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Abstract. Answering recent question of A.V. Arhangel’skii we construct in ZFC an ex-
tremally disconnected semitopological group with continuous inverse having no open
Abelian subgroups.
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All topological spaces under consideration are supposed to be Hausdorff.
A topological space X is called extremally disconnected if the closure of every
open subset of X is open. A topological space X without isolated points is called
mazimal if X has an isolated point in any stronger topology. Every maximal
space is extremally disconnected. A group G provided with a topology 7 is called
maximal if (G, 7) is maximal as a topological space.

A group G provided with a topology is called left (right) topological if all
mappings ¢ — gz, g € G (r — zg, g € G) are continuous. A group G with a
topology 7 is called semitopological if (G, 7) is left and right topological.

In [1] A.V. Arhangel’skii established some properties of extremally disconnected
semitopological groups and posed three problems.

Problem 1. Is there in ZFC an example of a non-discrete extremally discon-
nected topological group?

This is a reminiscence of old (and still unsolved) problem from [2]. It is worth
of mentioning that for some types of extremally disconnected topological groups
the answer to Problem 1 is negative. For example, if there exists a maximal
topological group, then there exists a P-point in w*, the reminder of the Stone-
Cech compactification of the discrete space w ([4, Theorem 7.3]). For further
results in this direction see [5, Theorem 5.1], [7, Theorem 2.5] and [9].

Problem 2. Is there in ZFC an example of a non-discrete extremally discon-
nected semitopological group with continuous inverse?

Several kinds of such examples follow from [5] and [8]. We describe three of
them.
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By [5, Theorem 1.2], every infinite group G of cardinality o admits a maximal
left invariant topology 7 of dispersion character cv. Remind that the dispersion
character of a topological space (X,7) is the cardinal A(7) = min{|U| : U €
7,U # 0}. If G is Abelian then (G, 7) is semitopological. If G is Boolean (g2 = e
for every g € G, e is the identity of G) then (G,7) is a semitopological group
with continuous inverse. Note that a maximal left topological group need not be
regular. However, every countable group admits a maximal regular left invariant
topology ([5, Corollary 2.7]). It is still unknown ([5, Problem 2.10]) whether there
is in ZFC an example of a regular maximal left topological group of uncountable
dispersion character.

By [5, Theorem 1.3 and 4.5], every infinite group G admits an extremally
disconnected left invariant topology 7 such that (G,7) is zero-dimensional (i.e.
every point of G has base of neighborhoods consisting of clopen subsets) and left
totally bounded (i.e. for every neighborhood U of the identity, there exists a finite
subset F' with G = FU). By the above argument, there is a zero-dimensional
example to Problem 2 of arbitrary dispersion character.

Let 7, 7/ be left invariant topologies on a group G. We say that (G, 7’) is an
open refinement of (G, 7) if 7 C 7/ and every nonempty open subset from (G, 7')
contains a nonempty open subset from (G, 7). By [8], every left topological group
(G, 7) has an extremally disconnected open refinement. If (G, ) is regular, then
there exists a zero-dimensional extremally disconnected open refinement (G, 7').
Now suppose that, for every element g € G, there exists a neighborhood U of
identity in 7 such gr = xg for each z € U. Then every open refinement (G, 7') of
(G,7) is a semitopological group. In addition, if the subset {g : g> = e} is open
in (G, ), then the mapping = — z~! is continuous in (G, 7').

Problem 3. Let G be an extremally disconnected semitopological group with
continuous inverse. Does there exist an open and closed Abelian subgroup of G?

There are two reasons for considering this problem. By Malykhin’s theorem [1,
Theorem 2], every extremally disconnected topological group has a clopen Boolean
subgroup. By [1, Theorem 3], for every non-discrete extremally disconnected
semitopological group with continuous inverse, there exists a neighborhood U
of the identity e such that g2 = e for every g € U. In one special case this
problem has been mentioned in [6]: does every maximal semitopological group
with continuous inverse contain an open Boolean subgroup?

The following two theorems give us a negative answer to Problem 3.

Theorem 1. For every infinite cardinal «, there exists a semitopological group
(G, T) with continuous inverse and following properties: A(7) = «, (G, 7) has no
open Abelian subgroups, (G, ) is extremally disconnected and zero-dimensional.

Theorem 2. For every infinite cardinal o, there exists a maximal semitopological
group (G, ) with continuous inverse such that A(7) = « and (G, 7) has no open
Abelian subgroups.
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To prove these theorems we need some definitions, constructions and results
from [3], [5].

Given a discrete space X, we take the points of X, the Stone-Cech compac-
tification of X, to be the ultrafilters on X, with the points of X identified with
the principal ultrafilters. The topology of X can be defined by stating that the
sets of the form {p € X : A € p}, where A is a subset of X, form a base for the
open sets. We note that the sets of this form are clopen and that, for any p € X
and any A C X, A € p if and only if p € A, where A is a closure of A in 3X. If
A is a subset of X we shall use A* to denote A \ A, in particular X* is a set of
all free ultrafilters on X. For every filter ¢ on X denote p = {p € 8X : ¢ C p},
o =pNG*.

