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Dimension in algebraic frames, II:

Applications to frames of ideals in C(X)

Jorge Mart́ınez, Eric R. Zenk

Abstract. This paper continues the investigation into Krull-style dimensions in algebraic
frames.
Let L be an algebraic frame. dim(L) is the supremum of the lengths k of sequences

p0 < p1 < · · · < pk of (proper) prime elements of L. Recently, Th. Coquand, H. Lom-
bardi and M.-F. Roy have formulated a characterization which describes the dimension
of L in terms of the dimensions of certain boundary quotients of L. This paper gives a
purely frame-theoretic proof of this result, at once generalizing it to frames which are
not necessarily compact. This result applies to the frame Cz(X) of all z-ideals of C(X),
provided the underlying Tychonoff space X is Lindelöf. If the space X is compact, then
it is shown that the dimension of Cz(X) is at most n if and only if X is scattered of
Cantor-Bendixson index at most n+ 1.
If X is the topological union of spaces Xi, then the dimension of Cz(X) is the supre-

mum of the dimensions of the Cz(Xi). This and other results apply to the frame of all
d-ideals Cd(X) of C(X), however, not the characterization in terms of boundaries. An
explanation of this is given within, thus marking some of the differences between these
two frames and their dimensions.

Keywords: dimension of a frame, z-ideals, scattered space, natural typing of open sets

Classification: Primary 06D22, 54C30; Secondary 03G10, 16P60, 54B35

Introduction

The subject of a Krull-style dimension for either distributive lattices with top
and bottom, or algebraic frames in which the compact elements are closed un-
der binary infimum, has received considerable attention in recent years. The
interest in this development has come from two fairly distinct quarters. On the
one hand, the subject has been investigated by researchers in real algebra, with
a background in commutative algebra, and frequently employing the techniques
and terminology of logic. The present authors have approached the subject from
a frame-theoretic point of view, motivated by their interest and background in
lattice-ordered groups and f -rings. As the reader familiar with the lattice the-
ory involved will know, the two areas singled out in the opening sentence are
equivalent if one drops the demand that the distributive lattices have a top.
Krull dimension not exceeding n signals the absence of chains p0 < p1 < · · · <

pn < pn+1 in the spectrum of the frame. A general development of the concept
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of ‘forbidding’ certain configurations in spectra is given in [BP04], by Ball and
Pultr; their context is that of distributive lattices and their spectra appear as
Priestley spaces.
Mart́ınez has discussed the subject of Krull dimension from the frame-theoretic

point of view, in [M04a]. In that article, a general principle was developed which
allows dimension to be computed using certain finite sets of compact elements
of the frame. Independently, in [CL02] and [CLR03], the authors investigated
the subject in distributive lattices, and established a similar (yet more felicitous)
condition for the finiteness of the dimension. What is striking about the work of
Coquand, Lombardi and Roy — in [CL02] and [CLR03] — is the technique for
calculating dimension which uses the notion of a ‘boundary quotient’, as it offers
some distinct advantages over the methods of [M04a]. For one, the elementwise
characterization (and prime-free methods) of the latter paper are more narrowly
designed, with frames of convex ℓ-subgroups in mind, and these have an additional
property — the so-called disjointification — which is not enjoyed by algebraic
frames in general. For another, the account using boundary quotients lends itself
to inductive arguments.
The principal and original motivating force behind our interest in a Krull-style

dimension was a curiosity about the frame of z-ideals of a ring C(X) of continuous
real valued functions on a Tychonoff spaceX , and about the primes of that lattice.
However, the techniques of [M04a] remained untested on z-ideals. On the other
hand, the dimension of the frame of z-ideals can be computed spatially, in a sense
which will be broadly explained in Section 3 and more specifically in our account of
z-dimension over Section 4 and Section 5. When Krull dimension is ‘spatial’, there
are important structural consequences, as is fully explored in the forthcoming
[MZ06]. In any event, the reader will surely appreciate the advantages offered by
the approach taken here, using the criteria of [CL02] and [CLR03].

We begin with a brief section which sets down the necessary background on
frames, including standard material, but recalling as well some of the notation
and terminology from [M04a], which we continue to adhere to in this article. In
Section 2, we state the computational results from [CL02] and [CLR03] referred
to above, supplying frame-theoretic proofs. As already alluded to, Section 3
explores some general categorical issues, which sets up the application of the
characterization in Section 2 to z-ideals in Section 4. In Section 5 we characterize
the compact spaces having finite z-dimension. We conclude the article with a
discussion of the frame of d-ideals of C(X), in Section 6, also as an application
of the material in Section 3, although handicapped by the limitation already set
forth in that section.

1. Frame-theoretic preliminaries

This section is quite simply a catalogue of background material on frames
and algebraic frames, in particular. We refer the reader to [J82] and [JT84] for
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general background on frames, and to [MZ03] and [M04a] for additional material
on closure operators.

