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Kikkawa loops and homogeneous loops

Michihiko Kikkawa

Abstract. In H. Kiechle’s publication “Theory of K-loops” [3], the name Kikkawa loops
is given to symmetric loops introduced by the author in 1973. This concept started from
an analogical imagination of sum of vectors in Euclidean space brought up on a sphere.
In 1975, this concept was extended by him to the more general concept of homogeneous
loops, and it led us to a non-associative generalization of the theory of Lie groups.
In this article, the backstage of finding these concepts will be disclosed from the

viewpoint how a new mathematical concept appears and grows up in imagination of a
mathematician.

Keywords: loops, Lie triple algebras, symmetric spaces

Classification: 20N05, 05B07, 53C35

1. Geodesic local loops

It was a primitive question that occurred in the author’s mind: How the concept
of sum x + y of vectors x and y in a Euclidean plane could be generalized into
more general spaces which are not Euclidean?
To do this, some concepts corresponding to “parallelism” and “lines” should

be valid for the general spaces. So, he considered that the space should have some
concepts of “parallelism of tangent vectors” and “geodesics”, that is, it should be
a manifold with a linear connection ∇.
Let G be a linearly connected manifold. In some neighborhood of a fixed

point e, let c(t) be a geodesic curve starting from e = c(0) to a certain point x.
For any point y joined by a geodesic curve from e tangent to a vector Ye at e,

by parallel displacement of Ye to x along c(t), we can define a local product
xy = µ(x, y) of two points x and y in the following way [4]:

µ(x, y) = Expx ◦τc(e, x) ◦ Exp−1e y,

where τc(e, x) denotes the parallel displacement of vectors from e to x along the
curve c(t).
The product xy = µ(x, y) of x and y is not always commutative nor associative.

Nevertheless, it forms a local loop with the unit e, that is;
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µ(e, x) = µ(x, e) = x for any x in a neighborhood of e.
Later, it used to be called a geodesic local loop or a geodesic loop on linearly

connected manifolds.
It is easy to see that Lie groups with the (−)-connection of E. Cartan are

associative examples of geodesic local loops, in which any one-parameter subgroup
is a geodesic curve.
This concept of local loops appeared in his mind in 1963, and he told it to his

supervisor, the late Professor K. Morinaga. Then, Professor Morinaga suggested
him that non-associativity of the loop must be related to the curvature of the
linear connection ∇ of the manifold.
Now, denote Lx the left translation by x, that is Lxy = xy. Then, each left

translation is a local diffeomorphism.
Non-associativity of the local loop µ(x, y) can be checked by the difference

between
x(yz) = LxLyz and (xy)z = Lxyz,

that is, the difference of LxLy from Lxy.

We call a local diffeomorphism Lx,y = L−1
xy LxLy around the unit e a left inner

mapping.
To certify the expectation of his supervisor, he tried several calculations on

geodesic loops and found the following [4]:

Theorem 1.1. The left inner mapping group generated by left inner mappings
{Lx,y} is coincident with the local holonomy group at e of the linear connection∇.

2. Geodesic loops on symmetric spaces

At that stage the author wanted to get:

(1) some significant examples of geodesic loops besides of Lie groups;
(2) axiomatic algebraic systems induced by some geodesic loops on some class
of spaces.

On an autumn day in 1971, he had handed a book titled “Symmetric Spaces I”
by O. Loos [15], in which he found an axiomatic definition of Symmetric Spaces.
The definition was presented by means of reflections of symmetric spaces [15].

A point brought by a reflection of a point y across another point x is denoted
by x ∗ y in [15]. Here we denote Sxy instead of x ∗ y. Then Loos’s definition of
symmetric spaces is given by the following:

Definition 2.1. A differentiable manifold G is said to be a symmetric space if,
for each x ∈ G, there is a diffeomorphism Sx : G → G, called the reflection at x,
such that

(R.1) Sxx = x,
(R.2) Sx(Sxy) = y,
(R.3) Sx(Syz) = S(Sxy)(Sxz), and
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(R.4) for each x, Sxy = y implies y = x in some neighborhood of x.

