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Relative normality and product spaces

Takao Hoshina, Ryoken Sokei

Abstract. Arhangel’skĭı defines in [Topology Appl. 70 (1996), 87–99], as one of various
notions on relative topological properties, strong normality of A in X for a subspace A

of a topological space X, and shows that this is equivalent to normality of XA, where
XA denotes the space obtained from X by making each point of X \ A isolated. In
this paper we investigate for a space X, its subspace A and a space Y the normality
of the product XA × Y in connection with the normality of (X × Y )(A×Y ). The cases
for paracompactness, more generally, for γ-paracompactness will also be discussed for
XA × Y . As an application, we prove that for a metric space X with A ⊂ X and a
countably paracompact normal space Y , XA × Y is normal if and only if XA × Y is
countably paracompact.

Keywords: strongly normal in, normal, γ-paracompact, product spaces,
weak C-embedding

Classification: Primary 54B10; Secondary 54B05, 54C20, 54C45, 54D15, 54D20

1. Introduction

Throughout this paper all spaces are assumed to be Hausdorff. Let γ denote
an infinite cardinal, and N the set of natural numbers.
Let X be a space and A a subspace of X .
As is known, A is said to be C∗-embedded (respectively C-embedded) in X

if every bounded real-valued (respectively real-valued) continuous function on A
can be extended to a continuous function over X .
Next we recall some relative topological properties in Arhangel’skĭı [2]. We say

that A is strongly normal in X if for every pair E, F of disjoint closed subsets of
A there exist disjoint open subsets U and V of X such that E ⊂ U and F ⊂ V .
The subspace A is weakly C-embedded in X if for every real-valued continuous
function f on A there exists a real-valued function on X which is an extension of
f and continuous at each point of Y .
For a space X and a subspace A of X let XA denote the space obtained from

the space X , with the topology generated by {U |U is open in X or U ⊂ X \A}.
Hence A is a closed subspace of XA and points in X \A are isolated. As is seen in
[2], the space XA is often useful to describe several relative topological properties.
Indeed, the following are shown in [2]: (1)XA is normal if and only if A is strongly
normal in X if and only if A is normal itself, and is weakly C-embedded in X ,
(2) A is weakly C-embedded in X if and only if A is C∗-embedded in XA.
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On the other hand, in a joint paper [9] of the first author with Yamazaki
the notion of weak C-embedding was characterized by extending disjoint cozero-
sets of a subspace to disjoint open sets of the whole space. And it was applied
there for a space X , a subspace A of X and a space Y to describe weak C-
embedding of A × Y in the product XA × Y ; actually, it was shown that if Y is
compact Hausdorff, A×Y is C∗-embedded in XA ×Y if and only if A×Y is C∗-
embedded in (X×Y )(A×Y ), that is, A×Y is weakly C-embedded in X×Y . Being

motivated by this result, our main concern in this paper is to study normality of
the product XA × Y in relation to normality of (X × Y )(A×Y ) (or, equivalently,

strong normality of A × Y in X × Y ). Namely we prove

Theorem 1.1. For a space X , a subspace A of X and a space Y , the product
XA × Y is normal if and only if (X × Y )(A×Y ) is normal and the following

condition (∗) holds:

(∗) for every closed subset E of XA × Y disjoint from A × Y there exists an
open subset U of XA × Y such that E ⊂ U and U ∩ (A × Y ) = ∅.

As a corollary to this result we have that for a space X , a subspace A of X
and a compact Hausdorff space Y , XA ×Y is normal if and only if (X ×Y )(A×Y )

is normal. Moreover, using condition (∗) above we prove analogous results for
γ-collectionwise normality or γ-paracompactness. In particular, the case γ = ω
is applied to obtain further the following theorem; putting A = X , we have the
well-known theorem due to Morita [14] (for the proof see [10]) and Rudin and
Starbird [16].

Theorem 1.2. Let X be a metric space, A a subspace of X and Y a normal and
countably paracompact space. Then XA × Y is normal if and only if XA × Y is
countably paracompact.

For undefined notation and terminology see Engelking’s book [6].

