
Commentationes Mathematicae Universitatis Carolinae

Ofelia Teresa Alas; Richard Gordon Wilson
Spaces in which compact subsets are closed and the lattice of T1-topologies on a
set

Commentationes Mathematicae Universitatis Carolinae, Vol. 43 (2002), No. 4, 641--652

Persistent URL: http://dml.cz/dmlcz/119353

Terms of use:
© Charles University in Prague, Faculty of Mathematics and Physics, 2002

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/119353
http://project.dml.cz


Comment.Math.Univ.Carolin. 43,4 (2002)641–652 641

Spaces in which compact subsets are closed

and the lattice of T1-topologies on a set

Ofelia T. Alas, Richard G. Wilson

Abstract. We obtain some new properties of the class of KC-spaces, that is, those topo-
logical spaces in which compact sets are closed. The results are used to generalize
theorems of Anderson [1] and Steiner and Steiner [12] concerning complementation in
the lattice of T1-topologies on a set X.
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Classification: Primary 54A10; Secondary 54D10, 54D25, 54D55

The lattice L1(X) of T1-topologies on a setX has a least element 0 (the cofinite
topology) and a greatest element 1 (the discrete topology) but it is known that
there is T1-topology τ (even a T2-topology) with no T1-complement, that is there
is no topology µ such that µ ∨ τ = 1 and µ ∧ τ = 0 (see [11] and [13]). These
negative results notwithstanding, many T1-spaces with “nice” properties have T1-
complements which do not share these properties. For example, it is known that
the T1-complements of many Hausdorff spaces are not Hausdorff (see [12] and
[1]) and it is the purpose of this article to extend results of this kind. We study
T1-complementarity using two weaker properties:

Say that two T1-topologies τ and τ ′ on a setX are T1-independent (respectively,
transversal) if τ ∩ τ ′ is the cofinite topology (respectively, τ ∨ τ ′ is the discrete
topology). As we mentioned in the previous paragraph, if τ and τ ′ are both
T1-independent and transversal, they are said to be T1-complementary.

Central to our results will be the following property: A topological space (X, τ)
is said to be a KC-space if every compact subspace is closed. The topology will
then be termed a KC-topology. Note that KC-spaces are T1 and T2-spaces are KC
(but not vice versa necessarily) and that a sequence in a KC-space can converge to
at most one point. The KC-spaces (which sometimes have been called TB-spaces)
have been studied by a number of authors (see for example [4] and [14]). We will
obtain some new properties of this class of spaces with the aim of applying the
results to problems concerning the lattice L1(X).
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and 38164-E and Fundação de Amparo a Pesquisa do Estado de São Paulo (Brasil)
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Following [7], we say that a space X has the finite derived set property (which
we abbreviate as the FDS-property) if whenever A is infinite, there is an infinite
subset B ⊆ A such that B has only a finite number of accumulation points in X ,
that is to say, its derived set Bd is finite. It is not hard to show that each
weakly Whyburn T1-space (introduced and called a WAP-space in [8], but see [6]
for the reasons for the change of name) and each sequential KC-space has the
FDS-property.

To complete our list of definitions, we recall that if P is a topological property,
then a space (X, τ) is said to be minimal P (respectively maximal P) if (X, τ) has
property P but no topology on X which is strictly smaller (respectively, strictly
larger) than τ has P . A space (X, τ) is said to be Katětov P if there is a topology
σ ⊆ τ such that (X, σ) is minimal P . Specifically, we are here interested in
minimal KC-spaces, Katětov KC-spaces and maximal compact spaces. All other
terms are standard and can be found in [3].

In 1967, Steiner and Steiner proved that no Hausdorff topology on a countably
infinite set has a Hausdorff complement. In fact, although they did not explicitly
say so, they proved that no Hausdorff topology on a countably infinite set has a
complementary KC-topology. In the same article they showed that any comple-
ment of a first countable topology on an infinite setX must be countably compact
on cofinite subspaces and Anderson [1] showed that such a complement cannot
be both first countable and Hausdorff. In this paper, we generalize results of [7]
to non-Hausdorff spaces and in the process, we generalize the above results of [1]
and [12].

