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ω1-generated uniserial modules over chain rings

Jan Žemlička

Abstract. The purpose of this paper is to provide a criterion of an occurrence of uncount-
ably generated uniserial modules over chain rings. As we show it suffices to investigate
two extreme cases, nearly simple chain rings, i.e. chain rings containing only three two-
sided ideals, and chain rings with “many” two-sided ideals. We prove that there exists
an ω1-generated uniserial module over every non-artinian nearly simple chain ring and
over chain rings containing an uncountable strictly increasing (resp. decreasing) chain
of right (resp. two-sided) ideals. As a consequence we describe right steady serial rings.

Keywords: chain rings, serial rings, uniserial modules

Classification: Primary 16L30; Secondary 16D20, 16D80

Introduction

Obviously, every right ideal of a chain ring is a uniserial right module. The
question is when there exists a uniserial module generated by more than countably
many elements over a chain ring with at most countably generated right ideals.
Note that by definition a chain ring R has the linearly ordered lattice of left ideals
as well as the lattice of right ideals. So R is a right Ore ring and the right ring of
fractions of every completely prime factor of R is uniserial as a right R-module.
The class of chain rings is a natural generalization of the well known class of

valuation rings. Basic properties of general chain rings are described in [BBT] and
in [F, Chapter 6]. In [D1], [D2] and [BBT] there are presented non-trivial examples
of a chain ring which contains precisely three two-sided ideals, i.e. of a nearly
simple chain ring (non-trivial means that it has the infinitely generated Jacobson
radical). Surprisingly, it is possible to construct an ω1-generated uniserial module
over every non-trivial nearly simple chain ring (Theorem 1.8). The “strange”
properties of this class of chain rings are partially described in [P1] and [P2].
The occurrence or, on the other hand, non-existence of a big uniserial right

module over a chain ring is equivalent to the question whether the ring is right
steady or non-steady. Recall that a ring R is called right steady if every right
R-module which is not a union of a countable infinite strictly increasing chain of

Research supported by grants GAUK 254/2000/B MAT/MFF, GAČR 201/00/P071 and
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submodules is finitely generated. The basic results concerning steady rings are
published in [EGT], [ZT] and [Z].
A ring-theoretic characterization of commutative steady chain rings (valuation

rings) is proved in [ZT]. We characterize the steadiness of chain rings in general
in the present paper (Theorem 2.4).
An application of the results obtained for chain rings gives us a characterization

of steadiness of a natural generalization of the notion of a chain ring, serial rings
(for more about serial rings see [F, Chapter 6] and [P4]). Namely, a serial ring
is not right steady if and only if there exists an ω1-generated uniserial module
(Theorem 3.5).

Throughout the paper a ring R means an associative ring with unit, a module
means a right R-module, and a bimodule is an R-R-bimodule. If U is a bimodule,
r. ann(x) (resp. l. ann(x)), denotes the right (resp. left) annihilator of an element
x ∈ U . The minimal cardinality of a set of generators of an R-module M is
denoted by genR(M). The Jacobson radical of the ring R is denoted by J(R) and
the prime radical is denoted by rad(R).
A bimodule RBR is said to be right (resp. left) chain provided BR (resp. RB) is

a uniserial right (resp. left) module, i.e. its lattice of right (resp. left) submodules
is linearly ordered. A bimodule is said to be a chain if it is both right and left
chain. A ring is said to be chain provided it is a chain bimodule RRR. A ring
R is called serial if R contains a set of orthogonal idempotents {ei, i ≤ n} such
that 1 =

∑

i≤n ei and for every index i ≤ n the ideals eiR and Rei are uniserial

modules. The set {ei, i ≤ n} is called a complete set of orthogonal idempotents.
A module is said to be dually slender if it is not a union of a countable strictly
increasing chain of submodules and a ring is called right steady if each dually
slender right R-module is finitely generated. As we have remarked, a nearly
simple ring is a ring which contains precisely three ideals, i.e. 0, J(R) and R.

1. Nearly simple chain rings

We start the section with studying properties of a generalization of a two-sided
ideal.

Definition 1.1. Let U be a bimodule. Then S ⊆ U is a subbimodule of U if
S is both a right and left submodule of U . A non-zero bimodule is said to be
simple provided it contains only trivial subbimodules. A bimodule U is said to be
exceptional if for every non-invertible element r ∈ R there exist non-zero elements
u, v ∈ U such that ur = rv = 0.