Let G be a discrete group. There are two natural ways for extension of mul-
tiplication from G to SG. We follow [3, Chapter 4]. Given any p,q € SG and
A CG, put

Aepq ifand only if {ge G:g 1A eq} ep.

Take any member P € p and, for every = € P, choose some element Qz € gq.
Then (JycprQz € pg and the family of subsets of this form is a base of the
ultrafilter pq. This multiplication on 8G is associative, so fG is a semigroup and
G* is a subsemigroup of 5G.

Every closed subsemigroup of SG has an idempotent p, p? = p ([3, Theo-
rem 2.5]). Given any idempotent p € G*, the family of subsets {P U {e} : P € p}
is a filter of neighborhoods of e for the uniquely determined maximal left invariant
topology on G ([5, §1]). A group G provided with this topology is denoted by
G(p). We need also another type of topologies determined by idempotents. Fix
p € G* with p? = p and, for every subset A C G, put cl(4,p) = {x € G : A € xp}.
Then the family {cl(4,p) : A € p} is a base of neighborhoods of e for the uniquely
determined zero-dimensional extremally disconnected left invariant topology on
G ([5, §1]). A group G provided with this topology is denoted by GJp].

Let X be an infinite set of cardinality a. For every permutation f of X, put
supp f = {x € X : f(z) # «}. Consider the group S(X) of all permutations of X
with finite supports. For every nonempty subset Y C X, identify S(Y') with the
subgroup of all permutations f € S(X) such that f(z) € Y,z € Y and f(z) = z,
x € X \ Y. The identity permutation is denoted by e.

Let F = {Y C X : X\ Y is finite} be a filter of all cofinite subsets of X.
Denote by g the filter on S(X) with base {S(Y) : Y € F}. Note that ¢ is a
subsemigroup of 3S(X) and

() for every f € S(X), there exists F' € ¢ such that fg = gf for every g € F.

Put So(X) = {g € S(X) : g?> = e} and denote by 3 the filter on S(X) with
the base {F' N S2(X) : F' € ¢o}. By (%), 5 is a subsemigroup of 3S(X).

Call a subset A C S(X) sparse if there exists © € X such that |[{g(z) : g €
A} = a. A filter ¢/ on S(X) is called sparse if every member of ¢ is sparse.
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Clearly, (9 is a sparse filter. By Zorn’s Lemma, for every sparse filter ¢/, there
exists a sparse ultrafilter p with ¢ C p. Hence, the subset SP of all sparse
ultrafilters from @3 is nonempty. Clearly, SP is closed in 8S(X). For every
sparse subset A C S(X) and every f € S(X), the subset fA is sparse. It follows
that SP is a subsemigroup of S(X). We shall use the following claim

(xx)  for every sparse subset A C S(X), there exist h,g € A such that hg # gh.

To prove (*x), choose x € X such that the subset {f(z) : f € A} is infinite.
Fix any h € A with h(z) # = and pick g € A such that g(x) ¢ supp h. Since

hg(z) = g(x) and h(x) # x, then hg(z) # gh(x) so hg # gh.

PROOF OF THEOREM 2: Put G = S(X) and choose any idempotent p € SP.
Consider the maximal left topological group (G, 7) = G(p). Since p is sparse then
A(T) = a. Since @y C p then, by (x), (G, 7) is right topological with continuous
inverse. By (*x*), (G, 7) has no open Abelian subgroups. O

PROOF OF THEOREM 1: Put G = S(X) and choose any idempotent p € SP. Con-
sider the extremally disconnected zero-dimensional left topological group (G, ) =
Glp]. Clearly, A(1) = a. Denote by 7 the filter of neighborhoods of e in 7. For
every ultrafilter ¢ on G, 7. C ¢ if and only if gp = p ([5, §2]). By (*) and the defi-
nition of product of ultrafilters, s C 7. By the above paragraph, (G, ) is right
topological with continuous inverse and (G, 7) has no open Abelian subgroups.
O

We conclude the paper with four remarks.

1. Using arguments from [5, §2], we can add the following statement to Theo-
rem 2: there exists a countable zero-dimensional maximal semitopological group
with continuous inverse and without open Abelian subgroups.

2. A topological space S is called strongly extremally disconnected if, for every
open nonclosed subset U of S, there exists © € c1U \ U such that {z} UU is a
neighborhood of z. Let (G, ) be a left topological group and let an ultrafilter ¢
converge to the identity in 7. By [8, Theorem 4.12], the strongest left invariant
topology 74 on G in which ¢ converges to e is strongly extremally disconnected.
Put G = S(X) and denote by 7 the left invariant topology on G such that p9 is
a filter of neighborhoods of e. Choose any ultrafilter ¢ € SP. Then (G, 74) is a
particular example to Problem 3.

3. The group S(X) has been used in [5, Example 6.2] to prove the following
statement. Let B be a non-discrete extremally disconnected topological Abelian
group. Then there exists an extremally disconnected topological group G with
distinct left and right uniformities such that B is topologically isomorphic to some
open subgroup of G.
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4. A group G with a topology 7 is called paratopological if the multiplication
(z,y) +— xy is jointly continuous in G. By [8], every maximal paratopological
group is a topological group. Let G be an extremally disconnected paratopological
group. Is G a topological group?
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