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Closed subsets of absolutely star-Lindelöf spaces II

Yan-Kui Song

Abstract. In this paper, we prove the following two statements: (1) There exists a dis-
cretely absolutely star-Lindelöf Tychonoff space having a regular-closed subspace which
is not CCC-Lindelöf. (2) Every Hausdorff (regular, Tychonoff) linked-Lindelöf space can
be represented in a Hausdorff (regular, Tychonoff) absolutely star-Lindelöf space as a
closed Gδ subspace.
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1. Introduction

By a space, we mean a topological space. A space X is absolutely star-Lindelöf
(see [1]) (discretely absolutely star-Lindelöf (see [8])) if for every open cover U of
X and every dense subspace D of X , there exists a countable subset F ⊆ D such
that St(F,U) = X (respectively, F is discrete and closed in X and St(F,U) = X),
where St(F,U) =

⋃
{U ∈ U : U ∩ F 6= ∅}.

A space X is star-Lindelöf (see [4], [8] – under different name) if for every open
cover U of X , there exists a countable subset F of X such that St(F,U) = X . It is
clear that very separable space is star-Lindelöf as well as every space of countable
extent (in particular, every countably compact space or every Lindelöf space).
A space X is centered-Lindelöf (linked-Lindelöf , CCC-Lindelöf ) (see [2], [3]) if

every open cover has a σ-centered (σ-linked, CCC, respectively) subcover. A fa-
mily of sets is centered (linked) if every finite subfamily (every two elements,
respectively) has non-empty intersection and a family is σ-centered (σ-linked) if
it can be represented as the union of countably many centered-subfamilies (linked-
subfamilies, respectively). A family of nonempty sets is a CCC-family if there is
no uncountable pairwise disjoint subfamily.
From the above definitions, it is not difficult to see that every discretely

absolutely star-Lindelöf space is absolutely star-Lindelöf, every absolutely star-
Lindelöf space is star-Lindelöf, every star-Lindelöf space is centered-Lindelöf, ev-
ery centered-Lindelöf space is linked-Lindelöf and every linked-Lindelöf space is
CCC-Lindelöf.
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Bonanzinga and Matveev [2] proved that every Hausdorff (regular, Tychonoff)
linked-Lindelöf space can be represented as a closed subspace in Hausdorff (reg-
ular, Tychonoff, respectively) star-Lindelöf space. They asked if every Hausdorff
(regular, Tychonoff) linked-Lindelöf space can be represented as a closed Gδ sub-
space in Hausdorff (regular, Tychonoff, respectively) star-Lindelöf space. Song
[8] gave a positive answer to their question. Moreover, Song and Shi [9] showed
that every centered-Lindelöf Tychonoff space can be represented as a closed Gδ

subspace in a Tychonoff absolutely star-Lindelöf space. But their construction
does not work in the classes of Hausdorff and regular spaces. Thus, it is natural
for us to consider the following more general question:

Question. Is it true that every Tychonoff (Hausdorff, regular) star-Lindelöf
(centered-Lindelöf, linkered-Lindelöf) space can be embedded into some Tychonoff
(Hausdorff, regular, respectively) absolutely star-Lindelöf space as a closed sub-
space? And can it be embedded as a closed Gδ subspace?

Throughout the paper, the cardinality of a set A is denoted by |A|. For a
cardinal κ, κ+ denotes the smallest cardinal greater than κ. Let c denote the
cardinality of the continuum and ω the first infinite cardinal. As usual, a cardinal
is the initial ordinal and an ordinal is the set of smaller ordinals. When viewed
as a space, every cardinal has the usual order topology. Other terms and symbols
will be used as in [5].

2. Closed subspaces of absolutely star-Lindelöf spaces

In [1], Bonanzinga showed that a regular-closed subspace of a star-Lindelöf
space need not be star-Lindelöf, and in [9], Song and Shi showed that a regular-
closed subspace of an absolutely star-Lindelöf space need not be absolutely star-
Lindelöf. In the following, we give a stronger example to show that a regular-closed
subspace of a discretely absolutely star-Lindelöf space need not be CCC-Lindelöf.

Recall that the Alexandroff duplicate of a space X , denoted by A(X), is con-
structed in the following way: the underlying set of A(X) is X × {0, 1} and each
point of X × {1} is isolated; a basic neighborhood of a point 〈x, 0〉 ∈ X × {0} is
a set of the from (U ×{0})∪ ((U ×{1}) \ {〈x, 1〉}), where U is a neighborhood of
x in X . It is well-known that A(X) is Hausdorff (regular, Tychonoff, normal) iff
so is X and A(X) is compact iff so is X .
Recall from [6] that a space X is absolutely countably compact if for every

open cover U of X and every dense subspace D of X , there exists a finite subset
F ⊆ D such that St(F,U) = X . Vaughan [10] proved that every countably
compact GO-space is absolutely countably compact. Thus, every cardinal with
uncountable cofinality is absolutely countably compact. In the next example we
use the following lemma from [11].