The following result is a slight generalization of Theorem 3.1 of [7].

Theorem 1. Suppose (X, τ) is a T1-space with the FDS-property and τ ′ is an
independent topology for τ ; if (X, τ ′) is a KC-space, it is countably compact and
has no non-trivial convergent sequences.

Proof: Suppose first that (X, τ ′) is not countably compact, then it contains
some countably infinite closed discrete subspace D, whose complement we can
also assume to be infinite. Since τ and τ ′ are complements, D is not closed in
(X, τ) and since this latter space has the FDS-property, there is some B ⊆ D such
that B has only a finite number of accumulation points {x1, . . . , xn} in X . Since
B ∪ {x1, . . . , xn} is an infinite proper τ ′-closed subset of X , we have constructed
an infinite subset which is closed in both topologies, a contradiction.
Now suppose that S is a non-trivial convergent sequence in (X, τ ′) (convergent

to x say) such that X \ S is infinite. Since (X, τ ′) is a KC-space, S ∪ {x}, being
compact, is an infinite τ ′-closed set and hence is not τ -closed. However, since
(X, τ) has the FDS-property, there is some infinite B ⊆ S with only a finite
number of accumulation points which we again denote by {x1, . . . , xn}. It is then
clear that B ∪ {x1, . . . , xn, x} is an infinite set which is closed in both topologies,
a contradiction. �
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Note that in the first part of the above proof we need only to require that
(X, τ ′) be a T1-space.
Every countably infinite, compact KC-space has a non-trivial convergent se-

quence. Suppose X is such a space and let p ∈ X be non-isolated. Then X \ {p}
is not compact, hence not countably compact and so there is an infinite closed
discrete subspace A ⊆ X \ {p}. Enumerating A = {xn : n ∈ ω}, it is clear that
{xn} converges to p in X . However, with a little care we can prove much more.

Theorem 2. If X is a countable, compact T1-space and A ⊆ X then either A is
compact or there is a sequence in A converging to a point of X \ A.

Proof: Suppose A ⊂ X is not compact. Let D be an infinite discrete subset
of A which is closed in A. Since X is compact, Dd 6= ∅ and Dd ⊆ X \ A. We
enumerate cl(D) \ D as {xn : n ∈ ω} and we will show that for some n, xn is the
limit of a sequence in D, showing that A is not sequentially closed.
If each neighborhood U of x0 = z0 is such that D \ U is finite, then any

enumeration of D converges to z0. If not, then pick an open set U0 such that
D \ U0 is infinite and z0 ∈ U0; note that since X is compact and D is discrete,
(cl(D) \ D) \ U0 6= ∅. Now let z1 = xm1 , where m1 = inf{n ∈ ω : xn /∈ U0}. If
each neighborhood U of z1 is such that (D\U0)\U is finite, then any enumeration
of D \ U0 will converge to z1. Having chosen points z0, . . . , zk−1 and open sets
containing them U0, . . . , Uk−1 in such a way that D \

⋃
{Uj : 0 ≤ j ≤ k − 1} is

infinite, it is clear as before that (cl(D)\D)\
⋃
{Uj : 0 ≤ j ≤ k−1} is non-empty

and we let zk = xmk
where mk = inf{n ∈ ω : xn /∈

⋃
{Uj : 0 ≤ j ≤ k − 1}. As

before, either every neighborhood U of zk is such that (D \ U) \
⋃
{Uj : 0 ≤ j ≤

k − 1} is finite (in which case we obtain a sequence convergent to zk) or there is
some U = Uk for which this set is infinite.
However, since D is locally compact, cl(D) \D is compact and hence for some

n ∈ ω, (cl(D) \ D) \
⋃
{Uj : 0 ≤ j ≤ n} = ∅, but (cl(D) \ D) \

⋃
{Uj : 0 ≤ j ≤

n−1} 6= ∅. It is then the case that any enumeration of D \
⋃
{Uj : 0 ≤ j ≤ n−1}

will converge to zn. �

Corollary 3. A compact, countable KC-space is sequential.

