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Spaces not distinguishing convergences

MIROSLAV REPICKY

Abstract. In the present paper we introduce a convergence condition (X’) and continue
the study of “not distinguish” for various kinds of convergence of sequences of real
functions on a topological space started in [2] and [3]. We compute cardinal invariants
associated with introduced properties of spaces.

Keywords: P-, QN-, -, /- ¥*. ¥ .-convergence, a space not distinguishing conver-
gences

Classification: 54G99, 54C30, 03E17

0. Introduction

In [3] the authors classified spaces according to which of the convergences P,
QN, X, ¥* (defined below) do not distinguish, or according to the property that
“every” sequence of functions convergent in some sense has a subsequence con-
vergent in the other sense. This investigation began in [2] for pointwise and
quasi-normal convergences. In the present paper we introduce another conver-
gence condition (X’) which is between (¥) and (X*) and we enlarge the study of
“not distinguish” for all five convergences.

a) Let us recall some definitions from [3]. Let F be a class of real-valued
functions such that

(i) all constant functions are in F,
(ii) (Vf,g€F) f-g€eF,
(iii) (VfeF)|fleF,
(iv) (VfeF)(Yn>0) f/neF.
For a space X we set F(X) = FNXR. For functions f, f, : X — R for n € w we
consider the following four kinds of convergence of the sequence {f,}52 to f:
(P) pointwise convergence,
(QN) quasi-normal convergence, i.e. for some sequence of positive reals {e,}72
with limp, o0 €5 = 0 we have (Vz)(V°n) |fn(x) — f(z)] <éen,
(2) XnZolfnl@) — f(2)] < oo,
(X*) pseudo-normal convergence, i.e. for some sequence of positive reals
{en}oy with 3°0° en < 00 we have (Va)(Von) |fn(z) — f(2)] < en.

The work was supported by Slovak grant agency VEGA 1/4034/97.



830 M. Repicky

The sequence of functions in the above conditions may satisfy any of the following

hypotheses (F is a given class of functions):
(F) fneF(X) fornew, f=0,
(F) fn € F(X) for n € w (f is arbitrary),

J’) fn+1§fn, anf(X) fOI"]’LEw,f:O’

l) fo+1 < fn, fn € F(X) for n € w (f is arbitrary).

(
(

Definition 0.1. Let a be any of the hypotheses F, F, FL Fband let 3, v be
any of the convergences P, QN, X, ¥*,

]:
F

(1) A space X is an af3y-space if whenever functions fn,f : X — R, n €w
satisfy condition «, and the sequence { fn};2 B-converges to f, then the
sequence { fn} ;2 y-converges to f.

(2) A space X is a weak af~-space (shortly wa(y-space) if whenever func-
tions fn, f : X — R, n € w satisty condition «, and the sequence { f, }5°
f3-converges to f, then some subsequence { fn, }7, Yy-converges to f.

From all the properties introduced by this definition only these are non-trivial:

FPQN FEQN FEy* wFPQN wFPY wFPEZ* wFIQN wFLe*
FPQN FEQN Fy* wFPQN wFPY wFPY* wFRIQN wFLy*
FIPQN Flys* wFIPQN wFlPY wrlpy*
FPQN Flyy* wFIPQN wFlPy wFlpy*

b) Now we introduce convergence condition (¥/).

(¥') There is a monotone unbounded sequence of integers {k,}5° , such that
n=0 knlfn(z) = f(z)] < occ.

