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Strongly base-paracompact spaces

John E. Porter

Abstract. A space X is said to be strongly base-paracompact if there is a basis B for X

with |B| = w(X) such that every open cover of X has a star-finite open refinement by
members of B. Strongly paracompact spaces which are strongly base-paracompact are
studied. Strongly base-paracompact spaces are shown have a family of functions F with
cardinality equal to the weight such that every open cover has a locally finite partition
of unity subordinated to it from F .

Keywords: base-paracompact, strongly base-paracompact, partition of unity, Lindelöf
spaces

Classification: 54D20

1. Introduction

The weight , w(X), of a topological spaceX is the minimal cardinality of a basis
for X . A space X is base-paracompact if there is a basis B for X with |B| = w(X)
such that every open cover of X has a locally finite refinement by members of B.
The author studied these spaces in [Po] as a weakening of totally paracompact
spaces. Is strong paracompactness witnessed by a base in the same manner as
base-paracompact spaces?
A family A of subsets of a topological space X is said to be star-finite if for

every A ∈ A the set {B ∈ A : B ∩ A 6= ∅} is finite. A topological space X is
strongly paracompact if every open cover of X has a star-finite open refinement.
A topological spaceX is strongly base-paracompact if there is a basis B for X with
|B| = w(X) such that every open cover of X has a star-finite open refinement by
members of B. In Section 2, topological spaces that are strongly base-paracompact
are studied.
It is well known that a space X is paracompact if and only if every open cover

has a locally finite partition of unity subordinated to it. A natural question arises:
does there exist a family of functions F with cardinality equal to the weight of X
such that every open cover has a locally finite partition of unity subordinated to
it from F? In Section 3, it is shown that strongly base-paracompact spaces have
this property. The Hedgehog space of spininess κ > ω is shown to have a family
of functions with cardinality equal to the weight such that every open cover has
a locally finite partition of unity subordinated to it from this family but is not
strongly paracompact.
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All topological spaces are assumed to be Hausdorff, and the definitions of all
terms not defined can be found in [E]. This paper constitutes a part of the Doctoral
Thesis, completed under Professor Gary Gruenhage at Auburn University. The
author would like to give thanks to Gary Gruenhage for his patience and useful
suggestions.

2. Strongly base-paracompact spaces

It follows immediately that every strongly base-paracompact space is strongly
paracompact. The converse is not known. A partial answer is given in the next
theorem.

Lemma 2.1 ([Po]). Let B be a basis for a topological space X with |B| = w(X).
Then there is a basis B′ for X with |B′| = w(X) and B ⊂ B′ which is closed under

finite unions, finite intersections, and complements of closures.

Theorem 2.2. Every regular Lindelöf space is strongly base-paracompact.

Proof: Let B0 be a basis of X with cardinality equal to the weight which is
closed under finite unions, finite intersections and complement of closures. For
every U, V ∈ B0 with V ⊂ U , there is an open set WUV such that V ⊂ WUV ⊂
WUV ⊂ U . Let B′

0 = B0 ∪ {WUV : U, V ∈ B0 and V ⊂ U}. Let B1 be a
basis with |B1| = w(X) containing B′

0 which is closed under finite unions, finite
intersections, and complements of closures. Proceed by induction. Suppose Bn

has been defined. For every U, V ∈ Bn with V ⊂ U , there is an open setWUV such
that V ⊂ WUV ⊂ WUV ⊂ U . Let B′

n = Bn∪{WUV : U, V ∈ Bn and V ⊂ U}. Let
Bn+1 be a basis with |Bn+1| = w(X) containing B′

n which is closed under finite
unions, finite intersections, and complements of closures. Let B =

⋃

n<ω Bn.

Claim: B is the desired basis.
Clearly |B| = w(X). Let U be an open cover of X . For every x ∈ X , there
exists Vx, Ux ∈ B such that x ∈ Vx ⊂ Vx ⊂ Ux ⊂ U for some U ∈ U . Since
X is Lindelöf, the Vx’s have a countable subcover, say V0, V1, · · · , Vm, · · · . Then
Vm ⊂ Um for every m < ω. Let V ∗