2. Preliminaries

The following theorem due to Arhangel’skĭı [2] mentioned in the introduction
is useful.

Theorem 2.1 ([2]). For a subspace A of a space X , the following statements are
equivalent:

(1) XA is normal,

(2) A is strongly normal in X ,
(3) A is normal and A is weakly C-embedded in X .

Weak C-embedding was characterized in [9] as follows.
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Theorem 2.2 ([9]). Let A be a subspace of a space X . Then A is weakly C-
embedded in X if and only if for every pair G0, G1 of disjoint cozero-sets in A
there exist disjoint open subsets H0, H1 of X such that Gi ⊂ Hi (i = 0, 1).

By this result we see that if either A is dense in X or A is z-embedded in X ,
then A is weakly C-embedded in X ([5], [9]); a subspace A of a space X is said to
be z-embedded in X if every zero-set Z of A can be written as Z = Z ′ ∩A with a
zero-setZ ′ ofX . It is known that every cozero-set of a space or a Lindelöf subspace
of a Tychonoff space is z-embedded. Also, observe the following implications:

C∗-embedding ⇒ z-embedding ⇒ weak C-embedding.

The next two results show when a subspace A × Y is weakly C-embedded in
X × Y for a space X , a subspace A of X and a metric space Y . The first one is
essentially due to Kodama [11].

Theorem 2.3 ([11]). Let X be a normal space, A a closed subspace of X and
Y a metric space. If A× Y is normal and countably paracompact, then A× Y is
z-embedded in X × Y , hence, weakly C-embedded in X × Y .

In case A × Y is not assumed to be normal, we have the following.

Theorem 2.4. Let A be an arbitrary subspace of a hereditarily normal space X ,
and Y a metric space. Then A × Y is weakly C-embedded in X × Y .

Proof: We show that any two disjoint open sets of A × Y are separated by
disjoint open sets of X ×Y , which implies weak C-embedding of A×Y in X ×Y
by Theorem 2.2. Let G0 and G1 be disjoint open sets of A×Y . Let B =

⋃
n∈N Bn

be a σ-locally finite open base for Y , where each Bn is locally finite. Let Bn =
{Bnλ

∣∣λ ∈ Λn}. Define for n ∈ N and λ ∈ Λn

H0nλ =
⋃

{O
∣∣ O is open in A, O × Bnλ ⊂ G0}.

Then H0nλ and pA

((
A × Bnλ

)
∩ G1

)
are disjoint open subsets of A. Since X is

hereditarily normal, there exists an open set W 0
nλ of X such that

H0nλ ⊂ W 0
nλ, W 0

nλ ∩ pA

((
A × Bnλ

)
∩ G1

)
= ∅.

For each n ∈ N let us put U0n =
⋃
{W 0

nλ×Bnλ

∣∣λ ∈ Λn}. Then U0n is an open set

of X×Y and we have G0 ⊂
⋃

n∈N U0n and U0n∩G1 = ∅ for every n ∈ N. Similarly,

we can find an open set U1n of X × Y for each n ∈ N so that G1 ⊂
⋃

n∈N U1n and

U1n ∩ G0 = ∅ for every n ∈ N. Hence, as is well-known, G0 and G1 are separated
by open sets of X × Y . This completes the proof. �

It was shown in [9] that every subspace of a space X is weakly C-embedded in
X if and only if X is hereditarily normal.
In connection with Theorems 2.3 and 2.4, let us observe the following two

examples.
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Example 2.5. (1) (Michael [12]) Let R, Q and P be the real line, the set of
rationals and the set of irrationals, respectively. Then RQ is known as the Michael
line, and it is hereditarily normal. Since Q × P is Lindelöf, it is z-embedded in
RQ × P, but is not C∗-embedded as was shown by Morita [15].
(2) (Vaughan [17]) Let D(ω1) denote the set ω1 with the discrete topology.

Let D̂(ω1) denote the space obtained from the space ω1 + 1 with the usual order

topology by letting all points except ω1 be isolated. That is, D̂(ω1) = (ω1+1){ω1}.