Proof: If A is not closed, then it is not compact. The result now follows from
the previous theorem. �

However, a compact countable KC-space does not have to be first countable as
the one-point compactification (see [3, 3.5.11]) of a sequential, non-first countable
space (for example, the space of [3, 1.6.19]), illustrates. Nor does such a space have
to be scattered — the one-point compactification of the rationals is the relevant
example here.

Corollary 4. A countable KC-space has no non-trivial convergent sequences if

and only if every compact subspace is finite.

The next result generalizes Proposition 3.2 of [7].
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Corollary 5. No countably infinite sequential T2-space has an independent topo-
logy which is KC.

Proof: Let (X, τ) be a Hausdorff sequential space. (X, τ) can be condensed
onto a second countable Hausdorff space (X, τ ′) and hence by Theorem 1, any
independent T1-topology µ must be compact and have no non-trivial convergent
sequences. It follows from Corollary 3 that (X, µ) is not KC. �

A similar result was first proved by Steiner and Steiner who showed:

Theorem 6 ([12, Corollary to Theorem 2]). If (X, τ) is a countable Hausdorff
space and τ ′ is T1-complementary, then every cofinite subset of (X, τ ′) is compact.

The next corollary improves (for countable spaces) a result of Wilansky [14,
Theorem 5], who showed that the 1-point compactification of a KC-space is KC
if and only if X is a k-space (see [3, 3.3.18]). We note in passing that a countable
Hausdorff k-space is clearly sequential, but we are not aware of a direct proof that
a countable KC-space which is a k-space is sequential.

Corollary 7. The 1-point compactification of a countable KC-space X is KC if
and only if X is sequential.

Proof: The sufficiency is clear since an open subspace of a sequential space is
sequential.
For the necessity, suppose that C is a compact subspace of the 1-point com-

pactification Y = X ∪ {∞} of X . If ∞ /∈ C then C is a compact subspace of
X , hence closed and so Y \ C is open in Y . If on the other hand ∞ ∈ C, then
if C is not closed in Y , C ∩ X is not closed in X and hence there is a sequence
{xn} in C ∩ X converging to some p /∈ C. Since X is KC, the compact set
S = {p} ∪ {xn : n ∈ ω} is closed in X and so Y \ S is a neighborhood of ∞
and so ∞ is not an accumulation point of {xn}, implying that C is not compact,
a contradiction. �

A problem attributed to R. Larson by Fleissner in [4] is whether a space is
maximal compact if and only if it is minimal KC. It was shown in [9] that a max-
imal compact space is KC, and hence is minimal KC, since any topology weaker
than a compact KC topology cannot be KC. However, the converse problem of
whether every minimal KC topology is compact appears to be still open. We now
show that Larson’s question has a positive answer in the case of countable spaces,
but for clarity, we split the proof into two parts. First we show that a countable
KC-space has the FDS-property.

Lemma 8. If X is a countable KC-space, then every infinite D ⊆ X contains
an infinite subset with only a finite number of accumulation points (in X).

Proof: Enumerate X as {xn : n ∈ ω} and suppose that D ⊆ X is infinite and
every infinite subset of D has infinitely many accumulation points. Let n0 ∈ ω be
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the smallest integer such that xn0 is an accumulation point of D. If each neigh-
borhood V of xn0 has the property that D\V is finite, then any enumeration ofD
converges to xn0 and hence D has only one accumulation point, a contradiction.
Thus we may choose an open neighborhood V0 of xn0 such that D1 = D \ V0 is
infinite. Having chosen points xn0 , xn1 , . . . , xnj−1 and open sets V0, V1, . . . , Vj−1

