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Spaces not distinguishing convergences

Miroslav Repický

Abstract. In the present paper we introduce a convergence condition (Σ′) and continue
the study of “not distinguish” for various kinds of convergence of sequences of real
functions on a topological space started in [2] and [3]. We compute cardinal invariants
associated with introduced properties of spaces.

Keywords: P-, QN-, Σ-, Σ′-, Σ∗-, Σc-convergence, a space not distinguishing conver-
gences

Classification: 54G99, 54C30, 03E17

0. Introduction

In [3] the authors classified spaces according to which of the convergences P,
QN, Σ, Σ∗ (defined below) do not distinguish, or according to the property that
“every” sequence of functions convergent in some sense has a subsequence con-
vergent in the other sense. This investigation began in [2] for pointwise and
quasi-normal convergences. In the present paper we introduce another conver-
gence condition (Σ′) which is between (Σ) and (Σ∗) and we enlarge the study of
“not distinguish” for all five convergences.
a) Let us recall some definitions from [3]. Let F be a class of real-valued

functions such that

(i) all constant functions are in F ,
(ii) (∀f, g ∈ F) f − g ∈ F ,
(iii) (∀f ∈ F) |f | ∈ F ,
(iv) (∀f ∈ F)(∀n > 0) f/n ∈ F .

For a space X we set F(X) = F ∩X
R. For functions f, fn : X → R for n ∈ ω we

consider the following four kinds of convergence of the sequence {fn}∞n=0 to f :

(P) pointwise convergence,
(QN) quasi-normal convergence, i.e. for some sequence of positive reals {εn}∞n=0

with limn→∞ εn = 0 we have (∀x)(∀∞n) |fn(x) − f(x)| ≤ εn,
(Σ)

∑∞
n=0 |fn(x) − f(x)| < ∞,

(Σ∗) pseudo-normal convergence, i.e. for some sequence of positive reals
{εn}∞n=0 with

∑∞
n=0 εn < ∞ we have (∀x)(∀∞n) |fn(x)− f(x)| ≤ εn.

The work was supported by Slovak grant agency VEGA 1/4034/97.
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The sequence of functions in the above conditions may satisfy any of the following
hypotheses (F is a given class of functions):

(F) fn ∈ F(X) for n ∈ ω, f = 0,
(F) fn ∈ F(X) for n ∈ ω (f is arbitrary),

(F↓) fn+1 ≤ fn, fn ∈ F(X) for n ∈ ω, f = 0,

(F↓) fn+1 ≤ fn, fn ∈ F(X) for n ∈ ω (f is arbitrary).

Definition 0.1. Let α be any of the hypotheses F , F , F↓, F↓ and let β, γ be
any of the convergences P, QN, Σ, Σ∗.

(1) A space X is an αβγ-space if whenever functions fn, f : X → R, n ∈ ω
satisfy condition α, and the sequence {fn}∞n=0 β-converges to f , then the
sequence {fn}∞n=0 γ-converges to f .

(2) A space X is a weak αβγ-space (shortly wαβγ-space) if whenever func-
tions fn, f : X → R, n ∈ ω satisfy condition α, and the sequence {fn}∞n=0
β-converges to f , then some subsequence {fnk}

∞
k=0 γ-converges to f .

From all the properties introduced by this definition only these are non-trivial:

FPQN FΣQN FΣΣ∗ wFPQN wFPΣ wFPΣ∗ wFΣQN wFΣΣ∗

FPQN FΣQN FΣΣ∗ wFPQN wFPΣ wFPΣ∗ wFΣQN wFΣΣ∗

F↓PQN F↓ΣΣ∗ wF↓PQN wF↓PΣ wF↓PΣ∗

F↓PQN F↓ΣΣ∗ wF↓PQN wF↓PΣ wF↓PΣ∗

b) Now we introduce convergence condition (Σ′).

(Σ′) There is a monotone unbounded sequence of integers {kn}∞n=0 such that
∑∞

n=0 kn|fn(x)− f(x)| < ∞.

Notice that fn QN-converge to f if and only if there is a monotone unbounded
sequence of integers {kn}∞n=0 such that limn→∞ kn|fn(x)−f(x)| = 0 for all x. It is
easy to see that fn Σ

′-converge to f if and only if there is an increasing sequence of
integers {ni}

∞
i=0 such that the sequence {

∑ni+1−1
n=ni

|fn(x)−f(x)|}∞i=0 Σ
∗-converge

to 0. Clearly (Σ∗) → (Σ′) → (Σ) & (QN). Replacing Σ∗ or Σ by Σ′ in some of
the above cases we obtain further 5× 4 possibilities αΣΣ′, αΣ′Σ∗, αPΣ′, wαΣΣ′,
wαΣ′Σ∗ for α = F , F , F↓, F↓. But we can easily see that wαPΣ′ ≡ wαPQN,
wαΣΣ′ ≡ wαΣQN, and every space is a wαΣ′Σ∗-space. So we can consider the
additional 8 properties of spaces:

FΣΣ′ FΣΣ′ F↓ΣΣ′ F↓ΣΣ′ FΣ′Σ∗ FΣ′Σ∗ F↓Σ′Σ∗ F↓Σ′Σ∗

To simplify the notation we omit the letter P since it never occurs at the end of any
prefix (αγ-space and wαγ-space mean αPγ-space and wαPγ-space, respectively).