Lemma 2.1. If X is countably compact, then A(X) is acc.
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Given a Tychonoff space X , let βX denote the Čech-Stone compactification
of X .

Example 2.2. There exists a discretely absolutely star-Lindelöf Tychonoff space

X having a regular-closed subspace which is not CCC-Lindelöf.

Proof: Let R be a maximal almost disjoint family of infinite subsets of ω with
|R| = c. Define S1 = (c

+ × ω) ∪R. We topologize X as follows: c
+ × ω has the

usual product topology and is an open subspace of S1, and a basic neighborhood
of r ∈ R takes the form

Gβ,K(r) = ({α : β < α < c
+} × (r \ K)) ∪ {r}

for β < c
+ and a finite subset K of ω. Then, the space S1 is Tychonoff and

e(S1) = c, because R is discrete and closed in X . Now, we show that S1 is
discretely absolutely star-Lindelöf. For this end, let U be an open cover of S1.
Let S be the set of all isolated points of c+ and let T = S × ω. Then, T is dense
in X and every dense subspace of X includes T . Thus, it suffices to show that
there exists a countable subset F ⊆ T such that F is discrete closed in X and
St(F,U) = S1. For each n < ω, since c

+ × {n} is absolutely countably compact,
there exists a finite subset Fn ⊆ S × {n} such that c

+ × {n} ⊆ St(Fn,U). Let
F ′ =

⋃
{Fn : n ∈ ω}. Then, c+ × ω ⊆ St(F ′,U). For each x ∈ R, take Ux ∈ U

with x ∈ Ux, and fix αx < c
+ and nx ∈ ω such that {〈nx, α〉 : αx < α < c

+} ⊆
Ux. For each n ∈ ω, let Xn = {x ∈ R : nx = n} and choose βn ∈ S with
βn > sup{αx : x ∈ Xn}. Then, Xn ⊆ St(〈βn, n〉,U). It is quicker to choose β ∈ S

such that βn < β for all n ∈ ω. Thus, if we put F ′′ = {〈β, n〉 : n ∈ ω}, then
R ⊆ St(F ′′,U). Let F = F ′ ∪ F ′′. Then, F is a countable subset of D such that
S1 = St(F,U). Since F ∩ (c+ × {n}) is finite for each n < ω, F is discrete and
closed in S1, which shows that S1 is discretely absolutely star-Lindelöf.
Let D be a discrete space of cardinality c and let

S2 = A((βD × (c+ + 1)) \ ((βD \ D)× {c+})) \ ((D × {c+})× {1}).

We show that S2 is not CCC-Lindelöf. Since |D| = c, we can enumerate D as
{dα : α < c}. For each α < c, let

Uα = ({dα} × [0, c
+])× {0, 1} \ {〈〈dα, c+〉, 0〉}.

Let us consider the open cover

U = {Uα : α < c} ∪ {[0, c)× βD} × {0, 1}

of S2. This contains an uncountable pairwise disjoint subfamily {Uα : α < c} and
since Uα is the only element of U containing 〈〈c+, dα〉, 0〉, S2 is not CCC-Lindelöf.
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We assume that S1 ∩ S2 = ∅. Let ϕ : R → {c+} × D × {0} be a bijection. Let
X be the quotient space obtained from the discrete sum S1 ⊕ S2 by identifying r

with ϕ(r) for each r ∈ R. Let π : S1⊕S2 → X be the quotient map. It is easy to
check that π(S2) is a regular-closed subset of X , however, it is not CCC-Lindelöf,
since it is homeomorphic to S2.
Now, we show that X is discretely absolutely star-Lindelöf. For this end, let

U be an open cover of X . Let

S′ = π((D × S × {0}) ∪ (βD × [0, c+)× {1})) ∪ π(T ),

where S is the set of all isolated point of c
+. Then, S′ is dense in X and every

dense subspace of X includes S′. Thus, it is suffices to show that there exists a
countable subset F ⊆ S′ such that F is discrete and closed inX and St(F,U) = X .
Since π(S1) is homeomorphic to S1, π(S1) is absolutely discretely star-Lindelöf,
and there is a countable subset F1 of S′ such that F1 is discrete and closed in
π(S1) and π(S1) ⊆ St(F1,U). Since π(S1) is a closed subset of X , F1 is discrete
and closed in X . On the other hand, since c

+ is locally compact and countably
compact, it follows from [4, Theorem 3.10.13] that βD× c

+ is countably compact.
Thus π(A(βD × c

+)) is acc by Lemma 2.1. Hence, there exists a finite subset F2
of S′ such that

π(A(βD × c
+)) ⊆ St(F2,U).