such that xnk
∈ Vk for each 1 ≤ k ≤ j − 1 and Dj = D \ (

⋃
{Vk : 1 ≤ k ≤ j − 1})

is infinite, we let nj be the least integer such that xnj is an accumulation point of
Dj and we choose a neighborhood Vj of xnj such that Dj \Vj = Dj+1 is infinite.
Such a choice is again possible for if every neighborhood V of xnj is such that
Dj \V is finite, then any enumeration of Dj is a sequence which converges to xnj

and hence Dj has only one accumulation point.
Now for each j ∈ ω, we choose yj ∈ Dj \ {y0, y1, . . . , yj−1} and we denote the

set {yn : n ∈ ω} by S. It is clear that S is infinite and all but finitely many points
of S are contained in Dj for each j ∈ ω and so an accumulation point of S is an
accumulation point of S ∩ Dj for each j ∈ ω. Thus S can have no accumulation
point, since if p were such a point, then for some k ∈ ω, p = xk and from the
construction, we would have that k ≥ nj for each j ∈ ω, which is absurd. �

Lemma 9. If (X, τ) is a countable non-compact KC-space with the FDS-pro-
perty, then X can be condensed onto a weaker KC-space.

Proof: Since X is not countably compact, there is some countably infinite closed
discrete subspace D = {dn : n ∈ ω} ⊆ X . Fix p ∈ X and F ∈ βω \ ω and define
a new topology σ on X as follows:

(i) if p /∈ U , then U ∈ σ if and only if U ∈ τ ,

and

(ii) if p ∈ U , then U ∈ σ if and only if U ∈ τ and {n ∈ ω : dn ∈ U} ∈ F .

Clearly (X, σ) is a T1-space, σ ⊂ τ and for each B ⊆ X , clσ(B) ⊆ clτ (B)∪{p}.
We show that (X, σ) is a KC-space. To this end, suppose to the contrary that A
is a non-closed compact subset of (X, σ). Obviously p ∈ clσ(A) and there are two
cases to consider:

(a) If p /∈ A, then σ|A = τ |A and so A is compact and hence closed in (X, τ).
Thus there is some U ∈ τ such that p ∈ U and U∩A = ∅. If {n ∈ ω : dn ∈ A} /∈ F ,
then {n ∈ ω : dn ∈ D \A} ∈ F and for each t ∈ D \A we can choose Ut ∈ τ such
that t ∈ Ut and Ut ∩ A = ∅. Then p ∈ U ∪

⋃
{Ut : t ∈ D \ A} ∈ σ contradicting

the fact that p ∈ clσ(A). Thus {n ∈ ω : dn ∈ A} ∈ F and then there is some
infinite set S ⊂ A ∩ D such that S /∈ F and S is then an infinite closed discrete
subset of A in (X, σ), implying that (A, σ|A) is not compact.

(b) If p ∈ A, then clσ(A) = clτ (A). If A is not closed in (X, τ), then A is
not compact (thus not countably compact) in (X, τ), and so there is an infinite
discrete subset C ⊆ A which is closed in (A, τ |A). However, C is not closed in
(A, σ|A) and so clσ(C) ∩ A = C ∪ {p}. This implies that {n : dn ∈ clτ (C)} ∈ F .
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Since (X, τ) has the FDS-property, there is some infinite subset B ⊆ C with only
a finite number of accumulation points in X . Thus {n : dn ∈ clτ (B)} /∈ F which
implies that B is closed and discrete in (A, σ|A), implying in its turn that A is
not compact in (X, σ). �

The following result, an immediate consequence of the previous two lemmas,
is then a partial positive answer to the above-mentioned question of Larson.

Theorem 10. Every minimal KC-topology on a countable set is compact.

These results should be contrasted with the case of minimal Hausdorff spaces.
An example of a countable minimal Hausdorff space which is not countably com-
pact is given in [10, Example 100].

