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Normally flat semiparallel submanifolds in space forms

as immersed semisymmetric Riemannian manifolds

Ülo Lumiste

Dedicated to Professor Oldřich Kowalski on the occasion of his 65th birthday

Abstract. By means of the bundle of orthonormal frames adapted to the submanifold
as in the title an explicit exposition is given for these submanifolds. Two theorems give
a full description of the semisymmetric Riemannian manifolds which can be immersed
as such submanifolds. A conjecture is verified for this case that among manifolds of
conullity two only the planar type (in the sense of Kowalski) is possible.

Keywords: semiparallel submanifolds, flat normal connection, semisymmetric Riemann-
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Classification: 53C21, 53C25, 53C42

Introduction

The geometry of a Riemannian manifold (M, g) depends essentially on its Levi-
Civita connection∇ and the curvature tensor R. If R is parallel with respect to∇,
i.e. if ∇R = 0, then M is said to be locally symmetric. É. Cartan has developed
the famous theory of such manifolds, both local and global, showing, in particular,
that (M, g) is locally symmetric if and only if its geodesic reflection with respect
to arbitrary point is local isometry.
LetNn(c) be a space form, i.e. a connected complete Riemannian manifold with

constant curvature c, and let (M, g) be immersed isometrically into Nn(c) as an
m-dimensional submanifoldMm. The geometry of such anMm in Nn(c) depends
essentially on its van der Waerden-Bortolotti connection ∇̄ (which is actually a
pair of ∇ and of the normal connection ∇⊥) and the second fundamental (mixed)
tensor h. The famous Gauss, Peterson-Mainardi-Codazzi, and Ricci equations
establish the well-known relationships between h, R, ∇̄, and R⊥ (here the latter

is the curvature (mixed) tensor of ∇⊥).
A submanifold Mm in Nn(c) is said to be parallel , if ∇̄h = 0. A consequence

from Gauss equation is that the parallel immersion exists only for locally sym-
metric (M, g). Ferus [F3] and Strübing [Str] showed that a submanifold Mm in
Nn(c) is parallel if and only if the normal reflection in Nn(c) with respect to
Mm at its arbitrary point induces local isometry of Mm. Therefore they used
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the term symmetric submanifolds instead of parallel submanifolds which was in-
troduced later by Takeuchi [T]. Ferus [F1], [F2] established that an irreducible
symmetric (≡ parallel) submanifold in a Euclidean space En (the case c = 0)
can be characterized as a symmetric R-space immersed standardly into En as a
minimal submanifold of some hypersphere of En.

The differential systems ∇R = 0 and ∇̄h = 0 have their integrability con-
ditions, respectively, Ω ◦ R = 0 and Ω̄ ◦ h = 0, where the first ingredients are
the curvature 2-form operators; the same integrability conditions can be written
also as R(X, Y ) ◦ R = 0 and R̄(X, Y ) ◦ h = 0. The manifold and submanifold
satisfying these conditions, correspondingly, are called semisymmetric manifold
(first in [S1], [S2]) and semiparallel submanifold (first in [D]), respectively (see
e.g. [BKV]).

From the Gauss and Ricci equations it follows that every semiparallel subman-
ifold is intrinsically a semisymmetric manifold. Lumiste [L2] has shown that a
submanifold Mm in Nn(c) is semiparallel if and only if it is a second order enve-
lope of symmetric submanifolds (symmetric in the sense of Ferus). Therefore in
[L1]–[L5] the semiparallel submanifolds were called, provisionally, semi-symmetric
submanifolds (meant extrinsically).

The local classification of the semisymmetric Riemannian manifolds is given by
Szabó [Sz]. The most interesting class is that of so called foliated semisymmetric
manifolds, which can be characterized as foliated by locally Euclidean leaves of
codimension two. Kowalski [K] has given for the dimension m = 3 a more de-
tailed partition in this class, afterwards extended by Boeckx [B] for the arbitrary
dimension m. So the planar, hyperbolic, parabolic and elliptic manifolds have
been distinguished in this class (see [BKV, Chapter 7], where the manifolds of
this class are characterized as of conullity two).

The results about semiparallel submanifolds are summarized recently in [L6].
The problem which will be considered in the present paper is: can every semisym-
metric Riemannian manifold (M, g) be immersed isometrically into a space form
Nn(c) as a semiparallel submanifold, and if not, which of them admit such an
immersion?

The first steps towards solving this problem have shown that the answer to the
first question is negative. For instance, in [L7] there is established that among
the three-dimensional Riemannian manifolds of conullity two only those of the
planar type admit an isometric immersion into a En, the other types (hyperbolic,
parabolic and elliptic) do not admit. In [L8] there is shown that the same phe-
nomenon occurs when considering the semiparallel submanifoldsMm in En which
are foliated into (m − 2)-dimensional plane generators; they can be intrinsically
of conullity two, but only of the planar type.

The full classification and description of semiparallel submanifolds Mm in a
space form Nn(c) is missing yet. It is done only for some special cases, for in-

stance for normally flat semiparallel submanifolds (i.e. with flat ∇⊥), investigated
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and classified for Euclidean space in [L3], [L4], [L5], and for general space forms
in [DN].
The second part of the problem above for this case is solved in the present

paper. It will be done by investigating the inner geometry of these normally flat
semiparallel submanifolds Mm in Nn(c). The results are formulated in Theo-
rems 3.2 and 3.3. They give a new confirmation to a conjecture, that only the
manifolds of conullity two of planar type (in the sense of Kowalski) can be im-
mersed isometrically as semiparallel submanifolds.