Let X = �ωD̂(ω1) denote the box product of countably many copies of D̂(ω1),
and Y = D(ω1)

ω denote the usual product of countably many copies of D(ω1).
Then X is hereditarily paracompact and Y is metrizable. Put

A = X \ Y, ∆(Y ) =
{
〈x, x〉

∣∣ x ∈ Y
}
.

Then A×Y and ∆(Y ) are disjoint closed sets of X × Y and cannot be separated
by open sets, which shows X × Y is not normal ([17]).
By Theorem 2.4 we see that A × Y is weakly C-embedded in X × Y . Since

A contains a closed subset homeomorphic to X , A × Y is not normal. Hence, in
view of Theorem 2.3, it may be of interest to see whether A × Y is z-embedded
in X × Y , but this is unknown to the authors. However, we can show further
that A × Y is not C∗-embedded in X × Y . To prove this, first note that Y ∼= (is
homeomorphic to) Y 2. Hence, if we show the fact below, by the same argument
of Morita [15] we can conclude that A × Y is not C∗-embedded in X × Y .

Fact. ∆(Y ) is a zero-set of X × Y .

Proof: Since the box topology is stronger than the usual topology, it suffices to

show that ∆(Y ) is a zero-set of D̂(ω1)
ω × D(ω1)

ω .

For each point 〈x, y〉 ∈ D̂(ω1)
ω × D(ω1)

ω \∆(Y ), define

n(x, y) = min
{
k

∣∣xk 6= yk

}
.

Put
Hm =

{
〈x, y〉 ∈ D̂(ω1)

ω × D(ω1)
ω \∆(Y )

∣∣n(x, y) = m
}
.

Then we have

D̂(ω1)
ω × D(ω1)

ω \∆(Y ) =
⋃

m∈N Hm,

m 6= m′ ⇒ Hm ∩ Hm′ = ∅.

Claim. Hm is an open and closed subset of D̂(ω1)
ω × D(ω1)

ω .

Proof of Claim: Let 〈x, y〉 ∈ Hm. Since n(x, y) = m, we have x1 = y1, . . . ,
xm−1 = ym−1 < ω1.
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Case (i). xm > ym. Put

U = {x1} × · · · × {xm−1} × (ym, ω1]× D̂(ω1)× · · · ,

V = {y1} × · · · × {ym−1} × {ym} × D(ω1)× · · · .

Then 〈x, y〉 ∈ U × V ⊂ Hm.

Case (ii). xm < ym. Put

U = {x1} × · · · × {xm−1} × {xm} × D̂(ω1)× · · · ,

V = {y1} × · · · × {ym−1} × {ym} × D(ω1)× · · · .

Then 〈x, y〉 ∈ U × V ⊂ Hm.

Hence, in either case Hm is open in D̂(ω1)
ω × D(ω1)

ω .

For each 〈y, y〉 ∈ ∆(Y ), put

U = {y1} × · · · × {ym} × D̂(ω1)× · · · ,

V = {y1} × · · · × {ym} × D(ω1)× · · · .

Then (U ×V )∩Hm = ∅. Hence, ∆(Y )∩Hm = ∅, which shows that Hm is closed
in X × Y .

It follows that Hm is a cozero-set, therefore,
⋃

m∈N Hm is a cozero-set of

D̂(ω1)
ω × D(ω1)

ω . Hence ∆(Y ) is a zero-set of X × Y . This completes the
proof. �

3. Proof of Theorem 1.1

First we prove

Lemma 3.1. Let X be a space, A a subspace of X and Y a space. If XA × Y
is normal, then (X × Y )(A×Y ) is normal.

Proof: Let E and F be disjoint closed subsets of A × Y . Then they are closed
also in XA × Y and disjoint. Hence, there exist disjoint open subsets U and
V of XA × Y such that E ⊂ U and F ⊂ V . Define U ′ = Int(X×Y )U and

V ′ = Int(X×Y )V , where IntZW denotes the interior of W in the space Z. Then

U ′ and V ′ are disjoint open in X × Y and so in (X × Y )(A×Y ), and we have

E ⊂ U ′ and F ⊂ V ′. Hence, A × Y is strongly normal in X × Y . Hence by
Theorem 2.1 (X × Y )(A×Y ) is normal. This completes the proof. �
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Remark. (R × P)(Q×P) is normal, but RQ × P is not normal. The converse of

the lemma, therefore, need not hold.