We also note that in [4], Fleissner constructed a countably compact KC-
topology t on ω1 which is not Katětov KC, that is to say, if τ ⊆ t is KC then there
is a τ ′ ⊂ τ which is also KC. It is easy to see that (ω1, t) has the FDS-property
and furthermore, if τ ⊆ t has the FDS-property then so does τ ′. Thus (ω1, t)
cannot be condensed onto a space which is minimal with respect to being both
KC and having the FDS-property.
We turn now to the problem of whether a second countable KC-topology can

have a KC-topology which is complementary. Recall that if κ is a cardinal, then
a space is κ-discrete if it is the union of (at most) κ discrete subspaces, (however,
if κ = ω, then we use the standard terminology, σ-discrete). First we need some
preliminary results, the first of which is a slight generalization of Theorem 2.3
of [13] and we omit the similar proof. For a definition of network and network
weight we refer the reader to [3, 3.1.17].

Lemma 11. Let (X, τ) be a space of network weight κ; if µ is a transversal for τ ,
then µ is κ-discrete.

Our aim now is to show that each infinite, countably compact σ-discrete T1-
space has a non-trivial convergent sequence, but for convenience, we first prove a
preliminary lemma and separate the cases of countable and uncountable X .

Lemma 12. If X is an infinite countably compact T1-space which is the union
of two discrete subspaces, then X has a non-trivial convergent sequence.

Proof: Suppose X is the union of two discrete subsets, E and F . Without
loss of generality, we assume that the points of E are isolated in X and those of
F are the accumulation points of X ; since X is countably compact, F is finite,
say F = {xj : 1 ≤ j ≤ n}. If X \ {x1} is not countably compact, then there
is a discrete subspace G1 ⊆ X \ {x1} whose unique accumulation point is x1.
G1 ∪ {x1} is then a countably compact (and hence compact) Hausdorff space
with only one non-isolated point and thus must contain a non-trivial convergent
sequence. If X \ {x1} is countably compact, then we replace X by X \ {x1} and
consider the subspace X \ {x1, x2}. Since X \ F is not countably compact, there
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is some m (1 ≤ m ≤ n) for which X \ {x1, . . . , xm−1} is countably compact but
X \ {x1, . . . , xm} is not. There is then a sequence converging to xm. �

Lemma 13. A countably infinite, compact T1-space has a non-trivial convergent
sequence.

Proof: Let (X, τ) be such a space. We consider two cases, either (a) all discrete
subspaces of X are finite, or (b) X has an infinite discrete subspace.

(a) Let X = X0; if all discrete subspaces are finite, then either X has the
cofinite topology and hence has a non-trivial convergent sequence or there is an
infinite proper closed subset X1 ⊂ X0. In this case, X0 \ X1 6= ∅ and we can
choose x0 ∈ X0 \X1. Having chosen closed sets Xk and points xk for each k < n
with the property that Xk is an infinite proper closed subset of Xk−1 for each
k ∈ {1, . . . , n− 1}, and xk ∈ Xk−1 \Xk for each k ∈ {1, . . . , n− 1}, there are two
possibilities:

Either Xn−1 has the cofinite topology, in which case it has a non-trivial
convergent sequence and the recursive process ends, or there is some infi-
nite closed proper subspace C ⊂ Xn−1, in which case we define Xn = C
and choose xn ∈ Xn−1 \ Xn.

If it were the case that for all n ∈ ω, Xn contains a proper closed infinite subset,
then for each n, we would have that Un = X \ (Xn ∪ {xk : 1 ≤ k ≤ n − 1}) is an
open set with the property that xk ∈ Un if and only if k = n. Thus {xk : k ∈ ω}
would be an infinite relatively discrete set, contradicting the hypothesis. Hence
there is some m ∈ ω for which the infinite set Xm contains no proper closed
infinite subset, implying that Xm has the cofinite topology and thus contains a
non-trivial convergent sequence.