Note that the bimodule R/J(R) is an exceptional simple bimodule whenever R
is local i.e. R/J(R) is a skew-field. The notion of an exceptional chain bimodule
generalizes the Dubrovin’s term of an exceptional nearly simple chain ring (cf.
[P2]). A natural example of an exceptional chain bimodule is the Jacobson radical
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of an exceptional nearly simple chain ring. Later we will show that there exists
a non-artinian (as a right module) exceptional simple bimodule over every non-
artinian nearly simple chain ring.
For every element u of a ring denote by r. ker(u) (resp. l. ker(u)) a right (resp.

left) submodule of a bimodule U containing all elements of U annihilated from
left (resp. right) by u.

Remark 1.2. Let U be an exceptional chain bimodule over a chain ring R and
a, b ∈ U .

(1) If a, b have the same right (resp. left) annihilator, there exists an invertible
element u ∈ R for which ua = b (resp. au = b).

(2) If aR ⊂ bR, then l. ann(b) ⊂ l. ann(a).

Proof: (1) It is sufficient to prove the right hand version of the remark.
If a = 0, the claim is trivial. Suppose a 6= 0. Since the bimodule U is left

chain, there exists an element u ∈ R such that ua = b or ub = a. Without loss of
generality suppose that ua = b. Assume that u ∈ JR. Then r. ker(u) 6= 0 because
U is exceptional. As r. ker(u) ∩ aR 6= 0, there is r ∈ R such that ar 6= 0 and
uar = br = 0, i.e., r ∈ r. ann(b) \ r. ann(a), a contradiction. Thus u ∈ R \ JR is
an invertible element.
(2) Obviously, l. ann(b) ⊆ l. ann(a). The inclusion is strict by (1). �

In the sequel, R is a chain ring and U is an exceptional simple chain bimodule.
First, make an easy observation concerning exceptional chain bimodules.

Lemma 1.3. Let M be a uniserial R-module with a countable set x0, x1, x2, . . .
of generators. Suppose that every cyclic submodule xnR is isomorphic to a right
submodule of U . Then M is isomorphic to a right submodule of U .

Proof: Without loss of generality x0R ⊆ x1R ⊆ x2R ⊆ . . . . It is sufficient
to define by induction a sequence of monomorphisms νn:xnR → U such that
νn+1(xn) = νn(xn) for each n = 0, 1, 2, . . . .
First, fix an arbitrary embedding ν0 : x0R → U .
Suppose that νn is defined. By hypothesis, there exists an injective homomor-

phism µ:xn+1R → U . Since µ(xn) has the same right annihilator as νn(xn),
by Remark 1.2 (1) there exists an invertible element u ∈ R such that uµ(xn) =
νn(xn). Define a homomorphism νn+1(x) = uµ(x) for every x ∈ xn+1R. Obvi-
ously, νn+1 is injective and νn+1(xn) = νn(xn). �

Lemma 1.4. Suppose that UR is not cyclic and that there exists an embedding

of UR into xR for a suitable element x ∈ U . Then there exists an ω1-generated
uniserial right module.

Proof: It suffices to construct a directed system of cyclic modules
{mαR; (φβ,α, β ≤ α)| α < ω1}, indexed by all countable ordinals, satisfying
the property that the homomorphisms φβ,α : mβR → mαR are injective and not
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surjective whenever β < α < ω1 and such that all the mαR are isomorphic to
proper right submodules of UR.

First, fix an arbitrary non-zero element m0 ∈ UR.

Let 0 6= α < ω1 and suppose that we have already defined all the mβR for
β ≤ α and all φγ,β for γ < β ≤ α with the required properties. Since there
is a monomorphism ψ : mαR → UR and im(ψ) 6= UR, we can fix an element
mα+1 ∈ UR such that im(ψ) ⊂ mα+1R. Now, put φβ,α+1 = ψφβ,α.