The result of Section 1 is Diagram 1 and the next equalities describe the known
relationship between the classes of spaces with particular properties:



Spaces not distinguishing convergences 831

F↓QN = wF↓QN = wF↓Σ∗ = wF↓Σ (Lemma 1.1(i)),

F↓QN = wF↓QN = wF↓Σ∗ = wF↓Σ = FΣΣ′ = FΣΣ′ = F↓ΣΣ′ (Lemma 1.2
and Lemma 1.4(1)),
FΣ′Σ∗ = FΣ′Σ∗ (Lemma 1.4(2)),
FΣΣ∗ = FΣΣ∗ (Lemma 1.4(3)),
wFQN = wFΣ∗,
wFQN = wFΣ∗ = wFΣ ([3]),
wFΣQN = wFΣΣ∗,
wFΣQN = wFΣΣ∗,

FΣΣ∗ = F↓QN ∩ FΣ′Σ∗ (Lemma 1.6),

F↓ΣΣ∗ = F↓QN ∩F↓Σ′Σ∗ (Lemma 1.6),

F↓ΣΣ∗ = F↓ΣΣ′ ∩ F↓Σ′Σ∗,
wFQN = wFΣ ∩ wFΣQN .

Section 2 deals with the case F =M, the class of Borel measurable functions.
The result of Section 3 is a picture of relationship between the properties from
Definition 0.1 for all classes F with C ⊆ F ⊆ M where C is the class of continuous
real-valued functions and in Section 4 we give some cardinal characterizations for
all these properties.
We will use these standard families of real-valued functions defined on X :

C(X) = {f ∈ X
R : f is continuous},M1(X) = {f ∈ X

R : f is Fσ measurable},
M(X) = {f ∈ X

R : f is Borel measurable}.

1. Classification in general

Every monotone Σ-convergent sequence of functions is QN-convergent ([3, Lem-
ma 1.2]). The next lemma generalizes this fact and gives a comparison of Σ∗-
convergence and Σ′-convergence for monotone series. We set K(n) =

∑n
i=0 ki.

The assumption that {kn}∞n=0 is monotone is not used here.

Lemma 1.1.

(i) If 0 ≤ fn+1(x) ≤ fn(x) and
∑∞

k=0 knfn(x) < ∞ for x ∈ X , then for every
x ∈ X, fn(x) < 1/K(n) for all but finitely many n ∈ ω.

(ii) If
∑∞

n=0 1/K(n) = ∞ and
∑∞

n=0 εn < ∞, then there is a sequence of
positive reals {ξn}∞n=0 such that ξn+1 ≤ ξn for all n ∈ ω,

∑∞
n=0 knξn < ∞,

and ξn ≥ εn for infinitely many n ∈ ω.

Proof: (i) If the conclusion is not correct then we get an infinite increasing
sequence of integers {nk}

∞
k=0 such that for some x ∈ X we have fnk(x) ≥ 1/K(nk)

for all k ∈ ω. Define ξ ∈ ω
R by ξ(n) = 1/K(nk) for nk−1 < n ≤ nk and

ξ(n) = 1/K(n0) for n ≤ n0. Clearly, ξ(n) = 1/K(nk) ≤ fnk(x) ≤ fn(x) for all k
and nk−1 < n ≤ nk, and so

∑∞
n=0 knξ(n) ≤

∑∞
n=0 knfn(x) < ∞. On the other

hand (we can assume that K(nk)− K(nk−1) ≥ K(nk)/2)
∑

n>n0

knξn =

∞
∑

k=1

nk
∑

n=nk−1+1

kn/K(nk) =

∞
∑

k=1

(K(nk)− K(nk−1))/K(nk) =∞
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because limn→∞ K(n) =∞. This is a contradiction.

(ii) Then lim infn→∞ K(n)εn = 0 and there is an increasing sequence of inte-
gers {nk}

∞
k=0 such that

∑∞
k=0 K(nk)εnk < ∞ and εnk+1 ≤ εnk . Define ξn = εnk

for nk−1 < n ≤ nk and ξn = εn0 for n ≤ n0. Then

∑

n>n0

knξn =
∞
∑

k=1

nk
∑

n=nk−1+1

knεnk ≤
∞
∑

k=1

K(nk)εnk < ∞.

Clearly, ξnk ≥ εnk for every k ∈ ω. �

Let X = {x ∈ ωω :
∑∞

n=0 log(n)/x(n) < ∞ & (∀n) x(n) < x(n + 1)}. By

Lemma 1.1(ii) X is not an F↓Σ′Σ∗-space whenever F contains the functions fn :
X → R defined by fn(x) = 1/x(n).

Lemma 1.2. FΣΣ′ = F↓QN .