0 = V0. Note that V0 ∪ V1 ⊂ U0 ∪ U1 and

V0∪V1, U0∪U1 ∈ Bn for some n. Then there is V ∗
1 ∈ B such that V0 ∪ V1 ⊂ V ∗

1 ⊂

V ∗
1 ⊂ U0 ∪U1. Proceed by induction. Suppose V ∗

k−1 has been defined. Note that

V0 ∪ · · · ∪ Vk ⊂ U0 ∪ · · · ∪ Uk and V0 ∪ · · · ∪ Vk, U0 ∪ · · · ∪ Uk ∈ Bn for some n.
Then there is V ∗

k ∈ B such that V0 ∪ · · · ∪ Vk ⊂ V ∗
k ⊂ V ∗

k
⊂ U0 ∪ · · · ∪ Uk. If

we take V ∗
−1 = ∅, we will show Bk,j = Uj ∩ (V

∗
k+1\V

∗
k−1) where 0 ≤ j ≤ k and

k < ω form a star-finite refinement. Note that V ∗
k

⊂
⋃

j≤k Uk. Let x ∈ X , and

let k be the least integer such that x ∈ V ∗
k
. Since V ∗

k
⊂

⋃

j≤k Uj , there exists a

j ≤ k such that x ∈ Uj . Then x ∈ Uj ∩ (V
∗
k \V ∗

k−1) ⊂ Bk,j, and the Bk,j ’s where

0 ≤ j ≤ k and k < ω cover X . For every j ≤ k, Bk,j ⊂ V ∗
k+1 ⊂ V ∗

k+1. Note that,

for m ≥ k + 2 and i ≤ m, Bk,j ∩ Bm,i = ∅ which shows that the Bk,j’s where
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0 ≤ j ≤ k and k < ω are star-finite. Hence {Bk,j} where 0 ≤ j ≤ k and k < ω is
a star-finite refinement of U by members of B. �

A space is called non-archimedean if it has a base which is a tree under reverse
inclusion (see [Ny]). That is, the collection of all base members containing a given
one is well-ordered by reverse inclusion.

Theorem 2.3. Non-archimedean spaces are strongly base-paracompact.

Proof: Let B be a base for X which is a tree under reverse inclusion and |B| =
w(X). Let U be an open cover of X . Let B′ = {B ∈ B : B ⊂ U for some U ∈ U
and if B ⊂ B′ ∈ B′, then B = B′}. Note that B′ is a disjoint cover, hence a
star-finite cover of X , and X is strongly base-paracompact. �

LetD(κ) be the discrete space of size κ ≥ ω. The Baire space, B(κ), of weight κ
is the space [D(κ)]ω endowed with the product topology. Note that the Baire space
of weight κ is a non-archimedean space and hence strongly base-paracompact.
K. Morita [M] showed that every strongly paracompact metrizable space of weight
κ is embedable in the product B(κ) × Iω where I is the unit interval. The next
theorem gives us that the latter space is strongly base-paracompact.

Theorem 2.4. Strong base-paracompactness is an inverse invariant of perfect

mappings.

Proof: Let f : X → Y be a perfect mapping onto a base-paracompact space Y .
Let BY be a basis for Y which witnesses base-paracompactness. Note that w(X) ≥
w(Y ) ([E, Theorem 3.7.19]). Let BX be any basis for X with |BX | = w(X). Let

B′
X = BX ∪ {f−1(B) : B ∈ BY } ∪ {B ∩ f−1(B

′

) : B ∈ BX , B
′

∈ BY }.

Claim: B′
X witnesses strong base-paracompactness for X .

Clearly |BX | = w(X). Let U = {Ut : t ∈ T } ⊂ B′
X be an open cover of X . For

every y ∈ Y , choose a finite subset I(y) ⊂ T such that f−1(y) ⊂ ∪t∈I(y)Ut. Since f

is a closed map, there exists a neighborhood Vy of y such that f
−1(y) ⊂ f−1(Vy) ⊂

⋃

t∈I(y) Ut. The cover {Vy}y∈Y has a star-finite refinement B
′
Y ⊂ BY . Then,

{f−1(B) : B ∈ B′
Y } is star-finite, and for each B ∈ B′

Y , f
−1(B) ⊂ f−1(Vy(B)) ⊂

⋃

t∈I(y(B)) Ut for some y(B) ∈ Y . Now, B′′
X = {f−1(B) ∩ Ut : B ∈ B′

Y and

t ∈ I(y(B))} is a star-finite refinement of U by members of B′
X . Hence X is

base-paracompact. �

Corollary 2.5. Let X be strongly base-paracompact, and let Y be a compact
space. Then X × Y is strongly base-paracompact.