Let α be a countable limit ordinal. Let (M, {φγ ; γ < α}) be a direct limit
of the directed system {(mβR; β < α), (φγ,β ; γ ≤ β < α)}. Clearly, the
homomorphisms φγ are injective for every γ < α. Since α is of countable cofinality,
it is possible to express M as the union of a countable strictly increasing chain
of modules φαn

(mαn
R), where sup{αn, n < ω} = α. Since the submodules

φαn
(mαn

)R are embeddable into U , the hypothesis of Lemma 1.3 is satisfied.
Therefore there exists an embedding ψ:M → UR. Moreover, ψ(M) is embeddable
into a cyclic right submodule xR ⊆ UR by the hypothesis. Thus the composition
of these two monomorphisms gives us the monomorphism ρ:M → xR. Now put
mα = x and φβ,α = ρφβ .

Since the direct limit of the directed system we have just constructed is a union
of a strictly increasing chain of submodules which has the length ω1, we get the
required example of an ω1-generated uniserial module. �

Lemma 1.5. Let UR be an infinitely countably generated right R-module. Then
every infinitely countably generated right submodule of U is isomorphic to UR.

Proof: Let I =
⋃

n<ω xnR be an infinitely generated right submodule which is
not equal to UR. We may suppose that 0 ⊂ x0R ⊂ x1R ⊂ . . . . Fix an element
z0 ∈ UR such that I ⊆ z0R. Since UR is countably generated we can express UR
as a union of a strictly increasing chain of cyclic right submodules znR, n < ω.

We now show by induction on n that there exists a sequence y1, y2, . . . of
elements of J = J(R) such that znR ⊆ ynxnR and yn+1xn = ynxn for every n.
As the left socle Soc(RU) of a bimodule is a subbimodule, we must have either
Soc(RU) = 0 or Soc(RU) = RU . But RU is a non-artinian chain bimodule,
so that Soc(RU) = 0. In particular Jx0 6= 0. Hence

⋃

y∈J yx0R is a non-zero

subbimodule, so that
⋃

y∈J yx0R = UR. Therefore there is an element y0 ∈ J

such that z0R ⊆ y0x0R.

Suppose that the element yn has been defined. If zn+1R ⊆ ynxn+1R, the
element yn+1 = yn trivially satisfies our requirements. Otherwise ynxn+1R ⊂
zn+1R. Put L = l. ann(xn). Since xnR ⊂ xn+1R, it follows from Remark 1.2(2)
that Lxn+1 6= 0. The fact that

⋃

a∈L axn+1R is a subbimodule implies the
equation

⋃

a∈L axn+1R = UR. Therefore there is an element a ∈ L for which
zn+1R ⊂ axn+1R.
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Now, put yn+1 = yn + a. We need to show that yn+1 satisfies our require-
ments. Since a ∈ l. ann(xn), the equations yn+1xn = ynxn + axn = ynxn hold
true. Finally, we check the strict inclusion zn+1R ⊂ yn+1xn+1R. Assume that
yn+1xn+1R ⊆ zn+1R. It means that (yn + a)xn+1 ∈ zn+1R. As ynxn+1 is an
element of zn+1R, it holds true that axn+1 = yn+1xn+1−ynxn+1 ∈ zn+1R. This
is a contradiction because zn+1R ⊂ axn+1R. Hence zn+1 ∈ yn+1xn+1R.
As yn ∈ J , the element 1 − yn is invertible, so the left multiplication by

1−yn induces a monomorphism un:xnR→ UR. Moreover, un+1(xn)−un(xn) =
(yn − yn+1)xn = 0. Thus the monomorphisms un determines in natural way a
homomorphism u: I → UR, which is injective. In order to complete the proof it
suffices to show that u is onto UR.
Assume that (1 − yn)xn ∈ xnR. Then also ynxn = xn − (1 − yn)xn ∈ xnR ⊂

z0R ⊂ znR, a contradiction. Hence xn ∈ (1 − yn)xnR, and so ynxn = xn −
(1 − yn)xn ∈ (1 − yn)xnR. Since ynxnR ⊆ (1 − yn)xnR for every n = 1, 2, . . . ,
U =

⋃

n<ω znR ⊆
⋃

n<ω ynxnR ⊆
⋃

n<ω(1 − yn)xnR is contained in the image
of the homomorphism u. �

The claim of the previous lemma is proved in [P2, Lemma 5.8] for countably
generated locally coherent uniserial modules over an exceptional coherent chain
ring.