Proof of Theorem 1.1: From Lemma 3.1 the “only if” part easily follows. To
prove the “if” part, assume that (X×Y )(A×Y ) is normal and condition (∗) holds.
Let E, F be a pair of disjoint closed subsets of XA × Y . Since A × Y is strongly
normal in X × Y by Theorem 2.1, there exist disjoint open subsets U and V of
X×Y such that E∩(A×Y ) ⊂ U and F ∩(A×Y ) ⊂ V . Put D = (E\U)∪(F \V ).
Then D is a closed subset of X × Y and D ∩ (A × Y ) = ∅. Then by (∗), there
exists an open subset W of XA × Y such that A × Y ⊂ W and W ∩ D = ∅.
Put U1 = U ∩ W and V1 = V ∩ W . Then we have

(A × Y ) ∩ E ⊂ U1, U1 ∩ F = ∅, and (A × Y ) ∩ F ⊂ V1, V1 ∩ E = ∅.

Then E\U1 and F\V1 are disjoint closed subsets of (XA\A)×Y . Since (XA\A)×Y
is normal, there exist disjoint open subsets U2 and V2 of (XA \A)× Y such that
E \ U1 ⊂ U2 and F \ V1 ⊂ V2. Therefore, U1 ∪

(
U2 \ V1

)
and V1 ∪

(
V2 \ U1

)

are disjoint open subsets of XA × Y , which satisfy E ⊂ U1 ∪
(
U2 \ V1

)
and

F ⊂ V1 ∪
(
V2 \ U1

)
. Hence XA × Y is normal. This completes the proof. �

The following is proved in Burke and Pol [4].

Theorem 3.2 ([4]). Let A and X be subsets of R with A ⊂ X and let Y be a
metric space. Then XA × Y is normal if and only if condition (∗) holds.

Since X×Y is a metric space, (X×Y )(A×Y ) is normal. Therefore, this theorem

immediately follows from Theorem 1.1.
The following result was formulated in [9] without proof.

Theorem 3.3 ([9]). Let A be a subset of a spaceX and Y be a compact Hausdorff
space. Then XA × Y is normal if and only if (X × Y )(A×Y ) is normal.

Proof: Since the projection pXA
: XA × Y → XA is a closed map, condition (∗)

in Theorem 1.1 is easily satisfied. Hence the theorem follows. �

Recall that a space X is γ-collectionwise normal if for every discrete collection
{Eα |α < γ} of closed subsets there exists a disjoint collection {Gα |α < γ} of
open subsets such that Eα ⊂ Gα for each α < γ.
A subspace A of a space X is said to be strongly γ-collectionwise normal in

X if for every discrete collection {Eα |α < γ} of closed subsets of A there is a
disjoint collection {Uα |α < γ} of open subsets of X such that Eα ⊂ Uα for each
α < γ ([9]).
It was proved in [9] that XA is γ-collectionwise normal if and only if A is

strongly γ-collectionwise normal in X . With this result similarly to Theorem 1.1
we can prove the following.
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Theorem 3.4. For a space X , a subspace A of X and a space Y , XA × Y is
γ-collectionwise normal if and only if (X × Y )(A×Y ) is γ-collectionwise normal

and condition (∗) in Theorem 1.1 holds.

A space X is γ-paracompact if every open cover of X of cardinality not greater
than γ has a locally finite open refinement.

Theorem 3.5. If XA × Y is γ-paracompact, then (X × Y )(A×Y ) is γ-para-

compact. Furthermore, if XA×Y satisfies condition (∗) in Theorem 1.1, then the
converse holds.

Proof: Assume XA × Y is γ-paracompact. Let U be an open cover of (X ×
Y )(A×Y ) of cardinality not greater than γ. Put

U ′ =
{
U ∈ U

∣∣U ∩ (A × Y ) 6= ∅
}
.