1. Classification of semisymmetric Riemannian manifolds

The general classification of the semisymmetric Riemannian (M, g) is made by
Szabó, locally in [Sz]. First he proved by means of infinitesimal and local holonomy
groups that for every semisymmetric Riemannian manifoldM there exists a dense
open subset U such that around the points of U the manifoldM is locally isometric
to a direct product of semisymmetric manifoldsM0×M1×· · ·×Mr, whereM0 is
an open part of a Euclidean space and the manifoldsMi, i > 0, are infinitesimally
irreducible simple semisymmetric leaves. Here a semisymmetric M is called a
simple leaf if at every its point x the primitive holonomy group determines a

simple decomposition TxM = V
(0)
x + V

(1)
x , where this group acts trivially on

V
(0)
x and there is only one other subspace V

(1)
x which is invariant for this group.

A simple leaf is said to be infinitesimally irreducible if at least at one point the

infinitesimal holonomy group acts irreducibly on V
(1)
x .

The dimension ν(x) = dimV
(0)
x is called the index of nullity at x and u(x) =

dimM − ν(x) the index of conullity at x.

The classification theorem by Szabó [Sz] asserts the following (according to the
formulation given in [B], [BKV]).

Theorem 1.1. Let M be an infinitesimally irreducible simple semisymmetric

leaf and x a point of M . Then one of the following cases occurs:

(a) ν(x) = 0 and u(x) > 2 : M is locally symmetric and hence locally

isometric to a symmetric space;

(b) ν(x) = 1 and u(x) > 2 : M is locally isometric to an elliptic, a hyperbolic

or a Euclidean cone;

(c) ν(x) = 2 and u(x) > 2 : M is locally isometric to a Kählerian cone;

(d) ν(x) = dimM−2 and u(x) = 2 : M is locally isometric to a space foliated

by Euclidean leaves of codimension two (or to a two-dimensional manifold,
this for the case when dimM = 2).

Note that in case (d) the termmanifold of conullity two is used forM in [BKV].
Kowalski considering the three-dimensionalM introduced for this case (d) the geo-
metric concept of asymptotic foliation (first in a preprint of 1991, then published
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in [K] and meanwhile generalized by Boeckx [B] to arbitrary dimension of M ; see
also [BKV]).

Namely, a codimension one submanifold of a Riemannian manifoldM of conul-
lity two is called the asymptotic leaf if it is generated by the codimension two
Euclidean leaves of M and if its tangent spaces are parallel along each of these
leaves (with respect to the Levi-Civita connection ∇ of M).
A codimension one foliation on such an M is called the asymptotic foliation if

its integral manifolds are asymptotic leaves.

Let O(M) be the bundle of orthonormal frames (e1, . . . , em) on M . For the
bundle O∗(M) of the dual coframes (ω1, . . . , ωm) the following structure equations
hold:

(1.1) dωi = ωj ∧ ωi
j , dωi

j = ωk
j ∧ ωi

k +Ω
i
j ,

where ωi
j and Ω

i
j are the connection 1-forms and the curvature 2-forms, corre-

spondingly, of ∇. Here orthonormality yields ωi
j + ωj

i = 0, Ω
i
j +Ω

j
i = 0.

Let M be of case (d). Then O(M) and O∗(M) can be adapted to this M so
that e3, . . . , em are tangent to codimension two Euclidean leaves and thus these
leaves are determined by ω1 = ω2 = 0. Since this last differential system is totally
integrable, dω1 and dω2 must vanish as the algebraic consequences of ω1 = ω2 = 0
(due to Frobenius theorem, second version; see [St]). This together with the fact
that Euclidean leaves are totally geodesic, because M is a simple leaf, yields

(1.2) ω1u = auω1 + buω2, ω2u = cuω1 + euω2;

here (and also further) u ∈ {3, . . . , m}.
In [BKV] there is shown that ω1 : ω2 determines an asymptotic foliation if and

only if

(1.3) cu(ω
1)2 + (eu − au)ω

1ω2 − bu(ω
2)2 = 0.

According to [K], [BKV] a foliatedM is said to be planar if it admits infinitely
many asymptotic foliations. If it admits just two (or one, or none, respectively)
asymptotic foliations, it is said to be hyperbolic (or parabolic, or elliptic, respec-
tively).

From (1.3) it is seen that a planar foliated M is characterized by au − eu =
bu = cu = 0, i.e. by the fact that (1.2) reduces to

(1.4) ω1u = auω1, ω2u = auω2.
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2. Normally flat semiparallel submanifolds

The space forms Nn(c) will be considered further by their standard models,
which are (see [W]):
for c = 0 the Euclidean space En,
for c > 0 the sphere Sn(c) = {x ∈ En+1|〈 ~ox, ~ox〉 = r2} with a real radius

r = 1/
√

c and with the centre at the origin o,

for c < 0 one sheet Hn(c) of {x ∈ En+1
1 |〈 ~ox, ~ox〉 = −r2} with imaginary r =

i/
√

|c| and with the centre at the origin o; here En+1
1 is the Lorentz space, in which

for a fixed frame {o; e1, . . . , en, en+1} there hold 〈eI , eJ〉 = δIJ , 〈ei, en+1〉 = 0,
where I, J run over {1, . . . n}, and 〈en+1, en+1〉 = −1; this sheet Hn(c) is usually
separated by xn+1 > 0 and it is a model of the hyperbolic (or Lobachevski-Bolyai)
space (see [N]).
Here and further x denotes both the point x ∈ Mm and its radius vector

~ox; note that dx for this vector does not depend on the origin o, which in the
Euclidean case En can be fixed arbitrarily.