(b) Suppose now that X contains an infinite discrete subspace D0; denote by
F0 the closed subspace cl(D0) \D0 ⊆ X . Having defined closed subspaces Fγ for
each γ < α (α < ω1), we define Fα as follows:

If α is a limit ordinal, then Fα =
⋂
{Fγ : γ < α}. If α = β + 1 and

Fβ contains an infinite discrete subset Dβ , then let Fα = cl(Dβ) \ Dβ ;
otherwise define Fα = Fβ .

Note that if Fα contains an infinite discrete subspace, then Fα+1 is a proper
subset of Fα. The family {Fα : α ∈ ω1} is a nested family of closed sets in the
compact T1-space X , and hence has non-empty intersection. Furthermore, since
X is countable, there is some minimal λ < ω1 such that Fα = Fλ for all α > λ;
thus Fλ can contain no infinite discrete subspace. There are now three cases to
consider:
(i) If Fλ is infinite, then we apply (a) above to obtain a non-trivial convergent

sequence in Fλ.

(ii) If Fλ is finite and λ is a non-limit ordinal, say λ = γ+1 then since γ < λ,
Fλ = cl(Dγ) \ Dγ where Dγ is an infinite discrete subspace of Fγ . Since Fλ
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is finite, it is discrete and so Fγ is the union of two discrete subspaces, namely
Dγ and Fλ. The existence of a non-trivial convergent sequence now follows from
Lemma 12.

(iii) If Fλ is finite and λ is a limit ordinal, say λ = sup{λn : n ∈ ω} where
λk < λk+1 ∈ ω + 1, then since λn < λ for each n ∈ ω, it follows that Fλn

\ Fλ is
infinite for each n. Thus we can choose pn ∈ Fλn

\ (Fλ ∪ {pk : 1 ≤ k ≤ n − 1}).
Using an argument similar to that in (a) above, for each m ∈ ω, Um = X \
(Fλm+1

∪ {pk : 1 ≤ k ≤ m − 1}) is an open set meeting {pn : n ∈ ω} in {pm};
thus {pn : n ∈ ω} is discrete and hence C = Fλ ∪ {pn : n ∈ ω} is the union of
two discrete subspaces. Furthermore, since pn ∈ Fλn

and Fλ =
⋂
{Fλn

: n ∈ ω},
it follows that all the accumulation points of {pn : n ∈ ω} lie in Fλ and so
C = {pn : n ∈ ω} ∪ Fλ is compact. The existence of a non-trivial convergent
sequence in C again follows from Lemma 12. �

Theorem 14. An infinite, countably compact, σ-discrete T1-space X has a non-
trivial convergent sequence.

Proof: If X is countable, the result follows from the previous lemma. If X is
uncountable, then suppose X =

⋃
{Dn : n ∈ ω}, where Dn is discrete for each

n ∈ ω. At least one of the sets Dn is necessarily infinite and we denote by n0, the
smallest integer for which this occurs. We define X0 = cl(Dn0) \ Dn0 and note
that X0 ⊂ X is closed. There are three alternatives:

i) X0 is finite and hence discrete, in which case cl(Dn0) is an infinite countably
compact T1-space which is the union of two discrete subspaces; the existence of a
non-trivial convergent sequence in X0 now follows from Lemma 12. Or,

ii) X0 is countably infinite, in which case X0 is a countably infinite compact
T1-space and the existence of a non-trivial convergent sequence in X0 now follows
from Lemma 13. Or,

iii) X0 ⊆
⋃
{Dn : n ∈ ω \ {n0}} is uncountable, and hence for some n ∈ ω,

X0 ∩ Dn is uncountable, in which case we denote by n1 the smallest integer for
which this occurs and let X1 = cl(Dn1 ∩ X0) \ (Dn1 ∩ X0). The above process
can now be repeated with X1 in place of X0.