Then
⋃
{Int(X×Y ) U

∣∣ U ∈ U ′} ⊃ A × Y . Hence {XA × Y \ A × Y } ∪ U ′ is an

open cover of XA × Y of cardinality not greater than γ. Since XA × Y is γ-
paracompact, there exists a locally finite open cover V of XA × Y which refines
U . Put V ′ = {V ∈ V

∣∣ V ∩ (A × Y ) 6= ∅}. Then the collection

V ′ ∪
{
{〈x, y〉}

∣∣ 〈x, y〉 /∈
⋃

V ′}

is a locally finite open cover of (X×Y )(A×Y ) and refines U . Hence (X×Y )(A×Y )
is γ-paracompact.
To prove the converse under (∗), assume that (X ×Y )(A×Y ) is γ-paracompact

and (∗) holds. Let U be an open cover of XA×Y of cardinality not greater than γ.
Then U is an open cover of (X × Y )(A×Y ) as well. By assumption there exists a

locally finite open cover V of (X × Y )(A×Y ) refining U . Put

G =
{
〈x, y〉 ∈ X × Y

∣∣V is locally finite at 〈x, y〉 in the product X × Y
}
.

Then G is open in X × Y and G ⊃ A × Y . Put V ′ =
{
G ∩ Int(X×Y ) V

∣∣V ∈ V
}
.

Then we have
⋃
V ′ ⊃ A × Y , and V ′ refines U and is locally finite at each

〈x, y〉 ∈
⋃
V ′ in X × Y . By (∗) there exist open subsets O1 and O2 in XA × Y

such that
A × Y ⊂ O1 ⊂ O1 ⊂ O2 ⊂ O2 ⊂

⋃
V ′.

For every x ∈ X \ A, let Px be a locally finite open cover of Y such that the
collection

{
{x} × P

∣∣ P ∈ Px

}
refines U . Then the collection

{
({x} × P ) \ O1

∣∣ x ∈ X \ Y, P ∈ Px

}
∪

{
V ∩ O2

∣∣V ∈ V ′}

is a locally finite open cover of XA × Y which refines U . Thus, XA × Y is γ-
paracompact. This completes the proof.

�
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4. Proof of Theorem 1.2

First we prove

Theorem 4.1. Let A be a subset of a space X and Y a space. Suppose that
the product A × Y is γ-paracompact. If XA × Y is normal, then XA × Y is
γ-paracompact.

Proof: Assume that XA × Y is normal. Then (X × Y )(A×Y ) is normal by

Theorem 1.1. Hence A × Y is normal and weakly C-embedded in X × Y by
Theorem 2.1. Since A × Y is γ-paracompact, by [9, Lemma 4.6] (X × Y )(A×Y )

is γ-paracompact. Since XA × Y satisfies (∗), XA × Y is γ-paracompact by
Theorem 3.5. This completes the proof. �

Corollary 4.2. Let A be a subset of a space X and Y a space. Suppose that the
product A × Y is countably paracompact. If XA × Y is normal, then XA × Y is
countably paracompact.

Proof of Theorem 1.2: Let A be a subspace of a metric space X , and Y a
normal and countably paracompact space. To prove the “only if” part, assume
XA ×Y is normal. Since A×Y is closed in XA ×Y , A×Y is also normal. Hence
by Morita, Rudin-Starbird’s theorem ([14], [16]), A×Y is countably paracompact.
Hence XA × Y is countably paracompact by Corollary 4.2.

To prove the converse, assume that XA × Y is countably paracompact. Then
similarly to above we have that A × Y is countably paracompact and normal.
Then by [11] A × Y is z-embedded in A × βY , where βY is the Čech-Stone
compactification of Y . Since XA ×βY is paracompact, A×βY is C-embedded in
XA ×βY . It follows that A×Y is z-embedded in XA ×Y , and hence it is weakly
C-embedded in XA × Y . This easily implies that A × Y is weakly C-embedded
in X × Y . Hence (X × Y )(A×Y ) is normal.