Let O(Nn(c)) be the bundle of orthonormal frames (x; e1, . . . , en) for Nn(c),

i.e. of orthonormal bases (e1, . . . , en, en+1) in the vector spaces of E
n+1 (or En+1

1 )

with en+1 = −
√

|c|x, if c 6= 0. There hold the following derivation formulae (see
e.g. [L6])

dx = eIω
I , deI = eJωJ

I − xcωI , ωJ
I + ωI

J = 0,

where Einstein summation convention is used. From here exterior differentiation
leads to the following structure equations

dωI = ωJ ∧ ωI
J , dωJ

I = ωK
I ∧ ωJ

K + cωJ ∧ ωI .

If an m-dimensional Riemannian manifold M is immersed isometrically
into a space form Nn(c) as a submanifold Mm of Nn(c), then the subbundle
O(Mm, Nn(c)) of frames adapted to Mm can be introduced if we require that
e1, . . . , em are tangent and em+1, . . . , en normal to Mm at an arbitrary point
x ∈ Mm (see e.g. [KN]). For this O(Mm, Nn(c)), the derivation formulae and
structure equations above imply

(2.1) ωα = 0, ωα
i = hα

ijω
j , hα

ij = hα
ji,

where i, j run over {1, . . . , m} and α, β run over {m+ 1, . . . , n}.
In (2.1) the coefficients hα

ij are the components of the second fundamental

(mixed) tensor h, symmetric with respect to i, j. Here hij = eαhα
ij can be intro-

duced as the components of the vector valued second fundamental tensor with
values in the normal vector subspace T⊥

x Mm of Mm in Nn(c) at arbitrary point
x ∈ Mm. The structure equations give now

dω
j
i = ωk

i ∧ ω
j
k
+Ω

j
i , dωβ

α = ωγ
α ∧ ωβ

γ +Ω
β
α,
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where

(2.2) Ω
j
i = Ωij = −〈h∗i[k, h∗l]j〉ω

k ∧ ωl,

are the curvature 2-forms of the Levi-Civita connection ∇ (for the cases when
c 6= 0 here h∗ij = hij − xcδij are the components of the outer (i.e. with respect to

En+1 or En+1
1 ) vector valued second fundamental form), but

(2.3) Ωβ
α = Ω

αβ = −
∑

i

hα
i[kh

β
l]i

ωk ∧ ωl

are the curvature 2-forms of the normal connection ∇⊥. (Note that (2.2) and
(2.3) are the famous Gauss and Ricci equations, respectively; see [KN], [St].)

If we use exterior differentiation and then Cartan’s lemma in (2.1), the result
is

(2.4) ∇̄hα
ij = hα

ijkωk, hα
ijk = hα

ikj ,

where

(2.5) ∇̄hα
ij = dhα

ij − hα
kjω

k
i − hα

ikωk
j + h

β
ijω

α
β

are the components of the covariant differential ∇̄h of h with respect to the van
der Waerden-Bortolotti connection ∇̄ = ∇⊕∇⊥. This together with (2.1) shows
that hα

ijk are symmetric with respect to all its lower indices. (If we denote in (2.4)

hα
ijk = ∇̄khα

ij then hα
ijk = hα

ikj are equivalent to the famous Peterson-Mainardi-

Codazzi equations ∇̄khα
ij = ∇̄jh

α
ik, see [KN]; about the role of Peterson see [L9],

[Ph], [MC].)

For hij and h∗ij a straightforward computation shows that

(2.6) ∇hij +

m
∑

k=1

ek〈hij , hkl〉ωl = ∇h∗ij +

m
∑

k=1

ek〈h∗ij , h∗kl〉ωl = hijkωk,

where hijk = eαhα
ijk, ∇hij = dhij − hkjω

k
i − hikωk

j , and the same for h∗ij .

A submanifold Mm in Nn(c) is semiparallel (see Introduction) if Ω̄ ◦ h =
0, where Ω̄ is the curvature 2-form operator of the van der Waerden-Bortolotti
connection ∇̄. This condition in a more explicit form is

(2.7)
∑

p

(Ωiph
α
pj +Ωjph

α
ip)−

∑

β

Ωαβhβ
ij = 0.
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Let the normal connection ∇⊥ of Mm in Nn(c) be flat, i.e. let all Ωαβ = 0.
Then from (2.3) it follows that hij is diagonalizable by a suitable orthogonal
transformation of e1, . . . , em in the tangent vector space TxMm at each point
x ∈ Mm. After that hij = kiδij , where k1, . . . , km are the principal curvature
vectors of such a normally flat Mm in Nn(c). They can be considered as some
generalizations of the classical principal curvatures of a surface in E3 (or of a
hypersurface in En, see [KN]). Now (2.2) reduces to

(2.8) Ωij = −〈k∗i , k∗j 〉ωi ∧ ωj ,

where k∗i = ki−xc are the outer principal curvature vectors (so that h∗ij = k∗i δij).

From the derivation formulae, due to (2.1),

(2.9) dx = eiω
i, dei = ejω

j
i + k∗i ωi.