Corollary 1.6. If there exists a non-artinian exceptional simple chain bimodule,

there exists an ω1-generated uniserial module.

Proof: If an exceptional simple chain bimodule is uncountably generated, the
claim is trivial. On the other hand, let UR be countably generated. Since an
exceptional simple bimodule is strictly embeddable into itself by Lemma 1.5, we
obtain an example of an ω1-generated uniserial module applying Lemma 1.4. �

Lemma 1.7. Let J be a completely prime ideal of a prime chain ring R. Then
there exists the right localization of R with respect to J , denote it by RJ , such

that the natural homomorphism R → RJ is injective. We may suppose that

R ⊆ RJ .

(1) Then for every x ∈ RJ \R there exists s ∈ R \ J such that x = s−1.
(2) Let M be a uniserial RJ -module. Then M is a uniserial R-module.

Proof: First, we check the existence of the localization RJ . For this purpose
we will apply the existence theorem [C, Theorem 0.5.3]. Take arbitrary elements
r ∈ R and t ∈ R \ J . Note that the multiplicative set R \ J satisfies the Ore
condition, i.e. r(R \ J) ∩ tR 6= ∅. Since rt, tr ∈ R \ J whenever r ∈ R \ J , it
suffices to prove that rt 6= 0 if r ∈ J \ {0}. Suppose that r ∈ J and tr = 0
(rt = 0). As R is a chain ring and J is a two-sided ideal, we have Rt ⊇ J ⊇ rR
(tR ⊇ J ⊇ Rr), and so rRr = 0. Since R is a prime ring, r = 0. Now, applying
[C, Theorem 0.5.3] we get that RJ is a ring and the natural mapping R → RJ
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is a ring monomorphism. In the rest of the proof we identify the image of this
monomorphism and the ring R.

(1) Fix an arbitrary element ab−1 ∈ RJ \ R, a ∈ R, b ∈ R \ J . As R is a left
uniserial module, there exists s ∈ R such that sa = b or a = sb. Assume that
a = sb. Then ab−1 = sbb−1 = s ∈ R, a contradiction. Hence sa = b and so
s, a ∈ R \ J . Finally, ab−1 = a(sa)−1 = aa−1s−1 = s−1.

(2) Let m,n ∈ M and suppose that mRJ ⊆ nRJ , i.e. m = nx for suitable
x ∈ RJ . If x ∈ R, there is nothing to prove, otherwise x = s−1 for a suitable
element s ∈ R \ J by (1). Then ms = ns−1s = n, hence nR ⊆ mR. �

Theorem 1.8. Over every non-artinian nearly simple chain ring there exists an

ω1-generated uniserial module.

Proof: If the ring contains an uncountably generated right ideal, the claim is
trivial. Otherwise, suppose that all right ideals are countably generated. In order
to prove the theorem it is sufficient to find a non-artinian exceptional simple
bimodule. Then the assertion follows from Corollary 1.6.

If the ring is not a domain, all elements of the Jacobson radical have nonzero
right and left annihilators, because the set of all right (respectively, left) zero-
divisors in a chain ring is always a completely prime ideal [BBT, Lemma 2.3(i)].
Hence the Jacobson radical is an exceptional simple bimodule.

If the ring R is a domain, there exists the right ring of fractions of R by
Lemma 1.7, denote it by Q. Remark that R is a subbimodule of the R-bimodule
Q so that Q/R is R-bimodule. We will show that Q/R is an exceptional simple
chain bimodule.

By Lemma 1.7(2) the right and left module Q is uniserial because R is a chain
ring. Hence Q and so Q/R is a chain bimodule. Applying Lemma 1.7(1) we
see that every element of Q \ R is of the form r−1 for some r ∈ R \ {0}. As
j−1j = jj−1 = 1 ∈ R for every element j ∈ R \ {0}, the bimodule Q/R is
exceptional.

