two-point group D = {0, 1} endowed with the topology of uniform
convergence on elements of η. Clearly, G is a topological group. It is also obvious
that G is Rajkov complete.
Since the Souslin number of X is countable, there exists a countable subfamily

γ of η such that ∪γ is dense in X . For each P ∈ γ the set UP of all f ∈ G such
that f(x) = 0 for every x ∈ P is open in G and contains the zero-function θ on
X which is the neutral element of G. It is obvious that θ is the only element in
∩{UP : P ∈ γ}. Therefore, θ is a Gδ-point in G. Since G is a topological group, it
follows that the pseudocharacter of G is countable. Hence, G is a Moscow group.
The group X is also a Moscow group; actually it is even κ-metrizable and,

hence, perfectly κ-normal (see [17]). Notice also that X is C-embedded in βX ,
since X is pseudocompact. It follows that µX = υX = βX , since c(X) ≤ ω

([16]).
Consider the natural evaluation mapping ψ of the product space X × G into

the discrete space D = {0, 1} which on this occasion we treat as a subspace of R.
Clearly, ψ is continuous, since elements of η are open sets.

Claim: The group X ×G is not C-embedded in βX ×G.

Observe that βX × G is also a topological group and X × G is Gδ-dense in
βX ×G.
Let us check that ψ cannot be extended to a continuous real-valued function

on βX ×G. Here we will use the property 2) of η. Since the closure in βX of any
element of η is, obviously, open and βX is compact, it follows from 2) that the
closures of elements of η in βX do not cover βX .
Therefore, we can choose a ∈ βX \ X such that a does not belong to the

closure of any element of η. Consider the point (a, θ) ∈ βX ×G and the subsets
B = {(x, θ) : x ∈ X} and C = {(x, fP ) : P ∈ η, x ∈ X \ P}, where fP ∈ G

is the characteristic function of X \ P , that is, fP (x) = 0 for each x ∈ P and
fP (x) = 1 for each x ∈ X \ P . Clearly, ψ takes the value 1 at each element of C
and the value 0 at each element of B. Obviously, the point (a, θ) is in the closure
of B. Therefore, if ψ could be continuously extended to (a, θ), the value of this
extension at (a, θ) should be 0. On the other hand, a is not in the closure of any
P ∈ η. Therefore, (a, θ) is in the closure of C as well, and the extended function
should be 1 at (a, θ), a contradiction.
Finally, let us show that the group H = X × G is not a PT -group, thus

answering the question of Pestov and Tkačenko in the negative.
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Indeed, assume that H is a PT -group. Then µH is a topological group. There-
fore, µH can be represented as a subgroup of Rajkov completion ρH containing
H . Clearly, ρH = ρX×ρG = βX×G = µX×µG. Therefore, by Propositions 2.1
and 2.2, ρH is a minimal Dieudonné extension of H . Since H ⊂ µH ⊂ ρH , it
follows that µH = ρH . However, H is C-embedded in µH . Hence, H = X ×G

is C-embedded in ρH = βX × G, which is not the case, as we have seen before.
This contradiction completes the proof that H is not a PT -group.
From Theorems 1.2 and 1.8 it follows that the g-tightness of βX × G and of

H = X ×G is uncountable.
Several other observations about the construction in Example 2.6 are in order.

First, for the role of the group X we may choose the Σ-product of ω1 copies of
the discrete group D = {0, 1}. Then βX is just the product Dω1 , the weight of
X and βX is ω1, and the cardinality of G is ω1. Notice that X in this case is
countably compact and Fréchet-Urysohn.
Notice, that the space G is also hereditarily Hewitt-Nachbin complete, since

every topological group of countable pseudocharacter can be mapped by a one-
to-one continuous mapping onto a metrizable space (we take into account that
the cardinality of G is Ulam non-measurable). Since X and G are strong PT -
groups of Ulam non-measurable cardinality, it follows from Theorem 2.4 that
υX × υG 6= υ(X ×G) (and µX × µG 6= µ(X ×G)).
The group βX ×G is not Moscow, since otherwise X ×G, as a dense subspace

of βX ×G, would have been a Moscow space and, therefore, a strong PT -group.
On the other hand, βX ×G is, obviously, Rajkov complete and, hence, a strong
PT -group. Thus, a strong PT -group need not be a Moscow group, and a dense
subgroup of a strong PT -group need not be a PT -group.
We summarize the most important part of the information collected while we

discussed Example 2.6 in the next two statements:

Theorem 2.7. There exist a countably compact groupX and a Rajkov complete
group G of countable pseudocharacter with the following properties:

1) The product X ×G is not a PT -group;
2) The product βX ×G is not a Moscow group;
3) µX × µG = υX × υG 6= υ(X ×G) = µ(X ×G);
4) The groups X , βX , and G are Moscow groups of countable g-tightness;
5) The g-tightness of βX ×G (and of X ×G) is uncountable.