Notice that f;, QN-converge to f if and only if there is a monotone unbounded
sequence of integers {kp } 72 such that limy, oo kn|fn(x)— f(2)| = 0 for all . It is
easy to see that f, X'-converge to f if and only if there is an increasing sequence of
integers {n; }$2 such that the sequence {222{1 | fn(z) = f(2)]}52, X*-converge
to 0. Clearly (X*) — (X) — (2) & (QN). Replacing ¥* or ¥ by ¥/ in some of
the above cases we obtain further 5 x 4 possibilities aXY/, aX/Y*, oPY/, waXy/,
waY'S* for a = F, F, Ft, FL. But we can easily see that waPY = waPQN,
waXY = waXQN, and every space is a waX'Y*-space. So we can consider the
additional 8 properties of spaces:

Fry  Fuy  Fley  Fliy  ryzr Fy'sr rlyyr Fly'sr

To simplify the notation we omit the letter P since it never occurs at the end of any

prefix (ay-space and way-space mean aPy-space and waPy-space, respectively).
The result of Section 1 is Diagram 1 and the next equalities describe the known

relationship between the classes of spaces with particular properties:
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FLON = wFlQN = wF " = wFL Y (Lemma 1.1(i)),
FLON =wFlON = wFl8* =wFlY = FEY' = FY ' = FL YY" (Lemma 1.2
and Lemma 1.4(1)),

FY/s* = FY'S* (Lemma 1.4(2)),

FYy* = FYX* (Lemma 1.4(3)),

wFON = wFX*,

wFON = wFX* = wFX ([3]),

wFXON = wFXX*,

wFEXON = wFXX*,

FYy* = FLON N FY'5* (Lemma 1.6),

Flyys = FlON N FL¥' 2% (Lemma 1.6),

Flyy* = Floy' nFly sx,

wWFON = wFX NwFXON.

Section 2 deals with the case F = M, the class of Borel measurable functions.
The result of Section 3 is a picture of relationship between the properties from
Definition 0.1 for all classes F with C C F C M where C is the class of continuous
real-valued functions and in Section 4 we give some cardinal characterizations for
all these properties.

We will use these standard families of real-valued functions defined on X:
C(X)={f € XR: f is continuous}, M1(X) = {f € XR: f is F, measurable},
M(X)={f € R : f is Borel measurable}.

1. Classification in general

Every monotone ¥-convergent sequence of functions is QN-convergent ([3, Lem-
ma 1.2]). The next lemma generalizes this fact and gives a comparison of ¥*-
convergence and Y'-convergence for monotone series. We set K(n) = > 1" k;.
The assumption that {k,}7°  is monotone is not used here.

Lemma 1.1.
(i) If 0 < fpg1(x) < fu(z) and Y 72 knfn(z) < oo for x € X, then for every
x € X, fn(r) <1/K(n) for all but finitely many n € w.
(i) If > 02g1/K(n) = oo and > »2 yen < oo, then there is a sequence of
positive reals {£,}5° y such that &, 1 < &, foralln € w, Y 7 o knén < 00,
and &y, > ey, for infinitely many n € w.

PrOOF: (i) If the conclusion is not correct then we get an infinite increasing
sequence of integers {ny, } ;2 such that for some x € X we have fy, (v) > 1/K(ny,)
for all k € w. Define £ € YR by &(n) = 1/K(ng) for n_1 < n < ni and
&(n) = 1/K(ng) for n < ng. Clearly, £(n) = 1/K(ng) < fn,(z) < fo(x) for all k
and ng_1 < n < ng, and so Y07 o kné(n) < 3070 knfu(z) < co. On the other
hand (we can assume that K(ng) — K(ng_1) > K(ng)/2)

0o ng (e}

S kb= S ka/E(g) = S (K(ng) - K(ng1))/K(ny) = o0

n>ng k=1n=nk_1+1 k=1
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because limy, oo K (n) = co. This is a contradiction.

(ii) Then liminf, . K(n)en, = 0 and there is an increasing sequence of inte-
gers {n}72 such that Yreo K(ng)en, < oo and Engyy < Eny,- Define &y = en,
for np_1 <n <ny and &, = ey, for n <ng. Then

o0 Nk o0
S knn=>_ > knen, <Y K(ng)en, < oo.

n>ng k=1n=nj_1+1 k=1
Clearly, &n,, > en,, for every k € w. (]

Let X = {z € Yw: Y 77 log(n)/z(n) < oo & (Vn) z(n) < z(n+ 1)}. By
Lemma 1.1(ii) X is not an F L52/57*_space whenever F contains the functions fi, :
X — R defined by fn(z) = 1/z(n).