It remains to prove that Q/R is a simple bimodule. As we have observed,
each non-zero cyclic R-submodule of Q strictly containing the submodule R is
generated by a suitable element r−1 for non-invertible r ∈ R \ {0}. Fix such an
element r−1. Remark that rR ⊂ J(R). Moreover, Q =

⋃

x∈R\{0} x
−1R hence it

suffices to show that for each x ∈ R \ {0} there exists an element y ∈ R such that
x−1R ⊆ yr−1R. Note that Rx ∩ (R \ rR) 6= ∅. Indeed, the left ideal Rx is not
a subset of the right ideal rR because rR contains no non-zero ideal and so no
non-zero left ideal. Fix an element c ∈ Rx ∩ (R \ rR). As c ∈ Rx, there exists
an element s ∈ R such that c = sx. Hence c−1s = x−1 and so x−1R ⊆ c−1R.
Finally, since rR ⊆ cR, there exists y ∈ R such that cy = r. Now yr−1 = c−1

and x−1R ⊆ yr−1R = c−1R which finishes the proof. �
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Observe that a nearly simple chain prime ring (in particular, a domain) is not
artinian.

Since an artinian nearly simple chain ring R (clearly, it is neither a domain nor
a prime ring) has Loewy length equal to 2, every R-module is semiartinian with
socle length at most 2. Hence every non-zero uniserial module over an artinian
nearly simple chain ring is either simple or it is isomorphic to the module RR.

Example 1.9. There exist a countable nearly simple chain domain and a count-
able exceptional nearly simple chain prime ring which is not a domain.

Proof: The both examples are due to Dubrovin, for the first one see [BBT,
Section 6.5] or [D1], and for the second see [D2].

The example of a countable non-artinian nearly simple chain domain is the
localization of the ring K[P ] with respect to suitable Ore system where K is a
skew-field and P is a suitable subsemigroup of a semidirect product of the additive
group (Q,+) and the multiplicative group (Q>0, .). Hence the ring is countable
whenever we chose a countable skew-field K.

The example of a countable non-artinian exceptional nearly simple chain prime
ring which is not a domain is constructed as a suitable factor of ring R which is
contained in a rational closure of a group ring K[G]. Since the group G in the
construction in [D2] is countable, the ring R is countable iff the skew-field K is
countable. �

2. Chain rings

In this section we show that the question “over which chain rings there exists
an ω1-generated uniserial module” leads to checking two extreme cases. First of
them, the case of nearly simple chain rings, is studied in the first section. The
second situation is close to the case of commutative rings.

Proposition 2.1. Suppose that a chain ring R properly contains a prime ideal
P and an ideal J , P ⊂ J , such that J/P is a simple bimodule. Then there exists
an ω1-generated uniserial right module.

Proof: Without loss of generality suppose that P = 0, so R is a prime ring. Note
that J is an idempotent because J2 6⊆ P and J/P is a simple bimodule. Hence,
by [BBT, Theorem 1.15(1)] J is completely prime. Now, the right localization RJ
of the ring R with respect to the prime ideal J (which exists by Lemma 1.7) is
a nearly simple chain ring. Since RJ is prime, the socle of the ring RJ vanishes.
Hence the Jacobson radical JJ is not artinian. It follows from Theorem 1.8 that
there exists an ω1-generated uniserial RJ -module M . Applying Lemma 1.7(2),
M has a structure of a uniserial R-module. Finally, remark that genR(M) ≥
genRJ

(M) = ω1. �
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Recall an another meaning of the term exceptional as it used in [BBT]. A prime
ideal is exceptional if it is not completely prime.

Corollary 2.2. If a chain ring R contains an exceptional prime ideal, there exists
an ω1-generated uniserial right module.

Proof: By [BBT, Theorem 6.2] there exists a completely prime ideal above an
exceptional prime ideal which satisfies the hypothesis of Proposition 2.1. �

Lemma 2.3. Let R be a chain ring. If R/ rad(R) contains an uncountable
strictly decreasing chain of left ideals, there exists an ω1-generated uniserial mod-
ule.