Proceeding in this way, either:

(a) for some j ∈ ω, the closed subspace Xj constructed at the jth step of the
recursion is countable, in which case the arguments of i) or ii) above apply
and we obtain a non-trivial convergent sequence in Xj ⊆ X , or

(b) condition iii) holds for each j ∈ ω and we obtain a nested (infinite) se-
quence of uncountable, countably compact closed subspaces {Xj : j ∈ ω},
in which case we let Y =

⋂
{Xj : j ∈ ω}.

Clearly Y is a non-empty, closed subset of X which meets each of the discrete
sets Dn in a finite set and hence Y is countable. If Y is infinite, the existence
of a non-trivial convergent sequence in Y follows from Lemma 13. If, on the



Spaces in which compact subsets are closed and the lattice of T1-topologies on a set 649

other hand, Y is finite then it is discrete, and for each k ∈ ω we can choose
pk ∈ Xk \ (Y ∪ {p0, . . . , pk−1}). As in the proof of Lemma 13, {pn : n ∈ ω}
is discrete and the subspace Z = Y ∪ {pn : n ∈ ω} is compact. Thus Z is the
union of two discrete subsets, {pn : n ∈ ω} and Y . The existence of a non-trivial
sequence again follows from Lemma 12. �

Theorem 15. No infinite KC-space with a countable network and the FDS-

property (in particular, no infinite second countable KC-space) has a T1-comple-
mentary topology which is KC.

Proof: Suppose (X, τ) is an infinite KC-space with a countable network and the
FDS-property and µ is a complement for τ . By Lemma 11, (X, µ) is σ-discrete
and by Theorem 1, µ is countably compact and has no non-trivial convergent
sequences. This contradicts Theorem 14. �

For countable spaces we can do better, applying Lemma 8, we have the follow-
ing strengthening of Theorem 3 of [12]:

Corollary 16. No KC-topology on a countably infinite set has a complementary

KC-topology.

Steiner and Steiner [12, Theorem 2] have shown that any T1-complement of an
infinite first countable Hausdorff space must have non-closed countably compact
subspaces, while Anderson and Stewart [2, Theorem 2] have shown that such
a T1-complement cannot be both Hausdorff and first countable. Furthermore,
Anderson [1, Corollary 1] showed that every Hausdorff Fréchet-Urysohn space has
(at least) one T1-complement which is not KC. These results should be compared
with the following theorem which is an immediate consequence of Theorems 1,
11, 15 and the fact that a sequential KC-space has the FDS-property:

Theorem 17. A T1-complement of an infinite sequential KC-space with a count-
able network is countably compact, σ-discrete, has no non-trivial convergent se-
quences and is not KC.

A number of questions still remain open; some may have been posed before,
but still seem interesting.

Question A. Can every KC-space which is not countably compact be condensed

onto a strictly weaker KC-topology?

Theorem 10 gives a positive answer for countable spaces and in the general
case a positive answer obviously implies that minimal KC-spaces are countably
compact. Note that a KC-space cannot necessarily be condensed onto a KC-space
with a convergent sequence — any compact Hausdorff space with no non-trivial
convergent sequences is an example.
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Question B. When can a KC-space of network weight κ be condensed onto a
KC-space of weight κ (or even onto a KC-space with the FDS-property)?

In the case κ = ℵ0, the answer is negative as the example of the 1-point
compactification of the space of [3, 1.6.19] shows. This space is countable, compact
KC (and hence minimal KC) with uncountable weight. Hence we are led to ask:

Question C. Is every countable KC-space Katětov KC?

It turns out that Question C has a somewhat simpler formulation; we need the
following result:

Theorem 18. A countable KC-space (X, τ) is Katětov KC if and only if there
is a weaker sequential KC-topology σ ⊆ τ .

Proof: If (X, τ) is a countable Katětov KC space, then by Corollary 12, there
is a weaker compact KC-topology σ on X . However, by Corollary 3, (X, σ) is
sequential and the necessity follows.