Lemma 1.2. FXY' = FLON.

PROOF: FXX' C FLON. Let fui1 < fn, limy—oo fn(z) = f(z) for z € X, and
let X be an FX¥ -space. Since Y oo o(fn(z) — fnti1(z)) = fo(z) — f(z) < oo,
there is a monotone sequence of integers {k}52, such that Y >° o kn(fn(x) —
fnt1(x)) < oo. Let {n;}72, be the increasing enumeration of all n > 0 such that
kn — kn—1 > 0. Then

> (fnil@) C S ) ar ) € S bl s (@)) < o
i=0 =0 n=n; n=ng

Since wF!Y = FLIQN X is an F!QN-space.
FLON C FEX'. Let 3500 o | fn(x)| < 0o for x € X, and let X be an F'QN-

space. Set g(x) =Y oo [fm(2)|, gn(z) = EZ@_:IO |fm(x)]. There is an increasing
sequence of integers {n;}2° such that (Vo € X)(V>i) g(z) — gn,(z) < 27" Let

kn = [{i: ni <n}|. Then 372 o knlfn(2)| = 2220 (9(2) — gn, (x)) < oo O
Lemma 1.3. FLQN C FXON.
PROOF: See [3], Lemma 1.6. O

Lemma 1.4.
(1) FRY =Fry =Flyy' c Flyy'.
(2) FX'3* = Fx'y* C Fly/s* C Fly/'s*,
(3) FYs* =FXy* C Fly* c Flyx*,

PrROOF: (1) The inclusion FXX' C FXX'. Let > o0 |fn(z) — f(z)] < oo
for all z € X and let X be an FX¥'-space. By Lemma 1.2 and Lemma 1.3
there is a sequence of positive reals {e,};2 tending to 0 such that (Vz € X)
(voon) |fn(x) — f(2)| < en. Let ¢ € “w be such that >°7° 5e,(,) < co. Then

Ym0 (@) = fom) @) < 2020 @) = f(@)] + 22020 [fpm) (@) — f(2)] < oo
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Smce X is an FXY'-space, there is a sequence of integers {kJ, oo such that
~oknlfn(z) — fon)(@)| < oo. There is a monotone unbounded sequence of

mtegers {E35, such that 3377 o kne,m) < 00. Set kn = min{ky,, ky}. Then
—0 kn|fn(x ) —f(@)] < X050 Falfp(m) (@)= (@) [+ 22020 kil fn(@) = Fo(m ()] <
oo and X is an FXY'-space.

The inclusion FI X5 C FYY'. Let 300 o |fn(z)| < oo for x € X and let
X be an F!¥¥'-space. Let us set

Z|fm )/ (m +1), Z|fm )/ (m +1).

Clearly gn < gn+1 and we have

o0

Z(Q( ZZUm )N/ (m+1) = Z|fm )| < oo

n=0 n=0m=n

Therefore there is a sequence of integers {k;,}22 such that Y>> kr(g9(z) —
gn(z)) < oo for x € X. Let {k,}52 be another monotone unbounded sequence
of integers such that k, < Y7 ok}, /(n+ 1). Then for all z € X we have

S kalfa@)] < 3032 Kaldul@)l/n+ 1) = Zk’ g (x)) < 0.
n=0

n=0m=0

Hence X is an FXX'-space.