For the semiparallel normally flat submanifold Mm in Nn(c) the condition
(2.7) reduces to

(2.10) (k∗i − k∗j )〈k∗i , k∗j 〉 = 0⇐⇒ (ki − kj)(〈ki, kj〉+ c) = 0.

This gives the following statement.

Lemma 2.1 (see [L6, Section 12]). A normally flat submanifold Mm in Nn(c)
is semiparallel if and only if its every two outer principal curvature vectors are

either equal or orthogonal. Here in the case of equality also the corresponding

principal curvature vectors are equal, and vice versa.

After using in (2.6) the outer principal curvature vectors the result is

(2.11) dk∗i = −
m

∑

j=1

ej〈k∗i , k∗j 〉ωj +Kiω
i +

∑

j 6=i

Lijω
j ,

(2.12) (k∗i − k∗j )ω
j
i = Lijω

i + Ljiω
j +

l 6=j
∑

l 6=i

Eijlω
l, i 6= j,

where Ki = hiii, Lij = hiij (i 6= j), Eijl = hijk (i, j, l have three distinct values
and there is symmetry with respect to them) are some vectors normal toMm and

tangent to Nn(c) in En+1 (if c > 0) or in En+1
1 (if c < 0) and the summation is

denoted only by the sign
∑

with necessary hints.
Note that due to (2.6) in (2.11) and (2.12), k∗i and k∗j can be replaced by ki

and kj , respectively.

Let there be exactly r+1 distinct vectors k(0), k(1), . . . , k(r) among the principal

curvature vectors and let k(ρ) correspond to the directions of the tangent basic
vectors eiρ , where ρ = 0, 1, . . . , r.

From (2.11) it follows immediately that Kiρ = K(ρ), Liρj = L(ρ)j .
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Lemma 2.2. In (2.12) Eijl = 0, L(ρ)jρ
= 0, and (2.12) reduces to

(2.13) L(ρ)jτ
= λ(ρ)jτ

(k(ρ) − k(τ)), ω
jτ

iρ
= λ(ρ)jτ

ωiρ − λ(τ)iρωjτ ,

where ρ 6= τ .

Proof: Take in (2.12) i = iρ, j = jρ, iρ 6= jρ. Then

0 = L(ρ)jρ
ωiρ + L(ρ)iρωjρ +

l 6=jρ
∑

l 6=iρ

Eiρjρlω
l,

hence L(ρ)jρ
= 0 and Eiρjρl = 0. Due to symmetry, Eijl is zero if two of i, j, l

lead to the same k(ρ). It follows that if r = 0 or r = 1, then all Eijl are zero.

For r > 1 consider Eiρjτ lϕ with three distinct ρ, τ , ϕ. From (2.12) it follows, due

to k(ρ) − k(τ) = k∗(ρ) − k∗(τ) 6= 0, that ωjτ

iρ
is a linear combination of ωiρ , ωjτ and

all ωlϕ . Substituting this back into (2.12) one obtains that Eiρjτ lϕ is collinear to

k∗(ρ) − k∗(τ) and, due to symmetry, also collinear to k∗(ρ)− k∗(ϕ) and k∗(τ) − k∗ϕ, thus

there exist some functions λ, µ, and ν so that Eiρjτ lϕ is equal to

λ(k∗(ρ) − k∗τ)) = µ(k∗(ρ) − k∗(ϕ)) = ν(k∗(τ) − k∗ϕ).

Since k∗(ρ), k∗(τ), and k∗(ϕ) are mutually orthogonal (see Lemma 2.1), from here,

after scalar multiplication,

λ(k∗(τ))
2 = µ(k∗(ϕ))

2 = ν(k∗(ρ))
2 = 0,

where (k∗(ρ))
2 is a short notation for the scalar square 〈k∗(ρ), k

∗
(ρ)〉 etc. Here among

k∗(ρ), k∗(τ), and k∗(ϕ) only one can be zero and, if c < 0, only one non-zero with

zero scalar square. (Indeed, if (k∗i )
2 = (ki)

2 + c = 0 and (k∗j )
2 = (kj)

2 + c = 0,

then, due to (2.16), (ki − kj)
2 = −c − 2(−c) − c = 0 and so ki = kj .) Therefore

at least one of the scalar squares above is non-zero and thus Eiρjτ lϕ = 0. As a
result, all Eijk = 0.
The same substitution gives also all equalities in (2.13). This finishes the proof.

�

Note that for the case c = 0 this deduction is made previously in [L3].

Now (2.11) reduces to

(2.14) dk∗(ρ) = −(k∗(ρ))
2
∑

jρ

ejρ
ωjρ +K(ρ)ω

iρ +
∑

τ 6=ρ,jτ

(k∗(ρ) − k∗(τ))λ(ρ)jτ
ωjτ .
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Since

dk∗(ρ) + (k
∗
(ρ))
2
∑

jρ

ejρ
ωjρ = dk(ρ) + (k(ρ))

2
∑

jρ

ejρ
ωjρ − c

∑

τ 6=ρ,jτ

ejτ
ωjτ ,

the relation (2.14) is equivalent to

(2.15) dk(ρ) =

= −(k(ρ))2
∑

jρ

ejρ
ωjρ +K(ρ)ω

iρ +
∑

τ 6=ρ,jτ

[(k(ρ) − k(τ))λ(ρ)jτ
+ cejτ

]ωjτ .