Proof: FΣΣ′ ⊆ F↓QN . Let fn+1 ≤ fn, limn→∞ fn(x) = f(x) for x ∈ X , and
let X be an FΣΣ′-space. Since

∑∞
n=0(fn(x) − fn+1(x)) = f0(x) − f(x) < ∞,

there is a monotone sequence of integers {kn}∞n=0 such that
∑∞

n=0 kn(fn(x) −
fn+1(x)) < ∞. Let {ni}

∞
i=0 be the increasing enumeration of all n > 0 such that

kn − kn−1 > 0. Then

∞
∑

i=0

(fni(x)−f(x)) =

∞
∑

i=0

∞
∑

n=ni

(fn(x)−fn+1(x)) ≤
∞
∑

n=n0

kn(fn(x)−fn+1(x)) < ∞.

Since wF↓Σ = F↓QN X is an F↓QN-space.
F↓QN ⊆ FΣΣ′. Let

∑∞
n=0 |fn(x)| < ∞ for x ∈ X, and let X be an F↓QN-

space. Set g(x) =
∑∞

m=0 |fm(x)|, gn(x) =
∑n−1

m=0 |fm(x)|. There is an increasing

sequence of integers {ni}
∞
i=0 such that (∀x ∈ X)(∀∞i) g(x) − gni(x) ≤ 2

−i. Let
kn = |{i : ni ≤ n}|. Then

∑∞
n=0 kn|fn(x)| =

∑∞
i=0(g(x)− gni(x)) < ∞. �

Lemma 1.3. F↓QN ⊆ FΣQN .

Proof: See [3], Lemma 1.6. �

Lemma 1.4.

(1) FΣΣ′ = FΣΣ′ = F↓ΣΣ′ ⊆ F↓ΣΣ′.

(2) FΣ′Σ∗ = FΣ′Σ∗ ⊆ F↓Σ′Σ∗ ⊆ F↓Σ′Σ∗.

(3) FΣΣ∗ = FΣΣ∗ ⊆ F↓ΣΣ∗ ⊆ F↓ΣΣ∗.

Proof: (1) The inclusion FΣΣ′ ⊆ FΣΣ′. Let
∑∞

n=0 |fn(x) − f(x)| < ∞
for all x ∈ X and let X be an FΣΣ′-space. By Lemma 1.2 and Lemma 1.3
there is a sequence of positive reals {εn}∞n=0 tending to 0 such that (∀x ∈ X)
(∀∞n) |fn(x) − f(x)| < εn. Let ϕ ∈ ωω be such that

∑∞
n=0 εϕ(n) < ∞. Then

∑∞
n=0 |fn(x) − fϕ(n)(x)| ≤

∑∞
n=0 |fn(x) − f(x)| +

∑∞
n=0 |fϕ(n)(x) − f(x)| < ∞.
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Since X is an FΣΣ′-space, there is a sequence of integers {k′n}
∞
n=0 such that

∑∞
n=0 k′n|fn(x) − fϕ(n)(x)| < ∞. There is a monotone unbounded sequence of

integers {k′′n}
∞
n=0 such that

∑∞
n=0 k′′nεϕ(n) < ∞. Set kn = min{k′n, k′′n}. Then

∑∞
n=0 kn|fn(x)−f(x)| ≤

∑∞
n=0 k′′n|fϕ(n)(x)−f(x)|+

∑∞
n=0 k′n|fn(x)−fϕ(n)(x)| <

∞ and X is an FΣΣ′-space.

The inclusion F↓ΣΣ′ ⊆ FΣΣ′. Let
∑∞

n=0 |fn(x)| < ∞ for x ∈ X and let

X be an F↓ΣΣ′-space. Let us set

g(x) =
∞
∑

m=0

|fm(x)|/(m+ 1), gn(x) =
n−1
∑

m=0

|fm(x)|/(m+ 1).

Clearly gn ≤ gn+1 and we have

∞
∑

n=0

(g(x)− gn(x)) =

∞
∑

n=0

∞
∑

m=n

|fm(x)|/(m+ 1) =
∞
∑

m=0

|fm(x)| < ∞.

Therefore there is a sequence of integers {k′n}
∞
n=0 such that

∑∞
n=0 k′n(g(x) −

gn(x)) < ∞ for x ∈ X. Let {kn}∞n=0 be another monotone unbounded sequence
of integers such that kn ≤

∑n
m=0 k′m/(n+ 1). Then for all x ∈ X we have

∞
∑

n=0

kn|fn(x)| ≤
∞
∑

n=0

n
∑

m=0

k′m|fn(x)|/(n+ 1) =
∞
∑

m=0

k′m(g(x)− gm(x)) < ∞.

Hence X is an FΣΣ′-space.

(2) The inclusion FΣ′Σ∗ ⊆ FΣ′Σ∗. Let
∑∞

n=0 kn|fn(x) − f(x)| < ∞ for
x ∈ X and let X be an FΣ′Σ∗-space. Let ϕ ∈ ωω be increasing such that
∑∞

n=0 1/kϕ(n) < ∞. Since

∞
∑

n=0

kn|fn(x)−fϕ(n)(x)| ≤
∞
∑

n=0

kn|fn(x)−f(x)|+
∞
∑

n=0

kϕ(n)|fϕ(n)(x)−f(x)| < ∞,

there is a sequence of positive reals {εn}∞n=0 such that
∑∞

n=0 εn < ∞ and
(∀x ∈ X)(∀∞n) |fn(x) − fϕ(n)(x)| < εn. Now for all x ∈ X for all but finitely

many n ∈ ω we have |fn(x) − f(x)| ≤ |fn(x) − fϕ(n)(x)| + |fϕ(n)(x) − f(x)| <

εn + 1/kϕ(n).