(2) The inclusion FX'X* C FX'X*. Let > 0% o kn|fu(z) — f(z)] < oo for
x € X and let X be an FX'Y*-space. Let ¢ € “w be increasing such that
> om0 1/ k() < 00. Since

> knlfa(@) = fo) @) <> kalfulz)— f |+Zk W oy (@) = f(@)] < o0,
n=0 n=0

there is a sequence of p081tlve reals {e,}>2, such that > >° e, < oo and
(Vz € X)(Von) [fn(z) = fom)(®)| < en. Now for all z € X for all but finitely

many n € w we have |fn( ) — f@)] < |ful2) = fom) @] + [ fom) (@) = fl2)] <
en +1/ky(n)

(3) These inclusions are proved in [3, Lemma 1.7] and they are trivial conse-
quences of inclusions (1) and (2) because aXX* = aXX' N aX'Y* for a = F,
FLF, FL O

833
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Flon

wFX

wFON

FON

FrXy*

Diagram 1. This diagram shows all inclusions between the classes of spaces
with introduced properties. The numbers at the arrows refer for the proofs of the

inclusions. The other inclusions are easy consequences of definitions.

Lemma 1.5. FlX/y* C wFXYON and if a class of funﬁtions G is closed on
limits of sequences of functions from F, then G Ly s C wFXON.

PrOOF: We prove the first part only, the second part is the same. Let X be

an FI¥/S*-space and let 300 | fn(7)| < 0o for # € X. Let us choose a mono-

tone unbounded sequence of integers {k,}72, and let us set K(n) = > 1" ki,

so that > ° 11/K(n) = oo (e.g. kn = logn, K(n) < nlogn). Set g(z) =
ozt [fm(@)|/ K (m) and gn(x) = Y2024 | fin(2)|/K (m). Then

Z kn(g(x) — Z Z kn fm ()| /K (m Z |fm(2)] < oc.
n=0

m=0n=0
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Therefore there is a sequence of positive reals {e,}°2 such that > > e, < 00
and (Vz € X)(V°n) |fn(x)]/Kn < g(z) — gn(x) < &p. There is an increasing
sequence of integers {n;}72, such that limj_, . K(ny)en, = 0, and hence the
sequence { K (ny)en,, }7 witnesses the QN-convergence of { fp, }72 to 0. O
Lemma 1.6.

(1) FYXu* =FLOQN N Fx' 5>,

(2) Flyx* = FloN N Flo's*.

(3) Flxy* = Flys' nFly'x*.

PRrROOF: (1) and (2) are easy consequences of Lemma 1.2 and (3) is trivial. O

2. Borel measurable functions

For the class F = M, the class of Borel measurable real-valued functions, all
the defined properties are hereditary for Borel subsets.

Theorem 2.1.

(1) MON = MLQN, (5) WMEQN = wMEQON,
(2) MIEDE* = MIxs*, (6) M'ON = Mlx5!,

(3) ME' 5% = ML 5%, (1) MEX* = MLE X",

(4) MXQN = MXQON,

PRrROOF: The equalities (1)—(5) are easy and (6) is consequence of Lemma 1.2
since in Lemma 1.4(1) all families are equal. We prove (7). It is enough to
prove the inclusion MY X* C MEX*. Let X € MIXX*, f, > 0, n € w be
Borel functions on X and let > 02 fn(z) < oo. The function ¢ : X — “w
defined by ¢(z)(n) = min{m € w : fpt1(z)/m < fn(x)} is Borel. As X is an
MQN-space the image ¢(X) is a bounded subset of “w in the eventual ordering
(see [3, Theorem 2.1]). Let a € “w eventually dominates ¢(X). Let us set
M = [Ty @(n)- Then fouy1 () /M1 = fri1(2)/(@(m)1n) < f(2)/1mp for all
but finitely many n. Theset X = {x € X : (Vn > k) fny1(2)/mnt1 < fn/mn}is
Borel for all k and X = [Jp— Xj. As X} is an MIE¥*-space the monotone series
ng o fn(x)/mp X*-converge on Xj,. Therefore the sequence {f,}5% ) ¥*-

converge on X, for all k¥ and hence also on their union X.
O

By Theorem 2.1 in the case F = M every class of Diagram 1 is equal to one
of the six classes of Diagram 2.

In the case F = C, the class of continuous real-valued functions, the next
definition introduces a shorter notation. The first seven items of this definition
were introduced in [3, Definition 2.2].