Proof: The projection map p : X × Y → X is a perfect mapping. Hence X × Y
is strongly base-paracompact. �

The space B(κ) × Iω is not hereditarily strongly paracompact. J. Nagata [N]
showed that the product B(κ), κ > ω, with the interval (0, 1) is not strongly
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paracompact. The next theorem shows that certain closed sets of strongly base-
paracompact spaces are strongly base-paracompact.

Theorem 2.6. Let X be a strongly base-paracompact space. If M is a closed

subset of X with w(X) = w(M), then M is base-paracompact.

Proof: Let X be strongly base-paracompact, and let M be closed. Let B be a
basis which witnesses strong base-paracompactness for X . Let B(M) = {B ∩M :
B ∈ B}. Let U be an open cover of M . For every U ∈ U , there is an open set
OU ⊂ X such that U = OU ∩ M . The open cover {OU : U ∈ U} ∪ {X\M} has
a star-finite refinement B′ by members of B. Then W = {B ∈ B′ : B ∩ M 6= ∅}
is a star-finite refinement of U by members of B(M), and M is strongly base-
paracompact. �

It will be shown in Section 4 that removing the weight condition would result
in proving that every strongly paracompact space is strongly base-paracompact,
which is still an open question.

3. Partitions of unity

A family F of continuous functions from a space X to the closed interval [0, 1]
is called a partition of unity if

∑

f∈F f(x) = 1 for every x ∈ X . We say that a

partition of unity F is locally finite on a space X if the cover {f−1((0, 1]) : f ∈ F}
is locally finite. A partition of unity F is subordinated to a cover U of X if the
cover {f−1((0, 1]) : f ∈ F} of the space X is a refinement of U .

Lemma 3.1. Let X be a normal space X and B0 be a base for X with |B0| =
w(X). Then there is a base B of X containing B0 such that |B| = w(X) and
every star-finite cover by members of B has a shrinking by members of B.

Proof: Let B0 be a basis for X with cardinality equal to the weight of X . Define
F0 = {F = B\

⋃

i<k Bi : B, Bi ∈ B0 and F is closed}. Note that |F0| = w(X). By

normality, for every F ∈ F0 there is an open set UF such that F ⊂ UF ⊂ UF ⊂ B.
Let B1 = B0 ∪ {UF : F ∈ F0}. Proceed by induction. Suppose Bn has been
defined. Define Fn = {F = B\

⋃

i<k Bi : B, Bi ∈ Bn and F is closed}. Note that
|Fn| = w(X). By normality, for every F ∈ Fn+1 there is an open set UF such
that F ⊂ UF ⊂ UF ⊂ B. Let Bn+1 = Bn ∪ {UF : F ∈ Fn}. Let B =

⋃

n<ω Bn.
Note that |B| = w(X).
Let U = {Uα : α < λ} ⊂ B be a star-finite cover. Let F0 = U0\

⋃

0<α Uα.
Note that F0 is closed since U covers X . Since U is star-finite, U0 meets only
finitely many members of {Uα : 0 < α}. Hence F0 ∈ Fi for some i. Then there
is B0 ∈ Bi+1 such that F0 ⊂ B0 ⊂ B0 ⊂ U0. Proceed by induction. Suppose

Fγ and Bγ have been defined for all γ < α such that Fγ ⊂ Bγ ⊂ Bγ ⊂ Uγ , and
⋃

γ<α Bγ covers X\
⋃

γ≥α Uγ . Define Fα = Uα\[(
⋃

β>α Uβ) ∪ (
⋃

γ<α Bγ)]. Note

that Fα is closed since (
⋃

β≥α Uβ) ∪ (
⋃

γ<α Bγ) covers X . Since U is star-finite,
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Uα meets only finitely many members of {Uα : 0 < α} ∪ {Bγ : γ < α}. Hence

Fα ∈ Fi for some i. Then there is Bα ∈ Bi+1 such that Fα ⊂ Bα ⊂ Bα ⊂ Uα.
Note also that

⋃

γ≤α Bγ covers X\
⋃

γ>α Uγ .

Claim: {Bα : α < λ} is a shrinking of U = {Uα : α < λ} by members of B.
Clearly {Bα : α < λ} ⊂ B and Bα ⊂ Uα for every α. We need to show {Bα : α <
λ} is a cover of X . Suppose there is x ∈ X such that x /∈

⋃

α<λ Bα. Since U is
point finite, there is a maximum α < λ such that x ∈ Uα. Then x /∈

⋃

β>α Uβ ,

and hence x ∈
⋃

γ≤α Bγ which is a contradiction. Therefore {Bα : α < λ} covers

X and {Bα : α < λ} is a shrinking of {Uα : α < λ} by members of B. This
completes the proof. �

Theorem 3.2. Let X be a strongly base-paracompact space. Then there exists
a family of functions F with |F| = w(X) such that every open cover of X has a
locally finite partition of unity G ⊂ F subordinated to U .