(3) These inclusions are proved in [3, Lemma 1.7] and they are trivial conse-
quences of inclusions (1) and (2) because αΣΣ∗ = αΣΣ′ ∩ αΣ′Σ∗ for α = F ,
F↓, F , F↓. �
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F↓QN

wFΣ

OO

wFΣQN

wFQN

OO 44hhhhhhhhhhhhhhhhhhh

FΣQN

OO

wFΣQN

ffNNNNNNNNNNN

FQN

OO 44iiiiiiiiiiiiiiiiiiii

FΣQN

OO 88qqqqqqqqqq

FQN

OO

// wFQN //

\\8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8

F↓QN

\\:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:

1.3

OO

1.2
// FΣΣ′ FΣΣ∗

F↓ΣΣ∗

OO 88qqqqqqqqqq

F↓Σ′Σ∗

OO

1.5

]]<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<

F↓ΣΣ∗

1.2
1.4

^^<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<

OO 88qqqqqqqqqq

FΣ′Σ∗

1.4

OO

FΣΣ∗

1.4

OO 88qqqqqqqqqqq

Diagram 1. This diagram shows all inclusions between the classes of spaces

with introduced properties. The numbers at the arrows refer for the proofs of the

inclusions. The other inclusions are easy consequences of definitions.

Lemma 1.5. F↓Σ′Σ∗ ⊆ wFΣQN and if a class of functions G is closed on
limits of sequences of functions from F , then G↓Σ′Σ∗ ⊆ wFΣQN .

Proof: We prove the first part only, the second part is the same. Let X be
an F↓Σ′Σ∗-space and let

∑∞
n=0 |fn(x)| < ∞ for x ∈ X. Let us choose a mono-

tone unbounded sequence of integers {kn}∞n=0, and let us set K(n) =
∑n

i=0 ki,
so that

∑∞
n=0 1/K(n) = ∞ (e.g. kn = logn, K(n) ≤ n logn). Set g(x) =

∑∞
m=1 |fm(x)|/K(m) and gn(x) =

∑n−1
m=1 |fm(x)|/K(m). Then

∞
∑

n=0

kn(g(x)− gn(x)) =

∞
∑

m=0

m
∑

n=0

kn|fm(x)|/K(m) =

∞
∑

m=0

|fm(x)| < ∞.
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Therefore there is a sequence of positive reals {εn}∞n=0 such that
∑∞

n=0 εn < ∞
and (∀x ∈ X)(∀∞n) |fn(x)|/Kn ≤ g(x) − gn(x) < εn. There is an increasing
sequence of integers {nk}

∞
k=0 such that limk→∞ K(nk)εnk = 0, and hence the

sequence {K(nk)εnk}
∞
k=0 witnesses the QN-convergence of {fnk}

∞
k=0 to 0. �

Lemma 1.6.

(1) FΣΣ∗ = F↓QN ∩ FΣ′Σ∗.

(2) F↓ΣΣ∗ = F↓QN ∩F↓Σ′Σ∗.

(3) F↓ΣΣ∗ = F↓ΣΣ′ ∩ F↓Σ′Σ∗.

Proof: (1) and (2) are easy consequences of Lemma 1.2 and (3) is trivial. �

2. Borel measurable functions

For the class F =M, the class of Borel measurable real-valued functions, all
the defined properties are hereditary for Borel subsets.

Theorem 2.1.

(1)MQN =M↓QN , (5) wMΣQN = wMΣQN ,

(2)M↓ΣΣ∗ =M↓ΣΣ∗, (6)M↓QN =M↓ΣΣ′,

(3)MΣ′Σ∗ =M↓Σ′Σ∗, (7)MΣΣ∗ =M↓ΣΣ∗.

(4)MΣQN =MΣQN ,

Proof: The equalities (1)–(5) are easy and (6) is consequence of Lemma 1.2
since in Lemma 1.4(1) all families are equal. We prove (7). It is enough to

prove the inclusion M↓ΣΣ∗ ⊆ MΣΣ∗. Let X ∈ M↓ΣΣ∗, fn > 0, n ∈ ω be
Borel functions on X and let

∑∞
n=0 fn(x) < ∞. The function ϕ : X → ωω

defined by ϕ(x)(n) = min{m ∈ ω : fn+1(x)/m ≤ fn(x)} is Borel. As X is an
MQN-space the image ϕ(X) is a bounded subset of ωω in the eventual ordering
(see [3, Theorem 2.1]). Let α ∈ ωω eventually dominates ϕ(X). Let us set
mn =

∏

i<n α(n). Then fn+1(x)/mn+1 = fn+1(x)/(α(n)mn) ≤ fn(x)/mn for all
but finitely many n. The setXk = {x ∈ X : (∀n ≥ k) fn+1(x)/mn+1 ≤ fn/mn} is
Borel for all k and X =