835
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MY 5 ——= MY 5% ——= wMX QN

|

MES* ——> MON ——— MION

Diagram 2.

Definition 2.2.
(1) An mQN-space (TQN-space) is a CtQN-space (C'QN-space).

2) A QN-space (wQN-space) is a CQN-space (w CQN-space).

3) A ¥QN-space (WEQN-space) is a CXQN-space (w CEXQN-space).

4) A QN-space is a CQN-space.

5) A YQN-space (WEQN-space) is a CLQN-space (w CLQN-space).

6) A X-space is a wCX-space.

7) A X*-space (mYX*-space, MEX*-space) is a CLE*-space (CtEX*-space,
ClE¥*-space).

(8) A X'S*-space (mY/X*-space, MY/ N*-space) is a CX/S*-space (CIL/¥*-
space, CtX/S*-space).

(9) A B¥'-space (mXX'-space, MYY/-space) is a CXY'-space (C}EX/-space,
Cl%-space).

(
(
(
(
(
(

In [3] the following theorem is proved for the first seven items in Definition 2.2
but the same arguments work also for the additional two.

Theorem 2.3. Every of the properties in Definition 2.2 is o-additive, and for
perfectly normal spaces, it is hereditary for F; subsets, and it is preserved by Dy
images. (Il

3. Classification with use of topology

Theorem 3.1. Let X be a perfectly normal space.
(1) X is an mX¥*-space if and only if X is an mX¥*-space.
(2) X is an mX'Y*-space if and only if X is an m¥'X*-space.
(3) X is an mX¥'-space if and only if X is an m-%'-space.
(4) X is a YQN-space if and only if X is a wSQN-space and a YQN-space.

PRrROOF: The assertions (1) and (4) are proved in [3, Theorem 2.4]. The proof
of all cases is based on Theorem 2.3. We prove only assertion (3), the other are
similar. Let X be an mY¥'-space and let f,11 < fn for n € w be continuous
functions, f(z) = limy—oo fn(z) for z € X and let Y >° o (fn(z) — f(z)) < o0
for x € X. By Lemma 1.1(1) these functions quasi-normally converge and so
X = Uj Fi with Fj, closed such that the convergence is uniform on each set
F},. Therefore (fn, — f)|F) are continuous and as all closed subsets of X are
mY Y -spaces the sequence of functions { fr, — f}5°, ¥'-converges on each set Fj.
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Each Y/-convergence is witnessed by a monotone unbounded sequence of integers.
As for every countable family of monotone unbounded sequences of integers there
is a monotone unbounded sequence of integers majorized by all sequences from
the family we easily obtain ¥’-convergence of the sequence of functions on the
whole space X. ([

Theorem 3.2. Let F be any class of Borel functions containing all continuous
functions. The following equivalences between the properties hold true for per-
fectly normal spaces:
(i) QN = FQN = wFQN = FLQN,
(i) X = Fuu* = FIyy* = Fuy* = Flusx,
(iii) MEZQN = M12ZQN,
(iv) QN = Fyy/ = Fluy! = Fuy/ = Flyy

PROOF: Assertions (i)—(iii) are proved in [3, Theorem 6.2]. We prove (iv). By (i)
and Lemma 1.2 ¥’ = mQN = F!QN = FXY/, by Lemma 1.4(1) and Theo-
rem 3.1(3) FY¥ = Fyy = FI¥Y — FI¥Y — myyY =myy = XY

Let us recall that a space X is nestled (see [3]) if for every sequence of strictly
positive functions fy, € C(X) there is a sequence of integers ky, such that (Vo € X)
(Von) (Vi <n) fi(x) > 1/kp. We will need the following characterization.

Lemma 3.3. Let X be arbitrary space. The following conditions are equivalent.

(1) X is a nestled space.

(2) Every continuous image of X into “R is eventually bounded.

(3) For every sequence of strictly positive functions fy, € C(X) for n € w there
are integers my, such that (Vr € X)(Vn) fnt1(x)/mpy1 < fo(z)/mn.