Due to (2.10) and Lemma 2.1 for ρ 6= τ

(2.16) 〈k∗(ρ), k
∗
(τ)〉 = 0⇐⇒ 〈k(ρ), k(τ)〉 = −c.

If we differentiate here using (2.14) the result is

〈K(ρ), k(τ)〉ωiρ −
∑

jρ

(k∗(ρ))
2λ(τ)jρ

ωjρ = 0 (ρ 6= τ).

If k(ρ) is simple, then

(2.17) 〈K(ρ), k(τ)〉 = λ(τ)iρ(k
∗
(ρ))
2 (ρ 6= τ).

If k(ρ) is nonsimple (i.e. of multiplicity mρ > 1), then (2.14) applied for two

different values of iρ gives that K(ρ) = 0, and thus

(2.18) (k∗(ρ))
2λ(τ)iρ = 0 (ρ 6= τ).

Lemma 2.3. If c < 0, i.e. Mm is a normally flat semiparallel submanifold in

Hn(c) ⊂ En+1
1 , then there can be exactly one value ρ = ρ0, for which (k

∗
(ρ0)
)2 = 0.

For every ρ 6= ρ0 there is (k
∗
(ρ))
2 > 0. Consequently, λ(τ)jρ

= 0 if mρ > 1 and

τ 6= ρ 6= ρ0, but λ(τ)jρ0
(τ 6= ρ0) can be non-zero.

Proof: The first assertion is established already in the proof of Lemma 2.2.
If ρ 6= ρ0 then (k

∗
(ρ))
2 > 0. Indeed, 0 < (k(ρ0)−k(ρ))

2 = −c−2(−c)+(k(ρ))
2 =

(k∗(ρ))
2.

The last assertion follows now immediately from (2.18). �
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2.1 Normally flat semiparallel Mm of type (p, q, s). A normally flat semi-
parallel submanifold Mm in Nn(c) is said to be of type (p, q, s) if

(1) there are p different non-zero nonsimple principal curvature vectors
k(1), . . . , k(p) with multiplicities m1, . . . , mp, correspondingly,

(2) the following k(p+1), . . . , k(p+q) are q different non-zero simple principal
curvature vectors and

(3) there exists a zero principal curvature vector k(0) = 0 of multiplicity s;

here, of course, s = m − m∗ − q, where m∗ = m1 + · · ·+mp.

Let us further specify the scopes of the indices as follows. Let ρ, τ , . . . be
used only as running over {1, . . . , p}, so that all k(ρ) are from now on non-zero
nonsimple. Therefore K(ρ) = 0 for all values of ρ. Moreover, let a, b, . . . run over

{m∗ + 1, . . . , m∗ + q}, so that all k(a) are non-zero simple and therefore can be
denoted further simply by ka. Finally, let i0, j0, . . . run through the remaining
set {m∗ + q + 1, . . . , m} of s values. Here, of course, k∗(ρ) = k(ρ) + cx are also

non-zero nonsimple, k∗a = ka + cx are non-zero simple.

If c ≥ 0 then
(k∗(ρ))

2 = (k(ρ))
2 + c > 0, (k∗a)

2 = (ka)
2 + c > 0;

thus (2.18) implies λaiρ = λ(τ)iρ = 0 (τ 6= ρ). Moreover, due to (2.16) k(0) = 0

is possible only if c = 0 and then due to (2.11) K(0) = 0 and L(0)j = 0, therefore

(2.13) gives λ(0)jτ
= λ(0)a = 0.

Here different kind of space forms Nn(c) must be considered separately.

2.2 Let Nn(c) be a Euclidean space En. Then (2.15) gives

dk(ρ) = −(k(ρ))2
∑

jρ

ejρ
ωjρ +

∑

a

(k(ρ) − ka)λ(ρ)aωa + k(ρ)
∑

i0

λ(ρ)i0ω
i0 ,

(2.19)

dka = (−(ka)
2ea +Ka)ω

a +
∑

b6=a

(ka − kb)λabω
b + ka

∑

i0

λai0ω
i0 ,(2.20)

but the last relations (2.13) reduce to

ω
jτ

iρ
= 0 (ρ 6= τ), ωa

iρ
= λ(ρ)aωiρ , ωi0

iρ
= λ(ρ)i0ω

iρ ,(2.21)

ωb
a = λabω

a − λbaωb (a 6= b) ωi0
a = λai0ω

a.(2.22)

Remark that these results have been deduced in [L4] and [L5] and are used there
to obtain a full geometric description of normally flat semiparallel submanifolds
Mm in En as special warped products whose fibres are the products of spheres.
Here these results are useful for further characterization of inner geometry of

such Mm in En.
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2.3 Let Nn(c) be a non-Euclidean space. Then c 6= 0, and due to (2.16)
k(0) = 0 is impossible, so that s = 0 and thus there are no indices i0, j0, . . . .

More precisely, if Nn(c) is a sphere Sn(c), then (2.15) gives

dk(ρ) = −(k(ρ))2
∑

jρ

ejρ
ωjρ +

∑

a

(k(ρ) − ka)λ(ρ)aωa + c(dx −
∑

iρ

eiρω
iρ),

(2.23)

dka = (−(ka)
2ea +Ka)ω

a +
∑

b6=a

(ka − kb)λabω
b + c(dx − eaωa),(2.24)

but the last relations (2.13) reduce to

(2.25) ωjτ

iρ
= 0 (ρ 6= τ), ωa

iρ
= λ(ρ)aωiρ , ωb

a = λabω
a − λbaωb (a 6= b).