⋃∞
k=0 Xk. As Xk is anM

↓ΣΣ∗-space the monotone series
∑∞

n=k

∑mn
i=1 fn(x)/mn Σ

∗-converge on Xk. Therefore the sequence {fn}∞n=0 Σ
∗-

converge on Xk for all k and hence also on their union X .
�

By Theorem 2.1 in the case F =M every class of Diagram 1 is equal to one
of the six classes of Diagram 2.
In the case F = C, the class of continuous real-valued functions, the next

definition introduces a shorter notation. The first seven items of this definition
were introduced in [3, Definition 2.2].
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MΣ′Σ∗ // M↓Σ′Σ∗ // wMΣQN

MΣΣ∗

OO

// MQN // MΣQN

Diagram 2.

Definition 2.2.

(1) An mQN-space (mQN-space) is a C↓QN-space (C↓QN-space).
(2) A QN-space (wQN-space) is a CQN-space (w CQN-space).
(3) A ΣQN-space (wΣQN-space) is a CΣQN-space (w CΣQN-space).
(4) A QN-space is a CQN-space.
(5) A ΣQN-space (wΣQN-space) is a CΣQN-space (w CΣQN-space).
(6) A Σ-space is a w CΣ-space.
(7) A ΣΣ∗-space (mΣΣ∗-space, mΣΣ∗-space) is a CΣΣ∗-space (C↓ΣΣ∗-space,

C↓ΣΣ∗-space).
(8) A Σ′Σ∗-space (mΣ′Σ∗-space, mΣ′Σ∗-space) is a CΣ′Σ∗-space (C↓Σ′Σ∗-
space, C↓Σ′Σ∗-space).

(9) A ΣΣ′-space (mΣΣ′-space, mΣΣ′-space) is a CΣΣ′-space (C↓ΣΣ′-space,
C↓ΣΣ′-space).

In [3] the following theorem is proved for the first seven items in Definition 2.2
but the same arguments work also for the additional two.

Theorem 2.3. Every of the properties in Definition 2.2 is σ-additive, and for
perfectly normal spaces, it is hereditary for Fσ subsets, and it is preserved by D1
images. �

3. Classification with use of topology

Theorem 3.1. Let X be a perfectly normal space.

(1) X is an mΣΣ∗-space if and only if X is an mΣΣ∗-space.
(2) X is an mΣ′Σ∗-space if and only if X is an mΣ′Σ∗-space.
(3) X is an mΣΣ′-space if and only if X is an mΣΣ′-space.
(4) X is a ΣQN-space if and only if X is a wΣQN-space and a ΣQN-space.

Proof: The assertions (1) and (4) are proved in [3, Theorem 2.4]. The proof
of all cases is based on Theorem 2.3. We prove only assertion (3), the other are
similar. Let X be an mΣΣ′-space and let fn+1 ≤ fn for n ∈ ω be continuous
functions, f(x) = limn→∞ fn(x) for x ∈ X and let

∑∞
n=0 (fn(x)− f(x)) < ∞

for x ∈ X. By Lemma 1.1(i) these functions quasi-normally converge and so
X =

⋃∞
k=0 Fk with Fk closed such that the convergence is uniform on each set

Fk. Therefore (fn − f)↾Fk are continuous and as all closed subsets of X are
mΣΣ′-spaces the sequence of functions {fn − f}∞n=0 Σ

′-converges on each set Fk.
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Each Σ′-convergence is witnessed by a monotone unbounded sequence of integers.
As for every countable family of monotone unbounded sequences of integers there
is a monotone unbounded sequence of integers majorized by all sequences from
the family we easily obtain Σ′-convergence of the sequence of functions on the
whole space X . �

Theorem 3.2. Let F be any class of Borel functions containing all continuous
functions. The following equivalences between the properties hold true for per-

fectly normal spaces:

(i) QN ≡ FQN ≡ wFQN ≡ F↓QN,

(ii) ΣΣ∗ ≡ FΣΣ∗ ≡ F↓ΣΣ∗ ≡ FΣΣ∗ ≡ F↓ΣΣ∗,
(iii) MΣQN ≡ M1ΣQN,

(iv) QN ≡ FΣΣ′ ≡ F↓ΣΣ′ ≡ FΣΣ′ ≡ F↓ΣΣ′.

Proof: Assertions (i)–(iii) are proved in [3, Theorem 6.2]. We prove (iv). By (i)

and Lemma 1.2 ΣΣ′ ≡ mQN ≡ F↓QN ≡ FΣΣ′, by Lemma 1.4(1) and Theo-
rem 3.1(3) FΣΣ′ ≡ FΣΣ′ ≡ F↓ΣΣ′ → F↓ΣΣ′ → mΣΣ′ ≡ mΣΣ′ ≡ ΣΣ′. �

Let us recall that a space X is nestled (see [3]) if for every sequence of strictly
positive functions fn ∈ C(X) there is a sequence of integers kn such that (∀x ∈ X)
(∀∞n)(∀i ≤ n) fi(x) > 1/kn. We will need the following characterization.