PROOF: See [3, Lemma 3.1]. O

Theorem 3.4. Let X be a perfectly normal space.
(1) X is a ¥X*-space if and only if X is a QN-space and an m¥'X*-space.
(2) X is an mYXX*-space if and only if X is a XX *-space.
(3) If X is a nestled space and an mY'S*-space, then X is a ¥/ *-space.

PROOF: (1) By Theorem 3.2 ¥¥* = m¥X* and QN = mQN. By Lemma 3.1(2)
mY'Y* = m¥Y'S*. Lemma 1.6(2) in this case says mXL* = mQN & mY'Y*.
Condition (2) is proved in [3, Theorem 6.1] and it can be obtain from the next
part by taking k, = 1.

(3) Let X be a nestled mX'S*-space. Let > 02 kn|fn(z)| < oo for z € X
where {k,}7° is monotone unbounded sequence of integers. We want to obtain
the Y*-convergence. Without loss of generality we can assume that fp(z) > 0
(otherwise take f/,(z) = max{fn(x),27"} and k!, = min{kn,n}). By Lemma 3.3
there are integers my, such that (Vo € X)(V°n) fni1(x)/mps1 < fn(z)/myn. The

et
o Fy={2 € X : (V02 k) far1(@)/mns1 < falz)/mn)}

837
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are closed, by Theorem 2.3 they are mYXY*-spaces (resp. m¥'Y*-spaces), and X =
Uiz Fi- The series Y 02, """ ky fn/mp converges on F, and hence the series
Yomtg 2™ fn/mp X*-converges on Fj. It follows that the series Y 2 fn(z)
Y*-converges on Fj, for every k € w and hence the series ¥*-converges on the
whole X (since every countable sequence of convergent series can be majorized

by a single convergent series). O
mQN
S5 —— my/S > WEQN DY

X

MT'EF — MIS/S* —wEQN QN wQN

Mz/2'¥—>Mlz/2'*TgwMzQN QN QN
3.2 MYEQN
[3}T
3 1
pou oN

Diagram 3. The implications in the diagram hold true for perfectly normal spaces.
Thick arrows are for the implications we know they are proper. Dotted arrows
stand for infinite hierarchies of properties corresponding to the families of functions
F with CCFCM. Some equivalences: wQN=Z&wIQN, LQN=2QN&wLQN
(Theorem 3.1), EZ*EW&mE’E* (Theorem 3.4).

With connection to Diagram 3 let us remark that every b-Sierpinski set is
a QN-set, v-set is a wQN-set, o-compact space is an mQN-space, separable metric
Y-space or wX(QN-space is perfectly meager, and all properties below QN are
hereditary for subspaces of perfectly normal spaces (see [2] and [3]).

4. Cardinal invariants

We shall summarize characterizations of minimal cardinalities of spaces which
do not have a property of a Diagram 3 and show that each of them is equal to one
of five cardinals. It is a simple observation that non(QN) = non(mQN) = b and
non(¥¥*) = add(N). In [3, Theorem 7.11] it is proved that non(wMXQN) =
non(wXQN) = u, where

p=min{|F|: F C“w& (Vh € “w)(3g € F)(3>°n) h(n) € {g(m) : m < n}}.
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We prove non(M/Y*) = non(X'S*) = ¢ and non(MIE/S*) = non(m¥/E*) = &
(¢ and & are defined below).

Let us recall that for any function h € “w with limp oo h(n) = oo, ¢ is the
following cardinal invariant.

¢ = min{|F| : F C “w is bounded and

(Vi with [p(n)] <n)(3g € F)(3%n) g(n) & ¢(n)}
= min{|F|: F C “w is bounded and

(Ve with [p(n)| < h(n))(3g € F)(I*n) g(n) & p(n)}.
Theorem 4.1. non(MY¥'Y*) = non(X/S*) = ¢.