Proof: Let B′ witness strong base-paracompactness for X , and let B be the
basis containing B′ described in Lemma 3.1. Then for every U, V ∈ B with
U ⊂ V let f(U,V ) : X → [0, 1] be a continuous function such that f(U,V )(U) = 1

and f(U,V )(V
c) = 0. Let F be all functions of the form

g(x) =











f(U,V )(x)
∑n

i=1 f(Ui,Vi)(x)
if

n
∑

i=1

f(Ui,Vi)(x) 6= 0,

0 otherwise,

which happen to be continuous. Note that |F| = w(X). Now, let U be an open
cover of X , and let V ⊂ B be a star-finite refinement of U . Let {WV : V ∈ V}
be a shrinking of V by members of B. Then f(WV ,V ) : X → [0, 1] such that

f(WV ,V )(WV ) = 1 and f(WV ,V )(V
c) = 0. For every V ∈ V , V meets only finitely

many members of V say V1, · · · , Vn. Define

gV (x) =











f(WV ,V )(x)
∑n

i=1 f(WVi
,Vi)(x)

=
f(WV ,V )(x)

∑

V ′∈V f(WV ,V )(x)
if x ∈ V,

0 if x /∈ V.

Claim: G = {gV : V ∈ V} is the desired partition of unity.
Clearly, G is locally finite and subordinated to U . So, it remains to be shown that
G is a partition of unity. Let x ∈ X . Then

∑

gV ∈G

gV (x) =
∑

V ∈V

f(WV ,V )(x)
∑

V ′∈V f(WV ′ ,V ′)(x)
=

∑

V ∈V f(WV ,V )(x)
∑

V ′∈V f(WV ′ ,V ′)(x)
= 1.
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Therefore G is a locally finite partition of unity subordinated to U .
Let I be the unit interval. Let κ be an infinite cardinal, and let Iα = I × {α}

for every α ≤ κ. Define an equivalence relation E on
⋃

α≤κ Iα by (x, α1)E(y, α2)
whenever x = 0 = y or x = y and α1 = α2. The formula

ρ([(x, α1)], [(y, α2)]) =

{

|x − y| if α1 = α2,

x+ y if α1 6= α2,

defines a metric on the equivalence classes of E. This metrizable space is called the
hedgehog space of spininess κ and is denoted J(κ). Note that J(κ) is a connected
space with w(J(κ)) = κ. One may also visualize a hedgehog space of spininess κ
by taking κ-many copies of the unit interval and attaching each interval at the
point 0. �

Theorem 3.3. The Hedgehog space J(κ), κ > ω is not strongly paracompact,
but there exists a family of functions F with |F| = κ such that every open cover
has a locally finite partition of unity G ⊂ F subordinated to it.

Proof: Suppose that J(κ) is strongly paracompact. Let U be an open cover.
Since J(κ) is strongly paracompact, U has a star-finite refinement say V . Choose
V ∈ V . Since V is star-finite, V meets only finitely many members of V say
V0 = {Vi : i ∈ F0} where F0 is finite. Suppose Vn = {Vi : i ∈ Fn}, where
Fn is finite, be all the elements of V which meet an element of Vn−1. Since
Vn is finite and V is star-finite, Vn only meets finitely many members of U say
Vn+1 = {Vi : i ∈ Fn+1}. Let F =

⋃

Fn. Note that {Vi : i ∈ F} is countable,
and

⋃

i∈F Vi is an open and closed in X . Since J(κ) is connected,
⋃

i∈F Vi = X .
This makes J(κ) a Lindelöf space, but J(κ) is not separable which is equivalent to
the Lindelöf property in metrizable spaces. This contradicts J(κ) being strongly
paracompact.
Now we will show that J(κ) has a family of functions with cardinality equal

to the weight such that every open cover has a locally finite partition of unity
subordinated to it. For n ≥ 1, the interval ( 1n , 1] is a separable metric space and
therefore is strongly base-paracompact by Theorem 2.2. Let Fn be a family of
functions with |Fn| = ω such that every open cover of ( 1n , 1] has a locally finite
partition of unity G ⊂ F subordinated to it. Let Hn,α be the collection of all
h : J(κ)→ [0, 1] with

h(x, α) =







h(x, α) = f(x) if x ∈ (
1

n
, 1],

0 otherwise,

where f ∈ Fn. Let F =
⋃

{Hn,α : n < ω and α < κ}. Consider the basis

B(0, 1n ), n ∈ ω, at the point 0. Since J(κ) is metrizable, there is a continuous

fn : J(κ) → [0, 1] such that fn(B(0,
1

n−1 )
c) = 0 and fn(B(0,

1
n)) = 1. Let
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F ′ = F ∪ {fn : n < ω} ∪ { f(x)
1+fn(x)