Let Nn(c) be a hyperbolic space Hn(c), i.e. c < 0 and thus Lemma 2.3 holds:
it is possible that (k∗(ρ0)

)2 = 0 for one value ρ0 from {1, . . . , r}, and therefore
(2.18) makes it possible for λ(τ)iρ0

(ρ0 6= τ) to be non-zero; note that here τ is

used in its former meaning, like in (2.18), i.e. running over {1, . . . , r}.
Then the last relations (2.13) reduce to

ω
jτ

iρ
= 0 (ρ, τ, ρ0 − three different), ωa

iρ = λ(ρ)aωiρ ,(2.26)

ω
jτ

iρ0
= −λ(τ)iρ0

ωjτ (ρ0 6= τ), ωa
iρ0
= λ(ρ0)aωiρ0 − λaiρ0

ωa,(2.27)

and also the last relation (2.25) holds:

(2.28) ωb
a = λabω

a − λbaωb (a 6= b).

If 1 ≤ ρ0 ≤ p, then for ρ 6= ρ0 from (2.14) it follows, due to K(ρ) = K(ρ0) = 0

and (2.18), that

(2.29) dk(ρ) = −(k(ρ))2
∑

jρ

ejρ
ωjρ +

∑

jρ0

(k(ρ) − k(ρ0))λ(ρ)jρ0
ωjρ0

+
∑

a

(k(ρ) − ka)λ(ρ)aωa + c(dx −
∑

jρ

ejρ
ωjρ),

(2.30) dk(ρ0) =
∑

a

(k(ρ0) − ka)λ(ρ0)aωa + c(dx −
∑

iρ0

eiρ0
ωiρ0 ),
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(2.31) dka = (−(ka)
2ea +Ka)ω

a +
∑

iρ0

(ka − k(ρ0))λaiρ0
ωiρ0

+
∑

b6=a

(ka − kb)λabω
b + c(dx − eaωa).

But if p + 1 ≤ ρ0 ≤ q, then it is suitable to denote ρ0 by a0, and there hold
(2.23) and (2.24), the latter for a 6= a0, and

(2.32) dka0 = Ka0ω
a0 +

∑

b6=a0

(ka0 − kb)λa0bω
b + c(dx − ea0ω

a0).

Remark that the normally flat semiparallel Mm in Nn(c) with s 6= 0 are in-
vestigated in [DN], where most of the statements are made by referring to the
papers published previously, without explicit deductions. The results obtained in
this subsection 2.3 specify the exposition in [DN], but their proper task here is
to be basic for the characterization of inner geometry of the normally flat semi-
parallel submanifoldsMm in Nn(c) as the isometrically immersed semisymmetric
Riemannian manifolds.

3. Characterization of inner geometry

Let Mm be a normally flat semiparallel submanifold in a space form Nn(c).
If c = 0, i.e. Nn(c) is En, it is suitable to join the scopes of indices a, b, . . . and
i0, j0, . . . and introduce indices u, v, . . . which run over {m∗ + 1, . . . , m}. Then
the last two groups of relations in (2.21) can be joined into

(3.1) ωu
iρ
= λ(ρ)uωiρ .

If c 6= 0 then the scope of indices i0, j0, . . . is empty and (3.1) coincide with the
corresponding relations in (2.25) and (2.26).
If we use exterior differentiation, then (3.1) give, due to the first group of

relations in (2.21), that

(3.2)
∑

u

λ(ρ)uλ(τ)u = 0, (ρ 6= τ), dλ(ρ)u =
∑

v

(λ(ρ)vωv
u + λ(ρ)uλ(ρ)vωv).

Fix a value ρ and consider the distribution determined by the differential sys-
tem ωiτ = 0 for all values of τ 6= ρ and iτ . Here

dωiτ = ωjτ ∧ ωiτ
jτ
+ ωu ∧ (−λ(τ)uωiτ ),

therefore this system is totally integrable and thus the considered distribution is
a foliation. Similarly, due to dωu = ωv ∧ ωu

v , the distribution determined by the
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system ωu = 0 for all values of u is a foliation. Hence the intersection of both
these foliations is also a foliation.

Consider its leaves. For each of them, due to (2.9)

(3.3) dx =
∑

iρ

eiρωiρ (ρ− fixed), deiρ =
∑

jρ

ejρ
ω

jρ

iρ
+ωiρ(l(ρ)+k(ρ))−xcωiρ ,

where l(ρ) =
∑

u euλ(ρ)u. It is seen that each leaf is totally umbilical with the

mean curvature vector H(ρ) = l(ρ) + k(ρ).

Now the following assertion can be used.

Proposition 3.1 (see [L6, Proposition 5.4]). A totally umbilic submanifold with
the mean curvature vector H in Nn(c), if complete, coincides with an Nm(c∗),
embedded into Nn(c), where c∗ = H2 + c and dH = −H2dx, thus dH2 = 0.

If c ≥ 0 then for the leaf considered above there holds c∗(ρ) = H2(ρ) + c ≥ 0 and
= 0 is impossible here because this would lead to c = 0 and H(ρ) = 0, thus to

a totally geodesic submanifold in some Euclidean space, so to k(ρ) = 0, which is

excluded, because all k(ρ) are here nonsimple non-zero.