Proof: If there is an exceptional prime ideal, the existence of an ω1-generated
uniserial module follows immediately from Corollary 2.2. Hence let us suppose
that all prime ideals are completely prime. In particular, rad(R) is a completely
prime ideal. We may assume that rad(R) = 0.
Since R contains an uncountable strictly decreasing chain of left ideals, it con-

tains an uncountable strictly decreasing chain of left principle ideals (Rsα|α < ω1)
as well. Thus the right ring of fractions Q(R) (which exists by Lemma 1.7)
contains as right R-modules an uncountable strictly increasing chain of cyclic
submodules (s−1α R). The union

⋃

α<ω1
s−1α R gives us an ω1-generated uniserial

submodule. �

Recall that a module M is said to be dually slender provided the covariant
functor homR(M,−) commutes with direct sums. Several characterizations of
this notion are known. The most important and useful is the following one: The
module is dually slender if and only if it is not a union of a countable infinite
strictly increasing chain of submodules (for a proof see [T, Lemma 1.2]). Note
that the class of all dually slender modules contains all finitely generated modules
and it is closed under taking factors and taking finite sums.
A ring is called right steady if the class of all dually slender modules coincides

with the class of all finitely generated modules. Recall that a factor of a right
steady ring is right steady as well.

Theorem 2.4. For a chain ring R the following conditions are equivalent:

(1) R is right steady;
(2) there exists no ω1-generated uniserial right module;
(3) R/ rad(R) contains no uncountable strictly decreasing chain of ideals, R
contains no uncountably generated right ideal and for every ideal I and
for every prime ideal P ⊆ I there exists an ideal K such that P ⊂ K ⊂ I.

Proof: The implication (1)→ (2) is in obvious.
(2) → (3) Let us suppose that the negation of (3) holds true and we will find

an ω1-generated uniserial module.
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If there exists an uncountable strictly decreasing chain of ideals, there exists an
ω1-generated uniserial module by Lemma 2.3. Since R is a chain ring, an occur-
rence of an ω1-generated right ideal gives us an example of an ω1-generated unis-
erial module. Finally, suppose that R/ rad(R) contains no uncountable strictly
decreasing chain of ideals and that R contains no uncountably generated right
ideal. Then the negation of the third item of (3) implies the hypothesis of Propo-
sition 2.1 is satisfied. Applying the proposition we get a required ω1-generated
uniserial module.
(3) → (1) Assume that (3) holds and R is not right steady. Fix an infinitely

generated dually slender moduleM . Since the ring R is local, by [Z, Corollary 1.5]
it is possible to choseM containing no maximal submodule. Then every non-zero
factor of M is an infinitely generated module. As R contains only countably
generated right ideals, we may apply [ZT, Lemma 11]. Hence there exists a prime
ideal P such that M/MP is an infinitely generated module and M/MI = 0, i.e.
M = MI for every ideal P ⊂ I. As no simple bimodule occurs above the prime
ideal P , P is an intersection of a strictly decreasing chain of ideals. Thus by [BBT,
Theorem 1.15(1)] P is a completely prime ideal. By hypothesis every strictly
decreasing chain of ideals is countable. In particular, there exists a decreasing
sequence of ideals I1 ⊃ I2 ⊃ · · · ⊃ In . . . such that P =

⋂

n<ω In. Hence the
right ring of fractions Q = Q(R/P ) (which exists by Lemma 1.7) is countably
generated as a right R/P -module.
Define modules Mn = {m ∈ M | mIn ⊆ MP} for every integer n. Note that

Mn ⊂ M for every n. Hence N = M/
⋃

n<ω Mn is nonzero so it is an infinitely
generated dually slender R/P -module. We prove that N is a torsion-free R/P -
module.
Let m ∈ M and let mx ∈

⋃

n<ω Mn for some x ∈ R \ P . Then mxIn ⊆ MP
for a suitable n. As P is prime, there exists k ≥ n such that Ik ⊆ xIn. Thus
mIk ⊆ MP and m ∈ Mk. It implies N is a torsion-free R/P -module. So that

the module N is embeddable into the module N ⊗R/P Q ∼= Q(κ) (recall Q is the

right ring of fractions of R/P ). Since N is dually slender, N embeds into a direct
sum of finitely many copies of Q. Hence we have an infinitely generated dually
slender submodule of a countably generated module. By [ZT, Lemma 5] a suitable
cyclic R-module contains an infinitely generated dually slender submodule which
is an ω1-generated. It is a contradiction because each submodule of any cyclic
R-module is countably generated. �

The condition (3) immediately implies the following fact.

Corollary 2.5. Let all right and left ideals of a chain ring R be countably gen-
erated. Then R is right steady if and only if R is left steady.