In this definition, assumption (R.3) means that all reflections are automor-
phisms of the reflection system {Sx|x ∈ G} on G.
Indeed, the reflection Sx at x induces the reflection along geodesic curves

across x, with respect to the canonical connection ∇ of the symmetric space.
The author recognized at once that the multiplication of the geodesic loop in

any symmetric space might be expressed in terms of the reflections.

Definition 2.2. Let G be a symmetric space [5], [6]. In a neighborhood U of e,
assume that there exists

√
x ∈ U for x ∈ U such that

S√

xx = e.

Then, for y ∈ U , the multiplication µ(x, y) of x and y can be defined as

µ(x, y) := S√

xSey = SS√

x
eS√

xy.

The element
√

x is the middle point of the geodesic curve joining e with x,
hence it exists uniquely in a neighborhood U of e.
The local binary operation (U, µ) forms a local loop, and has some relations

with the reflection, i.e.:
The left translation Lx by x is given by

Lx = S√

xSe.

The inverse element is given by

x−1 = Sex.

For the inverse element x−1, we have

√
x−1 = Se

√
x.

By Loos’s theory of symmetric space, we can show that the multiplication µ
above is coincident with the geodesic local loop at e with respect to the canonical
connection ∇ of the symmetric space.

3. Symmetric loops (Kikkawa loops)

By checking up geodesic local loops µ on symmetric spaces above, we can find
the following algebraic properties [5], [6], [9]:
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Theorem 3.1. At any fixed point e in a symmetric space G, the geodesic local
loop (U, µ), xy = µ(x, y) on some neighborhood U of e, satisfies the following
relations:

(Left inverse property) The inverse of a left translation Lx is a left translation

Lx−1 , i.e.

(L.I.) L−1
x = Lx−1 .

(Automorphic inverse property) The inversion J = Se : x 7−→ x−1 is an auto-
morphism of µ, i.e.

(A.I.) (xy)−1 = x−1y−1.

(Left homogeneity property) Any left inner mapping Lx,y is an automorphism

of µ;

(L.H.) Lx,yµ(u, v) = µ(Lx,yu, Lx,yv).

Now we are in position to introduce an algebraic system defined by these ax-
ioms.

Definition 3.1. An abstract algebraic binary system (G, µ) with a unit element
e is said to be a symmetric loop if it has the left inverse property (L.I.), the
automorphic inverse property (A.I.) and the left homogeneity property (L.H.)
([7], [9]).

Remark 1. Recently, Prof. Hubert Kiechle published a book “Theory of K-
Loops” [3], in which he called the symmetric loops by the name of Kikkawa loops ,
and set his school’s K-Loops as an special kind of Kikkawa loops.

Example 1. Let Sn (resp. Hn) be the space of all real symmetric (resp. Hermit-
ian) matrices of order n. For any X, Y ∈ Sn (resp. Hn), set the multiplication µ
by:

µ(X, Y ) :=
√

X Y
√

X.

Then µ forms a symmetric loop with the unit In.

Example 2. K-loops are Bol loops which satisfy the automorphic inverse pro-
perty. By Theorem (6.7) in Kiechle’s Book [3], any K-loop is a symmetric loop.

4. Homogeneous loops

Symmetric spaces are spaces with structures invariant under any reflection, so
that any reflection is an automorphism of the space.
In this sense, the automorphic inverse property (A.I.) characterizes the “sym-

metry” in the definition of symmetric loops.
In fact, the inversion J is an reflection across the unit e, and the automorphic

inverse property asserts that the inversion is an automorphism of the multiplica-
tion µ.
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On the other hand, the left inverse property (L.I.) is an extensive property
valid for all geodesic loops.
Now we consider the meaning of the left homogeneity property. This can be

understood to be the property characterizing the “homogeneity” of the spaces,
because it asserts that the two kind of translations Lxy and LxLy differ by an
automorphism of the multiplication µ wherever x, y in G.
Thus, in 1974 the author had arrived at the concept of “homogeneous loops”

which are not always symmetric, that is:

Definition 4.1. A loop (G, µ) with the left inverse property (L.I.) and the left
homogeneity property (L.H.) is called a homogeneous loop [7].

Example 3. Any group (G, µ) is a homogeneous loop with the trivial left inner
mapping group, because any left inner mapping Lx,y is the identity map on G.