Therefore c∗(ρ) > 0 and thus this leaf is a sphere Smρ(c∗(ρ)) in Nn(c) (i.e. in En

if c = 0, or Sn(c) ⊂ En+1 if c > 0) with the radius rρ = (c
∗
(ρ))

−2 and normal

vector H∗
(ρ) = l(ρ) + k∗(ρ). The (mρ+1)-plane of this sphere is spanned by its

arbitrary point x, its tangent vectors eiρ and normal vector H∗
(ρ) at this point.

It is easy to see that these vectors are mutually orthogonal to the same vectors
for a subindex τ , different from ρ. Indeed, all ei are orthogonal to eu and k∗(τ),

thus to l(τ) and H∗
(τ). Moreover, 〈eiρ , ejτ

〉 = 0 and 〈H∗
(ρ), H

∗
(τ)〉 = 0 for ρ 6= τ ,

the latter due to (2.16) and (3.2), which implies 〈l(ρ), l(τ)〉 = 0.
Hence the (mρ+1)- and (mτ+1)-planes of S

mρ(c∗(ρ)) and Smτ (c∗(τ)) are orthog-

onal for ρ 6= τ . This gives that the leaves of the foliation determined by ωu = 0
are product submanifolds Sm1(c∗(1))× · · · × Smp(c∗(p)).

For the radius rρ = (l
2
(ρ) + k2(ρ) + c)−2 of one of these spheres from (3.2) and

(2.19) or (2.23) it follows that drρ = rρuωu, where rρu = −rρλ(ρ)u. The same

(3.2) gives now

(3.4) drρu = rρvωv
u.

The orthogonal complement distribution of the foliation above with leaves
Sm1(c∗(1)) × · · · × Smp(c∗(p)) is determined by ωiρ = 0 with arbitrary ρ and iρ.
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Due to (2.21) or (2.25) this distribution is a foliation and for each of its leaves
there hold

Ωv
u =

∑

ρ,iρ

ω
iρ
u ∧ ωv

iρ = −
∑

ρ,iρ

λ(ρ)uωiρ ∧ λ(ρ)vωiρ = 0,

therefore all these leaves are locally Euclidean and on each of them there ex-
ists a local orthonormal frame field so that the integral lines of the basic vector
fields are geodesic coordinate lines of some affine (actually Descartes’) coordinates

xm∗+1, . . . , xm. This frame field is parallel with respect to ∇ and accordingly for
it ωv

u = 0, if we use the same notation as before. Moreover, ω
u = dxu.

Now from (3.4) it follows that drρu = 0, thus rρu = cρu = const, and hence
rρ =

∑

u cρuxu + cρ.

For every two different values of ρ and τ there is 〈l(ρ), l(τ)〉 = 0 (see above).
Among p mutually orthogonal vectors l(1), . . . , l(p) in an (m − m∗)-dimensional

vector subspace there can be some p̄ non-zero vectors, where p̄ ≤ min{m−m∗, p}.
By renumbering, if necessary, they can be made the first p̄ vectors l(1), . . . , l(p̄),

so that l(ρ̄) 6= 0 for ρ̄ running over {1, . . . , p̄}; the other l(ρ′) are then zero vectors,

where ρ′ runs over the remaining values p̄+1, . . . , p. For the latter cρ′u = 0 so
that rρ′ = cρ′ are some constants.

For the first ones the level hypersurfaces of the function rρ̄ in a considered
locally Euclidean leaf are some hyperplanes rρ̄ = const, whose normal direc-

tions are determined by −rρ̄l(ρ̄) =
∑

u cρ̄u
∂

∂xu . Now the Descartes’ coordinates

x̄m∗+1, . . . , x̄m can be introduced on each leaf so that the first p̄ of the x̄ρ̄-axis
have these normal directions of l(ρ̄) 6= 0. Then every rρ̄ is a linear function of

x̄ρ̄. This, together with the fact that (mρ̄+1)-planes of spheres Smρ̄(c∗ρ̄) are par-

allel, shows that these spheres along the x̄ρ̄-axis generate in the inner geometry
of Mm a Riemannian cone Cmρ̄+1, which is a warped product R×rρ̄

Smρ̄(1) (see
[BO], [DN]).
The different cones Cmρ̄+1 and Cmτ̄+1 lie in totally orthogonal (mρ̄+2)-

and (mτ̄+2)-dimensional submanifolds of Mm, which are totally orthogonal to
(mρ′+1)-dimensional parallel mutually orthogonal submanifolds of the spheres

Sm
ρ′ (c∗ρ′). All this shows that Mm is intrinsically a Riemannian direct product

of Riemannian cones Cm1+1, . . . , Cmp̄+1, spheres Smp̄+1(c∗p̄+1), . . . , Smp(c∗p),

and perhaps a totally geodesic (m − m∗ − p̄)-dimensional submanifold (i.e. a
(m − m∗ − p̄)-plane in inner geometry). For all mρ̄ > 2 the cones Cmρ̄+1 are
elliptic cones (according to Szabó; see Theorem 1.1), for mρ̄ = 2 they are three-
dimensional Riemannian manifolds of conullity two, which are of planar type as
shows comparison of (3.1) with (1.4), where au is now −λ(ρ̄)u; note that iρ̄ takes
here only two values.