PRrROOF: The proof is a literal transcription of Bartoszy1iski’s characterization [1]
of convergence of series via localizations of functions.

t < non(MY'S*). Let |X| < ¢ and let f,, : X — R be Borel functions such
that >0y knfn(z) < oo for all z € X for some monotone unbounded sequence
{kn}>2y. Without loss of generality we can assume that 27" < fu(z) < 1,
otherwise take f;, = max{2~" min{fy,1/2}} and k], = min{n, ky, }. Let us define
wr € Yw for x € X so that 1/(pz(n) +1) < fa(z) < 1/@g(n). Clearly, 0 <
z(n) < 2" and Y 07 gknfu(z) < Yo gkn/pe(n) < oco. Let Xp = {z €
X 30 0kn/pz(n) < m}. To prove the X*-convergence on the set X it is
enough to prove the ¥*-convergence on each set X, and since we can pass to
coefficients k], = ky,/m, without loss of generality we can assume that X = Xq,
ie. Y o2 okn/pz(n) < 1for x € X. Let h € “w be a strictly increasing function
such that kp(m,) > 2™. Then 3=, ~p () 1/¢a(n) <27™ for all m. Let gz(n) =
@elh(n +1) € H(n) = [[;cpmntr) 2¢. There is ¢ with |p(m)| < m such that
(Vz € X)(V*°m) gz(m) € p(m). Let us define

h(m+1)—1

1 1
an:max{%:SE@(m)& Z %<2 },
i=h(m)
for h(m) < n < h(m+1). Then ) 2 e, < co and for every z € X for all but
finitely many n, frn(x) < 1/px(n) < ep.
non(¥'¥*) < & Let F C “w be a bounded family of functions and let h € “w be

a strictly increasing function bounding F. We set ky, =i for h(i) <n < h(i+1).
For g € F let x4 € “w be defined by

_ (min{i:n=g(i)}, ifnermg(y),
zg(n) = { n, if n ¢ rng(g).

Since |F| < non(¥'E*), the set X = {z4: g € F} is a ¥'E*-space. Let f,, € C(X)
be defined by fn(z) = 275, Let ay = {i : (Vk < i) g(i) # g(k)}. Then
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Yoo oknfu(z) < D00 gn27™ + Yica, kg(i)Z_i < oo because g(i) < h(i) and
hence kg < i for all but finitely many i. There exists a convergent series of
positive reals > ° jep, < 1 such that for every z € X, fp(z) < &, for all but
finitely many n. Let p(k) = {n : 27% < e,}. Clearly |p(k)| < 2¥. For g € F
there is ng such that 2—g(n) — fn(zg) < ep for all n > ng. Then for all but
finitely many k € w either g(k) > ng, and then 2% < 2-24(9(k) < Eg(k)> OT

g(k) < ng and 27% < min{e,, : n < ng}, and hence g(k) € p(k). O

Every perfectly normal Y QN-space is a hereditary mQN-space since it is a o-
space (see [3, Theorem 5.7]). A wEXQN-space need not be a o-space because the
property wQN is not hereditary.

Corollary 4.2. The implications MY'Y* — mQN, MY'Y* — o, QN — m¥/%*
are not provable.
PrOOF: (a) If t = b, then there exists a wQN-set X C R of size b which is
b-concentrated on a countable subset A (see [3] and [9]). X is an mQN-set but
as mQN-subsets of X which are disjoint from A have size less than b ([3, The-
orem 4.1]) the set X is not a hereditary mQN-set. Therefore X is not a o-set
([3, Theorem 3.12]). M. Kada and S. Kamo [6] have proved the consistency of
w1 = b < & In the model let X7 be a set of reals of size b which is not an
mQN-set. Since t = b = w; there is an mQN-set X of size b which is not a o-set.
Since b < &, X7, X9 are MY/ Y*-sets.