Lemma 3.3. Let X be arbitrary space. The following conditions are equivalent.

(1) X is a nestled space.
(2) Every continuous image of X into ω

R is eventually bounded.

(3) For every sequence of strictly positive functions fn ∈ C(X) for n ∈ ω there
are integers mn such that (∀x ∈ X)(∀∞n) fn+1(x)/mn+1 < fn(x)/mn.

Proof: See [3, Lemma 3.1]. �

Theorem 3.4. Let X be a perfectly normal space.

(1) X is a ΣΣ∗-space if and only if X is a QN-space and an mΣ′Σ∗-space.
(2) X is an mΣΣ∗-space if and only if X is a ΣΣ∗-space.
(3) If X is a nestled space and an mΣ′Σ∗-space, then X is a Σ′Σ∗-space.

Proof: (1) By Theorem 3.2 ΣΣ∗ ≡ mΣΣ∗ and QN ≡ mQN. By Lemma 3.1(2)
mΣ′Σ∗ ≡ mΣ′Σ∗. Lemma 1.6(2) in this case says mΣΣ∗ ≡ mQN & mΣ′Σ∗.
Condition (2) is proved in [3, Theorem 6.1] and it can be obtain from the next
part by taking kn = 1.

(3) Let X be a nestled mΣ′Σ∗-space. Let
∑∞

n=0 kn|fn(x)| < ∞ for x ∈ X
where {kn}∞n=0 is monotone unbounded sequence of integers. We want to obtain
the Σ∗-convergence. Without loss of generality we can assume that fn(x) > 0
(otherwise take f ′

n(x) = max{fn(x), 2
−n} and k′n = min{kn, n}). By Lemma 3.3

there are integersmn such that (∀x ∈ X)(∀∞n) fn+1(x)/mn+1 < fn(x)/mn. The
sets

Fk = {x ∈ X : (∀n ≥ k) fn+1(x)/mn+1 < fn(x)/mn}
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are closed, by Theorem 2.3 they are mΣΣ∗-spaces (resp. mΣ′Σ∗-spaces), and X =
⋃∞

k=0 Fk. The series
∑∞

n=k

∑mn
i=1 knfn/mn converges on Fk and hence the series

∑∞
n=k

∑mn
i=1 fn/mn Σ

∗-converges on Fk. It follows that the series
∑∞

n=0 fn(x)
Σ∗-converges on Fk for every k ∈ ω and hence the series Σ∗-converges on the
whole X (since every countable sequence of convergent series can be majorized
by a single convergent series). �

mQN

Σ′Σ∗ // mΣ′Σ∗
3.1

1.5
// wΣQN Σ

KS

M1Σ
′Σ∗

99sssssssss
// M↓

1Σ
′Σ∗

::uuuuuuuu

1.5
// wΣQN

;;xxxxxxxx

ΣQN

KS [3]

8@
zzzzzzzzzzzzzzzzzzz

zzzzzzzzzzzzzzzzzzz

wQN

^f DDDDDDD

DDDDDDD

=={{{{{{{{

MΣ′Σ∗

::

// M↓Σ′Σ∗

::

1.5
// wMΣQN

::

ΣQN

KS <<xxxxxxxx

QN

OO 9A
{{{{{{{{

{{{{{{{{

MΣQN

KS ::tttttttt

ΣΣ∗

3.2

KS

[3]
+3 QN

[3]

OO

::uuuuuuuuuuuuuuuuuuuuu

Diagram 3. The implications in the diagram hold true for perfectly normal spaces.

Thick arrows are for the implications we know they are proper. Dotted arrows

stand for infinite hierarchies of properties corresponding to the families of functions

F with C⊆F⊆M. Some equivalences: wQN≡Σ&wΣQN, ΣQN≡ΣQN&wΣQN

(Theorem 3.1), ΣΣ∗≡QN&mΣ′Σ∗ (Theorem 3.4).

With connection to Diagram 3 let us remark that every b-Sierpiński set is
a QN-set, γ-set is a wQN-set, σ-compact space is an mQN-space, separable metric
Σ-space or wΣQN-space is perfectly meager, and all properties below ΣQN are
hereditary for subspaces of perfectly normal spaces (see [2] and [3]).

4. Cardinal invariants

We shall summarize characterizations of minimal cardinalities of spaces which
do not have a property of a Diagram 3 and show that each of them is equal to one
of five cardinals. It is a simple observation that non(QN) = non(mQN) = b and
non(ΣΣ∗) = add(N ). In [3, Theorem 7.11] it is proved that non(wMΣQN) =
non(wΣQN) = µ, where

µ = min{|F| : F ⊆ ωω & (∀h ∈ ωω)(∃g ∈ F)(∃∞n) h(n) ∈ {g(m) : m < n}}.
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We prove non(MΣ′Σ∗) = non(Σ′Σ∗) = k and non(M↓Σ′Σ∗) = non(mΣ′Σ∗) = κ
(k and κ are defined below).
Let us recall that for any function h ∈ ωω with limn→∞ h(n) = ∞, k is the

following cardinal invariant.

k = min{|F| : F ⊆ ωω is bounded and

(∀ϕ with |ϕ(n)| ≤ n)(∃g ∈ F)(∃∞n) g(n) /∈ ϕ(n)}

= min{|F| : F ⊆ ωω is bounded and

(∀ϕ with |ϕ(n)| ≤ h(n))(∃g ∈ F)(∃∞n) g(n) /∈ ϕ(n)}.