As a result the following theorem can be formulated.
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Theorem 3.2. A normally flat semiparallel submanifold Mm in Nn(c) with
c ≥ 0 (i.e. in En or Sn(c)) is intrinsically a semisymmetric Riemannian manifold
which is, in general, a direct product of symmetric spaces (namely some spheres
or their open parts and a locally Euclidean space), and some Riemannian cones,
which are either elliptic cones (in the sense of Szabó [Sz]; see Theorem 1.1 above),
or three-dimensional Riemannian manifolds of conullity two of the planar type

(in the sense of [BKV]).

Here, of course, in special cases only some types of factors will occur in the
direct product.

If Nn(c) is a hyperbolic space Hn(c), i.e. if c < 0, the situation is the same as
in Theorem 3.2 with the only difference that either instead of exactly one elliptic
cone there is a hyperbolic or Euclidean cone, or instead of exactly one sphere
there is a hyperbolic or Euclidean space.

This can be verified as above, but, because the ambient space is now En+1
1 ,

among mutually orthogonal non-zero vectors H∗
ρ = l(ρ) + k∗(ρ) (ρ ∈ {1, . . . , p})

there is exactly one with negative or zero scalar square; let it be for ρ = 1.

If in (3.3), with k∗(ρ) instead of k(ρ), the vector l(1)+k∗(1) = H(1)−xc = H∗
(1) has

negative scalar square c∗(1) = H2(1) + c < 0, then the leaf determined by ωiρ = 0,

ωa = 0, where iρ and a run over all their values for ρ 6= 1, is a hyperbolic space
Hm1(c∗(1)). Here c∗(1) can be constant on Mm, but if not, then r1 = (c

∗
(1))

−2 is a

linear function of x̄1 (see above) and these leaves along the x̄1-axis generate in the
inner geometry of Mm a Riemannian cone, a warped product R ×r1 Hm1(−1),
which is a hyperbolic cone, in the sense of Szabó.

If in (3.3) for ρ = 1 the vector l(1)+k∗(1) has zero scalar square c∗(1) = H2(1)+c =

(l(1))
2 + (k∗(1))

2 = 0, then the leaf determined by ωiρ = 0, ωa = 0 (ρ 6= 1) is
intrinsically a Euclidean space Em1 .
From (2.14) it follows that on the leaf determined by ωiρ = 0 (ρ 6= 1) there holds

dk∗(1) = −(k∗(1))
2∑

j1
ej1ω

j1, because k(1) is nonsimple and therefore K(1) = 0.

It follows that d(k∗(1))
2 = 0 and thus (k∗(1))

2 =const on this leaf. But this gives

that (l(1))
2 = −(k∗(1))

2 is also a constant on this leaf.

Consider the vector field l(1) on Mm and let t be the canonical parameter on

the integral lines of this field. If we take the m1-dimensional Euclidean leaves
above along these lines then we obtain a Riemannian cone. Let x describe one
of theses leaves. Then x′ = x + tl(1) by t = const describes another leaf. Here

dx′ = d(x + tl(1)) = (1 − t(l(1))
2)

∑

i1
ei1ω

i1 . Thus, for the inner metric of the

other leaf there holds (dx′)2 = (1 − t(l(1))
2)(dx)2. The result shows that, if



258 Ü. Lumiste

m1 > 2, the Riemannian cone is a Euclidean cone, in the sense of Szabó (see
[Sz], also [BKV]), but if m1 = 2 it is a three-dimensional Riemannian manifold of
conullity two, which is of planar type as follows if we compare (2.26) with (1.4).

All this can be summarized as follows.

Theorem 3.3. A normally flat semiparallel submanifold Mm in a hyperbolic

space Hn(c) is intrinsically a semisymmetric Riemannian manifold, which is, in
general, a direct product of symmetric spaces, some Riemannian cones, which are:

the elliptic cones, one hyperbolic or Euclidean cone (in the sense of Szabó; see
Theorem 1.1 above), or three-dimensional Riemannian manifolds of conullity two
of the planar type (in the sense of [BKV]).

In special cases only some types of factors will occur in the direct product.

Note that the statements of Theorems 3.2 and 3.3, in the parts concerning the
elliptic, Euclidean or hyperbolic cones, are anticipated in [DN], Remark 3.3, but
without the assertion about the uniqueness of hyperbolic or Euclidean cone and
without any explicit deduction.

Note also that a Euclidean cone is generated by the horospheres intersect-
ing orthogonally the parallel lines of a given pencil in Hn(c) (parallel in the
Lobachevski-Bolyai geometry; see e.g. [N], [MC]).

Let us conclude with the following remark. The investigations in [L7] and [L8]
led to a

Conjecture. If a semiparallel submanifoldMm in the Euclidean space En is in-

trinsically a Riemannian manifold of conullity two, a particular case of a semisym-

metric Riemannian manifold, then this manifold can be only of planar type (in
the sense of [K], [BKV]).

This conjecture is confirmed up to now for m = 3 and arbitrary n (see [L7]),
and for Mm generated by (m− 2)-dimensional plane leaves in En (see [L8]). The
last parts of Theorems 3.2 and 3.3 show that this conjecture can be extended
to submanifolds in space forms and then confirmed for normally flat semiparallel
submanifolds.
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[W] Wolf J.A., Spaces of Constant Curvature, Univ. of California, Berkeley, 1972; 4th ed.
Publish or Perish, Berkeley, 1977.

University of Tartu, Institute of Pure Mathematics, Vanemuise 46, 51014 Tartu,

Estonia

E-mail : lumiste@math.ut.ee

(Received June 8, 2001)


		webmaster@dml.cz
	2012-04-30T21:02:57+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