For the sufficiency, suppose that (X, µ) is a countable KC-space and that τ ⊆ µ
is a sequential KC-topology. If (X, τ) is compact, then it is minimal KC and hence
(X, µ) is Katětov KC. So we assume that (X, τ) is not compact. It follows from
Lemma 7 that the one-point compactification (ωX, ω) is sequential. Following [3,
3.5.11], we identify X with ω(X) ⊆ ωX and denote the singleton ωX \ ω(X) =
ωX \ X by {Ω}. The topology of ωX will be denoted by τω . Let y be any point
of X and define a partition P of ωX by P = {{x} : x ∈ X and x 6= y} ∪ {{y,Ω}}
and denote by σ the quotient topology on P . To further simplify the notation, we
identify x ∈ X (x 6= y) with {x} ∈ P and y ∈ X with {y,Ω} ∈ P and in future
we refer to (X, σ) rather than (P , σ). The quotient map from (ωX, τω), to (X, σ)
will be denoted by q and so:

† Since X is identified with a subset of ωX , if x ∈ (X, σ) and x 6= y, then
q−1[x] = x and q−1[y] = {y,Ω}.

Note that if x 6= y, then U is a τ -neighborhood of x ∈ X if and only if it is a
σ-neighborhood of x and W ∈ σ is a σ-neighborhood of y if and only if q−1[W ] is
a τω-open set containing {y,Ω}. Thus σ ⊂ τ ⊆ µ and clearly (X, σ) is a compact
T1-space. We will show that the space (X, σ) is KC and hence is minimal KC.

To this end, we note first that it follows from [5, Proposition 1.2] that any
quotient of a sequential space is sequential and hence (X, σ) is sequential. To
show that (X, σ) is a KC-space, suppose to the contrary that C is compact but
not closed in (X, σ). Since (X, σ) is sequential:

‡ There is a sequence of distinct points {sn} ⊆ C convergent to s /∈ C in
(X, σ) and since this space is T1, we can assume without loss of generality
that for each n, sn 6= y.
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However, C is compact and so {sn} must have an accumulation point z ∈ C,
showing that the compact subspace A = {sn : n ∈ ω}∪{s} is not closed. Thus to
prove that (X, σ) is a KC-space it suffices to show that the convergent sequence
{sn} together with its limit s, is closed in (X, σ). However, if A is not closed,
then since (X, σ) is sequential, there is a sequence in A converging to t /∈ A.
This sequence is a subsequence of the original sequence {xn} and hence must also
converge to s. Thus in (X, σ) there is a sequence with two distinct limits s and t.
We show that this leads to a contradiction.
Now if y /∈ {s, t}, then by † and ‡, {sn} is sequence with two distinct limits

s and t in ωX , contradicting the fact that ωX is a KC-space. Alternatively, if
y ∈ {s, t}, say y = s, then since t 6= y, it again follows from † and ‡, that {sn}
converges to t in the space ωX .
Now, since S = {sn : n ∈ ω} ∪ {t} is compact in the KC-space ωX , it is

closed and hence y is not an accumulation point of the sequence {sn} in ωX .
Thus by ‡, there is U ∈ τω with y ∈ U such that sn /∈ U for all n (and we can
assume that Ω /∈ U so that with the identifications we are making, q[U ] = U).
Furthermore, since S is compact, V = ωX \ S is an open neighborhood of Ω in
ωX and sn /∈ q[V ] for all n. Now, since q−1[q[U ∪ V ]] = U ∪ V , it follows that
q[U ∪ V ] is a σ-neighborhood of y with the property that sn /∈ q[U ∪ V ] for all n,
contradicting the fact that the sequence {sn} converges to y in (X, σ). Clearly,
the case y = t is identical and we are done. �

Thus Question C is equivalent to the following:

Question C′. Can every countable KC-space be condensed onto a KC-space

which is sequential?

Since each infinite compact Hausdorff space of size less than the continuum is
scattered and has a non-trivial convergent sequence, we are led to ask:

Question D. Does every countably compact KC-space of size less then 2ℵ0 have
the FDS-property?
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