Example 4. Any symmetric loop is a homogeneous loop. Any group (G, µ)
which forms also a symmetric loop must be an Abelian group.

5. Homogeneous left Lie loops and tangent Lie triple algebras

Since the definition of homogeneous loops depends only on their left transla-
tions, to develop the theory, the underlying algebraic system should not only be
loops but also left loops , that is to say, the right translations need not be bijective.

Definition 5.1. A homogeneous left loop is a left loop (G, µ) with the left inverse
property (L.I.) and the left homogeneity property (L.H.).
Let (G, µ) be a homogeneous left loop whose underlying space G is a differen-

tiable manifold and the multiplication µ is differentiable. Then we call (G, µ) a
homogeneous left Lie loop.

The main results on homogeneous left Lie loops are the following [7], [14]:

Theorem 5.1. Let (G, µ) be a connected homogeneous left Lie loop and K the
left inner mapping group. Then, for the product space A = G × K, G can be
considered as a reductive homogeneous space A/K with the canonical connection
∇ (cf. [16]), so that the torsion tensor S and the curvature tensorR satisfy∇S = 0
and ∇R = 0.
In this case, the tangent space G at the unit e forms a Lie triple algebra under

the two kinds of products;

[X, Y ] := Se(X, Y ) and

[X, Y, Z] := Re(X, Y )Z for X, Y, Z ∈ G.

Example 5. Any connected Lie group (G, µ) is a typical example of a homoge-
neous left Lie loops. The canonical connection ∇ is the (−)-connection of Cartan
so that R = 0 and the Lie triple algebra is reduced to the Lie algebra (G, [X, Y ]).
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Example 6. Let (G, µ), xy = µ(x, y) be a Lie group. Consider a class of multi-
plications {µp} on G given by

µp(x, y) := xp+1yx−p, for any x, y ∈ G.

Then each µp forms a homogeneous left Lie loop on G. We call them Akivis left
loops on the Lie group G. This multiplication µp was given by the author in [11].
If p = 0 the multiplication µ0 is reduced to the original Lie group multiplica-

tion µ.
The tangent Lie triple algebra Gp of an Akivis left loop µp is given by

[X, Y ]p = (1 + 2p)[X, Y ],

[X, Y, Z]p = −p(1 + p)[[X, Y ]Z],

where [X, Y ] is the bracket of the Lie algebra G of the Lie group G (cf. [1], [12],
[13], [18]).

Definition 5.2. A homogeneous left Lie loop (G, µ) is said to be geodesic if
the multiplication µ coincides with the multiplication of the geodesic loop at the
unit e, with respect to the canonical connection ∇.
Remark 2. Any Lie group is a geodesic homogeneous Lie loop, and any sym-
metric Lie loop is geodesic (cf. [7]).

6. Non-associative generalization of the theory of Lie groups

Non-associative generalization of the well-known theory of Lie groups and Lie
algebras has been established consistently by the author. By means of the con-
cept of homogeneous systems (the definition is not mentioned here, cf. [10]), the
theory has been developed including the theory of subloops and subalgebras of
the tangent algebras, as the theory of geodesic homogeneous left Lie loops [7].
Let (G, µ) be a homogeneous left Lie loop which is assumed to be geodesic,

that is, the multiplication µ coincides with the geodesic local loop of the canonical
connection, in some neighbourhood of the unit e.
For instance, the following results have been shown by the author ([7], [8], [14]):

Theorem 6.1. Any homomorphism of geodesic homogeneous left Lie loops in-
duces a homomorphism of their tangent Lie triple algebras.

Two geodesic homogeneous left Lie loops are locally isomorphic if and only if

their tangent Lie triple algebras are isomorphic.

Moreover, if the geodesic homogeneous left Lie loops are analytic and the un-

derlying manifolds are connected and simply connected, then they are isomorphic

if and only if their tangent Lie triple algebras are isomorphic.
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Theorem 6.2. Let H be an invariant left Lie subloop of a geodesic homogeneous
left Lie loop G. Then, its tangent Lie triple algebra H is an invariant Lie triple

subsystem of the tangent Lie triple algebra G of G.
Conversely, any invariant subsystem H of G is the tangent Lie triple algebra

of an invariant left Lie subloop H of G.
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