(b) By Theorem 3.4(1) non(XX*) = min{non(QN), non(m¥’'%*)}. By consis-
tency of add(N) < b and equalities non(X¥*) = add(N), non(QN) = b, also
non(m¥’%*) < non(QN) is consistent. O

Let us denote
B={f€e“w:limp— f(n) = o},

Xp={zec“w:(Vnew)z(n) <z(n+1)& 2, f(n)2—*() < 0}, feB,
K={ge“w:>>", 279(") < 0},
k=min{|X|: (3f € B) X C X; & (Vg € K)(Fz € X)(In) x(n) < g(n)}.
Theorem 4.3. non(M!YX'5*) = non(mX'X*) = .
PrOOF: Let f € B and X C X be such that X is a witness for x = [X|. The

functions f,, : X — R defined by fn,(z) = 272 are continuous, fr41 < fn,
and by the choice of X the sequence {fn}5, ¥'-converge to 0 but does not
>*-converge. Therefore non(M!X’X*) < non(mX’%*) < k. Conversely, let X
be a space of minimal size which is not an MX/S*-space and let a monotone
sequence of Borel functions {f,}72, and a sequence of integers {k;,}7°, witness
this fact. For z € X let T € “w be such that 277" < f,(x) < 27F(W+1
X ={T:2 € X}, and let f € B be defined by f(n) = k,. Then X C Xy,
|X| < |X]|, and X witnesses the inequality x < [ X]|. O
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For non(mX’X*) we have yet another upper bound. By induction let us define
a sequence of integers dg =1, dp41 > dn29 and let us denote

Y = {z €“w: (VYn) z(n) < 2%},

L ={g €“([W]™) : (Vk)(v®n) |g(n)| > 2% 1=1/K) & (¥n) g(n) C 2%},

v=min{|X|: X CY & (Vg € £)(Tz € X)(I®n) z(n) € g(n)}.
Theorem 4.4. non(mX'X*) <v

PrROOF: Let ag = 0, apy1 = an + odn [ — [an, ant1). For k < 24n we define
Sn.k € "R by

1
— 1 < < k
( ) dn(k—l—l)’ oran <m<ap+ K,
Sn,k\M) =
’ 1
, for ap +k <m < apy1.
dn—i—l

Since dp (k+1) < dpy1 for k < 2% we have s,, ;(m) > s, 1(m') for m < m/ in I,.
Therefore the sequence of functions fy, : Y — R defined by
fm () = 8y, 1(n) (M), for m € I,
is a monotone sequence of continuous functions. Since
1 p 1 2
s k+l)———+ 02" k-1 < —
ZEZI; nk (0 )dn(k+ 1) ( )dn+1 dn,
we have 37 ;1 fm(z) < 2/dp, and the series Y 72 (2/d, < oo witnesses the
Y'-convergence of fi,.
Let X C Y, |X| < non(mX'X*). Since X is an mX/'Y*-space, there ex-
ists a convergent series of positive reals > °_yen, such that (Vo € X)(V>m)
fm(z) < ep. We can assume that e,,41 < &, for all m € w. Let us set

g(n) = {k < 2% : s, 4 (dn + k) > €4, 1}

Since sy, o(n)(dn+2(1)) = f4, 42(n) (%) < €4, 42(n), () ¢ g(n) for all but finitely
many n € w. We prove that g € £. Assume that for some n and for some k£ > 0,
lg(n)| < 2%(=1/K) and let I;, i = 1, 2, ..., 20 — 29n(1=1/K) be an increasing
sequence of integers such that s, ;,(dn +1;) < 4, 4+1,- We set lp = —1 and notice
that (¢ +1)/7 > 1/(j — 1) for j > 1.

odn o —1 1 1
ng—zdnlﬂ . Z%Zm

mel, dn—i—l
2d7l dn—l
1 1 1 1 1
> — E -2 - E 5= 5L
~ dn 1 dn, 2 2k
i=2dn(1-1/k) 11 j=dn(1-1/k)

This is possible only for finitely many n since > >°_q em < 0o. Therefore |g(n)| >
2dn(1=1/K) for all but finitely many n € w. (|
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Corollary 4.5. ¢ < x < min{u,v}. O
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