If we put F = F1∪F2, then F is a countable subset of S′ such that X = St(F,U).
Since F1 is discrete and closed in X and F2 is finite, F is discrete and closed in X ,
which completes the proof. �

Remark 1. Bonanzinga and Matveev [2] proved that a regular-closed subspace of
a star-Lindelöf space need not be CCC-Lindelöf. In fact, they used Example 2.32
from [4] under Continuum Hypothesis. Example 2.1 is stronger than theirs.

Remark 2. Example 2.2 also shows that regular-closed subspaces of discretely ab-
solutely star-Lindelöf (absolutely star-Lindelöf, star-Lindelöf, centered-Lindelöf,
linked-Lindelöf and CCC-Lindelöf) spaces need not be discretely absolutely star-
Lindelöf (absolutely star-Lindelöf, star-Lindelöf, centered-Lindelöf and linked-
Lindelöf and CCC-Lindelöf, respectively).

Song and Shi [9] proved that every centered-Lindelöf Tychonoff space is repre-
sentable as a closed Gδ subspace of a star-Lindelöf Tychonoff space. The following
theorem is a generalization of this fact.

Theorem 2.3. Every Hausdorff (regular, Tychonoff ) linked-Lindelöf space can
be represented as a closed Gδ subspace in a Hausdorff (regular, Tychonoff, re-
spectively) absolutely star-Lindelöf space.

Proof: First, we state a construction from [8, Theorem 2.1] which is a minor
improvement of [2, Theorem 1]. Let X be a linked-Lindelöf space, T (X) the
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topology of X and L the collection of all linked subfamilies of T (X), and consider
L as a discrete space. Let A = βL× ω and define S(X) = X ∪A. We topologize
S(X) as follows: the subspace A has the usual product topology and is an open
subspace of S(X); and a basic neighborhood of x ∈ X in S(X) is a set of the
form

GU,n = U ∪ (clβL L(U)× {m : n < m < ω})

for an open neighborhood U of x in X and n < ω, where

L(U) = {U ∈ L : (∃V ∈ U)(V ⊆ U)}.

Then, it was proved in [2, Theorem 1] and [8, Theorem 2.1] that S(X) is Hausdorff
(regular, Tychonoff) iff so is X and S(X) is star-Lindelöf if X is linked-Lindelöf.
Now, we modify the above construction. Let

R(S(X)) = A(S(X)) \ (X × {1}).

Let Xω = X × {0} and Xn = (βL × {n})× {0, 1} for each n < ω. Then

R(S(X)) = Xω ∪
⋃

n<ω

Xn.

Then, X can be represented asR(S(X)) as a closed-Gδ subspace, sinceX is home-
omorphic to Xω and A(S(X)) is Hausdorff (regular, Tychonoff) if X is Hausdorff
(regular, Tychonoff). Thus it suffices to show that A(S(X)) is absolutely star-
Lindelöf. Let U be an open cover of R(S(X)). Without loss of generality, we can
assume that U consists of basic open sets. Let

Dn = ((L × {n})× {0}) ∪ ((βL × {n})× {1})

for each n < ω and let
D =

⋃

n<ω

Dn.

Then, every dense subspace of R(S(X)) includes D. Thus, it suffices to show
that there exists a countable subset F ⊆ D such that St(F,U) = R(S(X)). Let
UX = {U ∩ Xω : U ∈ U}. Then, UX is an open cover of Xω. Since Xω is
homeomorphic to X and X is linked-Lindelöf, UX has a σ-linked open refinement⋃
{Um : m < ω}. Let

F ′ = {〈〈Um, n〉, i〉 : m < ω, n < ω, i = 0, 1} ⊆ D.

To show that Xω ⊆ St(F ′,U), let x ∈ X be fixed. Then there exist m, n < ω,
V ∈ Um and U ∈ T (X) such that

〈x, 0〉 ∈ V ⊆ G′
U,n = (U × {0}) ∪ (clβL L(U)× {m : n < m < ω} × {0, 1}) ∈ U .
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Since 〈〈Um, n+1〉, 1〉 ∈ F ′ ∩G′
U,n, 〈x, 0〉 ∈ St(F ′,U). Hence, Xω ⊆ St(F ′,U). On

the other hand, since Xn is compact for each n < ω, it is not difficult to find a
finite subset Fn ⊆ Dn such that Xn ⊆ St(Fn,U). If we put F = F ′ ∪

⋃
n<ω Fn,

then F is a countable subset of D and R(S(X)) = St(F,U), which completes the
proof. �

Since every star-Lindelöf space is centered-Lindelöf and every centered-Lindelöf
space is linked-Lindelöf, the next corollary follows from Theorem 2.3.

Corollary 2.4 (Song and Shi [9]). Every Hausdorff (regular, Tychonoff ) cen-
tered-Lindelöf (star-Lindelöf ) space can be embedded in a Hausdorff (regular,
Tychonoff, respectively) absolutely star-Lindelöf space as a closed-Gδ subspace.
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