Note that each prime ideal over a chain ring with the Krull dimension is com-
pletely prime by [F, 7.17 and 7.38]. In particular, the prime radical rad(R), i.e.
the intersection of all prime ideals of R, is completely prime.
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Corollary 2.6. Let R be a chain ring with the Krull dimension. The following
conditions are equivalent:

(1) R is right steady;
(2) there exists no ω1-generated uniserial right module;
(3) the right ring of fractions Q(R/ rad(R))R contains no ω1-generated right

R-submodule;
(4) all right ideals of R are countably generated and R is of a countable Krull
dimension.

Proof: As there is no idempotent prime ideal in R, every prime factor of R
contains no non-trivial simple bimodule. Moreover, a chain ring with the Krull
dimension possesses an uncountable strictly decreasing chain of ideals if and only
if it has an uncountable Krull dimension. Finally, R/ rad(R) is right steady if and
only if R is right steady because rad(R) is a nilpotent ideal [ZT, Lemma 3]. Now
the claim is a consequence of Theorem 2.4. �

Example 2.7. There exists a non-steady commutative valuation domain with
the Krull dimension such that all ideals are countably generated.

Proof: Take the inverse natural order on the ordinal ω1 and define on the
group Z

(ω1) the corresponding lexicographic order � where Z is equipped with the
natural order. By the Krull theorem (see for example [FS, Theorem I.3.4]) there

exists a valuation domain R with the value group order-isomorphic to (Z(ω1),�).
It is not hard to prove that R has the Krull dimension which is at least equal ω1
so R is not steady. Moreover, every filter on (Z(ω1),�) is countably generated,
hence every ideal of the ring R is countably generated. �

3. An application on serial rings

We start this section with two general lemmas which show the correspondence
between classes of dually slender modules over rings R and eRe for an idempotent
e ∈ R.

Lemma 3.1. LetR be an arbitrary ring and let e ∈ R be an idempotent. Suppose
M is a right R-module such that MeR =M .

(1) Me is an infinitely generated eRe-module if M is an infinitely generated

R-module.
(2) Me is a dually slender eRe-module if M is a dually slender R-module.

Proof: Note that Me has a natural structure of a right eRe-module.
(1) SupposeMe is a finitely generated eRe-module, henceMe =

∑

i≤nmieRe.

Since M = MeR, we get M =
∑

i≤nmieReR =
∑

i≤nmieR, i.e. M is a finitely
generated R-module.
(2) Suppose Me =

⋃

i<ω Nie where Nie is an increasing chain of eRe-submo-
dules. ThenM =MeR =

⋃

i<ω NieR. AsM is dually slender, there exists n < ω
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such that M = NieR. Thus Me = NieRe = Nie which proves Me is a dually
slender eRe-module. �

Lemma 3.2. Let R be an arbitrary ring and let e ∈ R be an idempotent. Then
the functor −⊗eRe eR maps

(1) each infinitely generated eRe-module onto an infinitely generated R-mo-
dule,

(2) each dually slender eRe-module onto a dually slender R-module.

Proof: We will write −⊗− instead −⊗eRe − in the whole proof.
(1) Suppose P is an infinitely generated eRe-module, i.e. P =

⋃

α<κ Pα for a
suitable infinite cardinal κ and a strictly increasing chain of submodules Pα, α <
κ. Denote by πα the natural projection P onto P/Pα and put Qα = ker(πα⊗eR)
(= {

∑

j≤m pj ⊗ erj | pj ∈ Pα, rj ∈ R, j ≤ m < ω}, α < κ) for every α < κ.

Remark that (Qα| α < κ) forms an increasing chain of R-submodules of P ⊗ eR.
As the tensor product commutes with direct limits, P ⊗ eR =

⋃

α<κQα.
It remains to prove that Qα 6= P for each α < κ. Fix one α < κ. Note that

(P/Pα)⊗eR 6= 0 because (P/Pα)⊗eR ∼=Z ((P/Pα)⊗eRe)⊕((P/Pα)⊗eR(1−e))
and (P/Pα)⊗eRe ∼= P/Pα 6= 0. Since the tensor product is a right exact functor,
(P ⊗eR)/Qα

∼= (P/Pα)⊗eR 6= 0. Hence Qα 6= P ⊗eR and P ⊗eR is an infinitely
generated R-module.
(2) Let P ⊗eR =