Theorem 4.1. non(MΣ′Σ∗) = non(Σ′Σ∗) = k.

Proof: The proof is a literal transcription of Bartoszyński’s characterization [1]
of convergence of series via localizations of functions.

k ≤ non(MΣ′Σ∗). Let |X | < k and let fn : X → R be Borel functions such
that

∑∞
n=0 knfn(x) < ∞ for all x ∈ X for some monotone unbounded sequence

{kn}∞n=0. Without loss of generality we can assume that 2
−n ≤ fn(x) < 1,

otherwise take f ′
n = max{2

−n,min{fn, 1/2}} and k′n = min{n, kn}. Let us define
ϕx ∈ ωω for x ∈ X so that 1/(ϕx(n) + 1) ≤ fn(x) < 1/ϕx(n). Clearly, 0 <
ϕx(n) < 2n and

∑∞
n=0 knfn(x) ≤

∑∞
n=0 kn/ϕx(n) < ∞. Let Xm = {x ∈

X :
∑∞

n=0 kn/ϕx(n) < m}. To prove the Σ∗-convergence on the set X it is
enough to prove the Σ∗-convergence on each set Xm and since we can pass to
coefficients k′n = kn/m, without loss of generality we can assume that X = X1,
i.e.

∑∞
n=0 kn/ϕx(n) < 1 for x ∈ X. Let h ∈ ωω be a strictly increasing function

such that kh(m) > 2m. Then
∑

n≥h(m) 1/ϕx(n) < 2−m for all m. Let gx(n) =

ϕx↾h(n + 1) ∈ H(n) =
∏

i<h(n+1) 2
i. There is ϕ with |ϕ(m)| ≤ m such that

(∀x ∈ X)(∀∞m) gx(m) ∈ ϕ(m). Let us define

εn = max

{

1

s(n)
: s ∈ ϕ(m) &

h(m+1)−1
∑

i=h(m)

1

s(i)
< 2−m

}

,

for h(m) ≤ n < h(m+ 1). Then
∑∞

n=0 εn < ∞ and for every x ∈ X for all but
finitely many n, fn(x) ≤ 1/ϕx(n) ≤ εn.
non(Σ′Σ∗) ≤ k. Let F ⊆ ωω be a bounded family of functions and let h ∈ ωω be

a strictly increasing function bounding F . We set kn = i for h(i) ≤ n < h(i+ 1).
For g ∈ F let xg ∈ ωω be defined by

xg(n) =

{

min{i : n = g(i)}, if n ∈ rng(g),

n, if n /∈ rng(g).

Since |F| < non(Σ′Σ∗), the set X = {xg : g ∈ F} is a Σ′Σ∗-space. Let fn ∈ C(X)

be defined by fn(x) = 2
−x(n). Let ag = {i : (∀k < i) g(i) 6= g(k)}. Then
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∑∞
n=0 knfn(x) ≤

∑∞
n=0 n2−n +

∑

i∈ag
kg(i)2

−i < ∞ because g(i) ≤ h(i) and

hence kg(i) ≤ i for all but finitely many i. There exists a convergent series of

positive reals
∑∞

n=0 εn < 1 such that for every x ∈ X, fn(x) ≤ εn for all but

finitely many n. Let ϕ(k) = {n : 2−k ≤ εn}. Clearly |ϕ(k)| < 2k. For g ∈ F

there is n0 such that 2
−xg(n) = fn(xg) ≤ εn for all n ≥ n0. Then for all but

finitely many k ∈ ω either g(k) ≥ n0, and then 2
−k ≤ 2−xg(g(k)) ≤ εg(k), or

g(k) < n0 and 2
−k ≤ min{εn : n < n0}, and hence g(k) ∈ ϕ(k). �

Every perfectly normal ΣQN-space is a hereditary mQN-space since it is a σ-
space (see [3, Theorem 5.7]). A wΣQN-space need not be a σ-space because the
property wQN is not hereditary.

Corollary 4.2. The implicationsMΣ′Σ∗ → mQN,MΣ′Σ∗ → σ, QN→ mΣ′Σ∗

are not provable.

Proof: (a) If t = b, then there exists a wQN-set X ⊆ R of size b which is
b-concentrated on a countable subset A (see [3] and [9]). X is an mQN-set but
as mQN-subsets of X which are disjoint from A have size less than b ([3, The-
orem 4.1]) the set X is not a hereditary mQN-set. Therefore X is not a σ-set
([3, Theorem 3.12]). M. Kada and S. Kamo [6] have proved the consistency of
ω1 = b < k. In the model let X1 be a set of reals of size b which is not an
mQN-set. Since t = b = ω1 there is an mQN-set X2 of size b which is not a σ-set.
Since b < k, X1, X2 areMΣ

′Σ∗-sets.