Theorems 2.4 and 2.7 suggest that the notion of a strong PT -group has a role to
play in the study of conditions under which the formula υ(G1×G2) = υG1×υG2
holds. This natural question was given considerable attention, and a series of
very interesting results in this direction were obtained in [12], [5], [6], [7] and [14].
In particular, it holds if X × Y is pseudocompact — this is a famous result of
I. Glicksberg [12], reproved by Z. Froĺık [10] by a different method.
Below we establish an amazingly general sufficient condition for the formula

to hold in the case when X and Y are topological groups (see Theorem 2.9 and
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Corollary 2.10). The key role again belongs to Moscow groups and strong PT -
groups.

Proposition 2.8. Let G = Π{Gα : α ∈ A} be the topological product of topo-
logical groups Gα such that G is a strong PT -group and the cardinality of G is
Ulam non-measurable. Then υΠ{Gα : α ∈ A} = Π{υGα : α ∈ A}.

Proof: We know that Gα is Gδ-dense in υGα, for each α ∈ A. Therefore, G
is Gδ-dense in Π{υGα : α ∈ A}. Each Gα is a strong PT -group, since it is
C-embedded in G. Therefore, υGα is a topological group, for each α ∈ A, and
G∗ = Π{υGα : α ∈ A} is also a topological group.
Since G is a strong PT -group and G is Gδ-dense in G

∗, it follows that G
is C-embedded in G∗ = Π{υGα : α ∈ A}. Since Π{υGα : α ∈ A} is, ob-
viously, Dieudonné complete and |G| is Ulam non-measurable, it follows that
G∗ = Π{υGα : α ∈ A} = υG. �

From Proposition 2.8 and Theorem 1.7 we obtain:

Theorem 2.9. Let G = Π{Gα : α ∈ A} be the topological product of topological
groups Gα such that the space G is Moscow and |G| is Ulam non-measurable.
Then υΠ{Gα : α ∈ A} = Π{υGα : α ∈ A}.

Corollary 2.10. Let F = {Gα : α ∈ A} be a family of topological groups Gα

such that the cardinality of the product group G = Π{Gα : α ∈ A} is Ulam
non-measurable. Then the formula

υΠ{Gα : α ∈ A} = Π{υGα : α ∈ A}

holds if at least one of the following conditions is satisfied:

1) Every group in F is totally bounded;
2) Every group in F is k-separable;
3) ω1 is a precaliber of every space in F ;
4) The Souslin number of the product space Π{Gα : α ∈ A} is countable;
5) The Souslin number of every group in F is countable, and (MA+ ¬CH)
is satisfied;

6) Every group in F is κ-metrizable;
7) The tightness of the product space Π{Gα : α ∈ A} is countable;
8) The g-tightness of the product group Π{Gα : α ∈ A} is countable.

Proof: If the Souslin number of the product group G is countable, then G
is Moscow. It remains to apply Theorem 2.9. This takes care of cases 1)–5).
Similarly, in the cases 6), 7), and 8) the space G is also Moscow (see Theorem 1.8),
and therefore Theorem 2.9 is applicable. �

Problem 2.11. Let G be a topological group of countable tightness. Is then
the g-tightness of G × G countable? Is then G × G a Moscow group? A strong
PT -group?
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Notice, that we still do not have a ZFC-example of a topological group G of
countable tightness such that the tightness of G×G is not countable.

It was observed in [3] that every Lindelöf topological group is a strong PT -
group, but not necessarily a Moscow space. This can be deduced from another
fact established in [3]: that every R-factorizable in the sense of Tkačenko group
(see [20]) is a strong PT -group. Several further corollaries to the last statement
and Proposition 2.8 are obtained in [3]. Also the list of conditions in Corollary 2.10
is expanded in [3].
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