We next show that property (∗) in Theorem 1.1 is satisfied. Let {Bn} be
a sequence of locally finite open covers of X such that

{
St(x,Bn) |n ∈ N

}
is

a neighborhood base at each point x in X . Let Bn =
{
Bnα |α ∈ Ωn

}
. Let us put

W (α1, · · · , αn) =
⋂{

Biαi

∣∣ i = 1, . . . , n
}
, for αi ∈ Ωi; i = 1, . . . , n.

To prove (∗), let E be a closed subset of XA ×Y such that E ∩ (A×Y ) = ∅. Put

G(α1, · · · , αn) =
⋃{

O
∣∣ O is open in Y, (W (α1, · · · , αn)× O) ∩ E = ∅

}
.

Then we have

G(α1, · · · , αn) ⊂ G(α1, · · · , αn, αn+1)
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for αi ∈ Ωi, i = 1, . . . , n, n+ 1, and

{
(W (α1, · · · , αn) ∩ A)× G(α1, · · · , αn)

∣∣ αi ∈ Ωi, i = 1, . . . , n; n ∈ N
}

covers A×Y . Since A× Y is normal and countably paracompact, by Morita [13]
(see [8]) there exists a cozero-set U(α1, · · · , αn) of Y such that

U(α1, · · · , αn) ⊂ G(α1, · · · , αn)

and

{
(W (α1, · · · , αn) ∩ A)× U(α1, · · · , αn)

∣∣ αi ∈ Ωi, i = 1, . . . , n; n ∈ N
}

covers A × Y . Put

L =
⋃{

W (α1, · · · , αn)× U(α1, · · · , αn)
∣∣ αi ∈ Ωi, i = 1, . . . , n; n ∈ N

}
.

Then L is a cozero-set of X×Y and we have L ⊃ A×Y, L∩E = ∅. Since XA×Y
is countably paracompact, by [7] there exists an open subset H of X × Y such
that A × Y ⊂ H ⊂ H ⊂ L. Hence A × Y and E are separated by open sets of
XA × Y . This completes the proof of the theorem. �

The proof of the “if” part of Theorem 1.1 yields further the following result
which seems of interest in itself.

Theorem 4.3. Let A be a subset of a metric space X and Y a normal and γ-
paracompact space. Then (X × Y )(A×Y ) is γ-paracompact if and only if A × Y

is normal.

Proof: To prove the “if” part, assume that A × Y is normal. Since Y is
normal and γ-paracompact, so is A × Y . Hence (A × Y ) × Iγ is normal γ-
paracompact, that is, A × Iγ ×Y is normal, where I = [0, 1]. Hence, as is
shown in the proof of Theorem 1.2, (X × (Iγ ×Y ))(A×(Iγ ×Y )) is normal. Since

(X × (Iγ ×Y ))(A×(Iγ ×Y ))
∼= ((X ×Y )× Iγ)((A×Y )×Iγ), ((X ×Y )× Iγ)((A×Y )×Iγ)

is normal. Thus, by Theorem 3.3 (X × Y )(A×Y ) × I
γ is normal. Therefore, as is

well-known, (X × Y )(A×Y ) is γ-paracompact (see [6]). This completes the proof.
�

Example 4.4. The condition “X is metric” cannot be excluded from Theo-
rem 1.2. In fact, there exist compact spaces X and Y , and a subset A of X
such that A× Y is normal and countably paracompact and XA × Y is countably
paracompact, but not normal. We use Bing’s example G [3]. Let P(ω1) be the
power set of ω1 and

X =
{
f

∣∣ f : P(ω1) −→ {0, 1}
}
.
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For every α ∈ ω1, let us define a function fα : P −→ {0, 1} for P ∈ P(ω1) by

fα(P ) =

{
1 if α ∈ P,

0 if α /∈ P.

Put A = {fα |α < ω1}. Then Bing’s example G is precisely the space XA. It
is well-known that XA is normal and countably paracompact, but it is not ω1-
collectionwise normal. Let Y be the one-point compactification of the discrete
space of CardA. Since XA is countably paracompact, A × Y is countably para-
compact. Since A is w(Y )-paracompact, A × Y is normal. However, since XA is
not ω1-collectionwise normal, by Alas [1] XA × Y is not normal.
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