⋃

n<ω Nn for an increasing chain of R-submodules Ni, i < ω.
Define eRe-submodules Pn = {m ∈ P | m⊗ e ∈ Nn} for each n < ω. Note that
the sequence (Pn| n < ω) forms an increasing chain of eRe-submodules of P such
that P =

⋃

n<ω Pn. Moreover, it is easy to see that {p ⊗ e| p ∈ Pn}R ⊆ Nn,
for each n < ω. As P is a dually slender eRe-module, there exists n < ω such
that Pn = P , hence Pn ⊗ eR = Nn = P ⊗ eR. Thus P ⊗ eR is a dually slender
R-module. �

Proposition 3.3. Let R be an arbitrary ring and let {ei| 1 ≤ i ≤ n} be a set
of orthogonal idempotents satisfying

∑

i≤n ei = 1. Then R is right steady if and
only if eiRei is right steady for every i ≤ n.

Proof: Suppose that R is not right steady and fix an infinitely generated dually
slender R-moduleM . Define by induction a sequence of R-modulesMi: M0 =M ,
Mi+1 = Mi/MieiR. Clearly, Mn = 0. Take a minimal i < n such that Mi+1

is finitely generated. Then there exists a finitely generated submodule F ⊆ Mi

such that MieiR+F =Mi. HenceMi/F is an infinitely generated dually slender
module and (Mi/F )eiR = Mi/F . Now we may apply Lemma 3.1 which proves
that (Mi/F )ei is an infinitely generated dually slender eiRei-module, hence eiRei
is not right steady.
On the other hand, if eiRei is not right steady for at least one i and N is an

infinitely generated dually slender eiRei-module, then N ⊗eiRei
eiR is a dually

slender R-module by Lemma 3.2. Thus R is not right steady. �
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Proposition 3.3 allows us to construct (non-) steady subrings of full matrix
rings over a (non-) steady ring:

Example 3.4. Let R be a ring and let I, J be ideals of R. Then the subring
(

R I
J R

)

of the full matrix ring is right steady iff R is right steady.

As a consequence of Proposition 3.3 we reduce the question of steadiness of a
serial ring R to the question of steadiness of chain rings eiRei for the complete
set of orthogonal idempotents {ei, i ≤ n}.

Theorem 3.5. The following conditions are equivalent for a serial ring R with
a complete set of orthogonal idempotents {ei, i ≤ n}:

(1) R is right steady;
(2) eiRei is right steady for every i ≤ n;
(3) there exists no ω1-generated uniserial right R-module.

Proof: The equivalence of (1) and (2) follows immediately by Proposition 3.3
and the implication (1)→ (3) holds true by definition.
It remains to show (3) → (2). Proving indirectly suppose that eiRei is not

right steady for one index i ≤ n. Applying Theorem 2.4 we get an ω1-generated
uniserial right eiRei-module N =

⋃

α<ω1
pαeiRei. Since the functor −⊗eiRei

eiR

(denote it by − ⊗ eiR) commutes with direct limits, the right R-module M =
N ⊗ eiR is the direct limit of a linear directed system of modules (pα ⊗ ei)R,
α < ω1. As every R-module (pα ⊗ ei)R is a homomorphic image of the uniserial
R-module eiR, M is a union of an increasing chain of uniserial R-modules, hence
it is a uniserial R-module as well. By the constructionM is at most ω1-generated.
Finally, M is infinitely generated dually slender by Lemma 3.2, so it is precisely
an ω1-generated uniserial right R-module. �

Example 3.6. Let R be a chain ring and I be the maximal ideal of R. Then

the ring S =
(

R I
R R

)

is right (left) steady iff R is right (left) steady. Denote

e1 =
(

1 0
0 0

)

and e2 =
(

0 0
0 1

)

. Then every right ideal contained in e1S is either

of the form
(

iR iR
0 0

)

for some i ∈ I or of the form
(

rR rI
0 0

)

for some r ∈ R.

Similarly, every right ideal contained in e2S is either of the form
(

0 0
rR rR

)

or of

the form
(

0 0
rR rI

)

for some r ∈ R. Since rI is a maximal submodule of rR for

every non-zero element r ∈ R, the right ideals e1S and e2S are uniserial. Applying
the symmetric argument we get Se1 and Se2 are uniserial left ideals, hence S is
a non-chain serial ring.
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