: f ∈ F and n < ω}. We will show F ′ is the

desired set of functions. Let U be an open cover of J(κ). There is U ∈ U and n ∈ ω

such that 0 ∈ B(0, 1n ) ⊂ U . Consider J(κ)\B(0, 1
n−1 ) =

⋃

α<κ[
1

n−1 , 1]α. Let

Uα = {U ∈ U : U ∩ ( 1n , 1]α 6= ∅}. Note that Uα is a cover of (
1
n , 1]α so there exists

a partition of unity Gα ⊂ F subordinated to Uα such that g−1((0, 1]) ⊂ ( 1n , 1] for

every g ∈ Gα. For every g ∈ Gα, define g′(x) =
g(x)
1+fn(x)

. Let G′
α = {g′(x) : g ∈

Gα}.

Claim: G =
⋃

α<κ G′
α ∪ {fn} is the desired partition of unity.

Clearly G ⊂ F ′ and G is locally finite and subordinates U . Let x ∈ X .

Case (1): x ∈ B(0, 1n ).

Then
∑

f∈G f(x) = fn(x) = 1 since g(x) = 0 for every g ∈ Gα and every α < κ.

Case (2): x ∈ ( 1n , 1
n−1 ]α for some α < κ.

Then
∑

f∈G f(x) =
∑

g′∈G′
α

g′(x) =
∑

g∈Gα

g(x)
1+fn(x)

+
fn(x)
1+fn(x)

=

=
(
P

g∈Gα
g(x))+fn(x)

1+fn(x)
=
1+fn(x)
1+fn(x)

= 1.

Case (3): x ∈ [ 1n−1 , 1]α for some α < κ.

Then
∑

f∈G f(x) =
∑

g∈Gα
g(x) = 1 since fn(x) = 0, and this completes the

proof. �

4. Questions

It is an open question whether all strongly paracompact spaces are strongly
base-paracompact. The next theorem shows some of the difficulties with this
problem. Suppose that there is a strongly paracompact space X that is not
strongly base-paracompact. If we were to add an isolated point to X , then the
resulting space would still be a strongly paracompact space that is not strongly
base-paracompact. In conclusion, if there is a paracompact space that is not base-
paracompact, then there is such a space that has an isolated point. This fact will
be used in the proof of the next theorem.

Theorem 4.1. The following are equivalent:

(i) Every strongly paracompact space is strongly base-paracompact.
(ii) Every closed subset of a strongly base-paracompact space is strongly base-
paracompact.

(iii) Strongly base-paracompact spaces are preserved under open perfect map-
pings.

Proof: Note that (i)⇒(ii) and (i)⇒(iii) (see [P]). It suffices to prove (ii)⇒(i)
and (iii)⇒(i). For these two cases, let X be a strongly paracompact space with
an isolated point x0 which is not base-paracompact. Let O be the family of all
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open sets of X and let κ = |O|. Let Y = X ⊕ [0, κ] (the topological sum). Note
that w(Y ) = κ. Let Bκ be a basis for [0, κ]. Then B = Bκ ∪ O is a basis for X
that witnesses strong base-paracompactness for Y . Note that X is a closed subset
of Y which is not strongly base-paracompact. This proves (ii)⇒(i).
Define f : Y → X by f(x) = x if x ∈ X and f(x) = x0 if x ∈ [0, κ]. Note that

f is an open perfect mapping from Y onto X . This proves (iii)⇒(i). �

The author closes the paper by listing some open questions that the author
was unable to answer.

Question 4.2. Are strongly paracompact metric spaces strongly base-paracom-

pact?

Question 4.3. Are paracompact linearly ordered spaces strongly base-paracom-

pact?

Question 4.4. Do base-paracompact spaces have a family of functions F with
cardinality equal to the weight such that every open cover has a locally finite

partition of unity subordinated to it from F?
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