(b) By Theorem 3.4(1) non(ΣΣ∗) = min{non(QN), non(mΣ′Σ∗)}. By consis-
tency of add(N ) < b and equalities non(ΣΣ∗) = add(N ), non(QN) = b, also
non(mΣ′Σ∗) < non(QN) is consistent. �

Let us denote
B = {f ∈ ωω : limn→∞ f(n) =∞},

Xf = {x ∈ ωω : (∀n ∈ ω) x(n) ≤ x(n+ 1) &
∑∞

n=0 f(n)2−x(n) < ∞}, f ∈ B,

K = {g ∈ ωω :
∑∞

n=0 2
−g(n) < ∞},

κ = min{|X | : (∃f ∈ B) X ⊆ Xf & (∀g ∈ K)(∃x ∈ X)(∃∞n) x(n) < g(n)}.

Theorem 4.3. non(M↓Σ′Σ∗) = non(mΣ′Σ∗) = κ.

Proof: Let f ∈ B and X ⊆ Xf be such that X is a witness for κ = |X |. The

functions fn : X → R defined by fn(x) = 2
−x(n) are continuous, fn+1 ≤ fn,

and by the choice of X the sequence {fn}∞n=0 Σ
′-converge to 0 but does not

Σ∗-converge. Therefore non(M↓Σ′Σ∗) ≤ non(mΣ′Σ∗) ≤ κ. Conversely, let X

be a space of minimal size which is not an M↓Σ′Σ∗-space and let a monotone
sequence of Borel functions {fn}∞n=0 and a sequence of integers {kn}∞n=0 witness

this fact. For x ∈ X let x ∈ ωω be such that 2−x(n) ≤ fn(x) < 2−x(n)+1,
X = {x : x ∈ X}, and let f ∈ B be defined by f(n) = kn. Then X ⊆ Xf ,

|X | ≤ |X |, and X witnesses the inequality κ ≤ |X|. �
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For non(mΣ′Σ∗) we have yet another upper bound. By induction let us define

a sequence of integers d0 = 1, dn+1 ≥ dn2
dn and let us denote

Y = {x ∈ ωω : (∀n) x(n) < 2dn},

L = {g ∈ ω([ω]<ω) : (∀k)(∀∞n) |g(n)| ≥ 2dn(1−1/k) & (∀n) g(n) ⊆ 2dn},

ν = min{|X | : X ⊆ Y & (∀g ∈ L)(∃x ∈ X)(∃∞n) x(n) ∈ g(n)}.

Theorem 4.4. non(mΣ′Σ∗) ≤ ν.

Proof: Let a0 = 0, an+1 = an + 2
dn , In = [an, an+1). For k < 2dn we define

sn,k ∈ InR by

sn,k(m) =















1

dn(k + 1)
, for an ≤ m ≤ an + k,

1

dn+1
, for an + k < m < an+1.

Since dn(k+1) ≤ dn+1 for k < 2dn we have sn,k(m) ≥ sn,k(m
′) for m ≤ m′ in In.

Therefore the sequence of functions fm : Y → R defined by

fm(x) = sn,x(n)(m), for m ∈ In,

is a monotone sequence of continuous functions. Since
∑

i∈In

sn,k(i) ≤ (k + 1)
1

dn(k + 1)
+ (2dn − k − 1)

1

dn+1
≤
2

dn
,

we have
∑

m∈In
fm(x) ≤ 2/dn, and the series

∑∞
n=0 2/dn < ∞ witnesses the

Σ′-convergence of fm.
Let X ⊆ Y , |X | < non(mΣ′Σ∗). Since X is an mΣ′Σ∗-space, there ex-

ists a convergent series of positive reals
∑∞

m=0 εm such that (∀x ∈ X)(∀∞m)
fm(x) ≤ εm. We can assume that εm+1 ≤ εm for all m ∈ ω. Let us set

g(n) = {k < 2dn : sn,k(dn + k) > εdn+k}.

Since sn,x(n)(dn+x(n)) = fdn+x(n)(x) ≤ εdn+x(n), x(n) /∈ g(n) for all but finitely

many n ∈ ω. We prove that g ∈ L. Assume that for some n and for some k > 0,

|g(n)| < 2dn(1−1/k) and let li, i = 1, 2, . . . , 2dn − 2dn(1−1/k) be an increasing
sequence of integers such that sn,li(dn + li) ≤ εdn+li . We set l0 = −1 and notice
that (i+ 1)/j ≥ 1/(j − i) for j > i.

∑

m∈In

εm ≥
∑

i

li − li−1

dn(li + 1)
+
2dn − lmax − 1

dn+1
≥
1

dn

∑

i

1

li−1 + 2

≥
1

dn

2dn
∑

i=2dn(1−1/k)+1

1

i
≥
1

dn

dn−1
∑

j=dn(1−1/k)

1

2
=
1

2k
.

This is possible only for finitely many n since
∑∞

m=0 εm < ∞. Therefore |g(n)| ≥

2dn(1−1/k) for all but finitely many n ∈ ω. �
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Corollary 4.5. k ≤ κ ≤ min{µ, ν}. �
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