Definition & Remarks 1.1. Throughout this commentary, L is a complete
lattice. The top and bottom are denoted 1 and 0, respectively. For x ∈ L, ↑ x

(resp. ↓ x) stands for the set of elements ≥ x (resp. ≤ x). Let us also point out to
the reader that, throughout, we use the phrase ‘y exceeds x’ in a poset to indicate
that y ≥ x.

1. Recall that c ∈ L is compact if c ≤
∨

i∈I xi implies that c ≤
∨

i∈F xi, for a
suitable finite subset F of I. L is algebraic if each x ∈ L is a supremum of
compact elements. k(L) stands for the set of compact elements of L. If 1 is
compact it is said that L is compact .

2. L is said to have the finite intersection property (always abbreviated FIP )
if for any pair a, b ∈ k(L) it follows that a ∧ b ∈ k(L). Observe that k(L)
is always closed under taking finite suprema. L is coherent if it is compact
and has the FIP.

3. L is a frame if the following distributive law holds:

a ∧
(∨

S
)
=

∨{
a ∧ s : s ∈ S

}
.

It is well known that an algebraic lattice is a frame as long as it is distribu-
tive.

4. p ∈ L is prime if p < 1 and x ∧ y ≤ p implies that x ≤ p or y ≤ p. Note
that if L is distributive then p is prime if and only if it is meet-irreducible:
i.e., x∧ y = p implies that x = p or y = p. Observe that if L is an algebraic
frame then p ∈ L is prime as long as

a ∧ b ≤ p ⇒ a ≤ p or b ≤ p

holds for compact a and b.

Spec(L) shall denote the set of prime elements of L.

5. Let L be a frame. For each a, b ∈ L, let

a → b =
∨{

x ∈ L : a ∧ x ≤ b
}
.

When b = 0 we denote a → 0 = a⊥. x ∈ L is a polar if it is of the form
x = y⊥, for some y ∈ L. It is well known that the set P (L) of all polars
forms a complete boolean algebra, in which infima agree with those in L.

6. Let L be a frame. Recall that a � b if b ∨ a⊥ = 1. x ∈ L is regular if

x =
∨ {

a ∈ L : a � x
}
.
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L is regular if each element of L is regular.

7. (See [JT84].) Let L be a frame and suppose that j : L −→ L is a closure
operator; jL designates {x ∈ L : j(x) = x}. j is a nucleus if j(a ∧ b) =
j(a) ∧ j(b). It is well known that j is a nucleus if and only if b ∈ jL implies
that a → b ∈ jL, for each a ∈ L. For convenience we shall call a subset with
this feature nuclear .

8. (See [MZ03, §4].) Suppose that L is an algebraic lattice, and j is a closure
operator. Say that j is inductive if

j(x) =
∨{

j(a) : a ∈ k(L), a ≤ x
}

.

Then jL is algebraic and k(jL) = j(k(L)). If L is also a frame and j is a
nucleus on L, then jL is an algebraic frame as well; its members are called
j-elements .

Observe, in addition, that if L is an algebraic frame and j is an inductive
nucleus on L, then

(a) Spec(jL) = Spec(L) ∩ jL;
(b) if L has FIP then so does jL.

9. (See [MZ03, §4].) Suppose that L is an algebraic frame with FIP and that
j is a nucleus on L. Let Ab(j) stand for the set of all x ∈ L such that a ≤ x

(with a compact) implies that j(a) ≤ x. Then Ab(j) is an algebraic frame
with FIP. More precisely,

ĵ(x) =
∨ {

j(a) : a ∈ k(L), a ≤ x
}

defines an inductive nucleus such that ĵL = Ab(j).
10. Closure operators on L are partially ordered by defining j1 ≤ j2 if j1(x) ≤

j2(x) for each x ∈ L, which, in turn, is equivalent to j2L ⊆ j1L. Under these

stipulations, and using the notation of 9, ĵ is the largest inductive closure
operator below j. The passage j 7→ ĵ is referred to as inductivization.

Escardó (in [Es98]) considers inductivization in a more general context.
What he terms a finitary nucleus is exactly the concept of an inductive
nucleus on an algebraic frame.

11. Let L be an algebraic frame. In Spec(L), a chain p0 < p1 < · · · < pk has
length k. The dimension of L, dim(L), is the maximum of lengths of chains
in Spec(L), if such a maximum exists; otherwise, it is ∞. It is convenient
to define the dimension of the trivial frame — i.e., the frame consisting of
one element — to be −1.

12. The nucleus j is dense if j(0) = 0; if so we also say that L is j-semisimple.
Note that j is dense if and only if 0 ∈ jL.
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Remark 1.2. It is worth underscoring that we shall assume and liberally apply
Zorn’s Lemma, which guarantees that all algebraic frames are spatial.

The following remark will be helpful in 3.10 of Section 3.

Remark 1.3. Throughout this discussion L denotes a complete lattice. Any
closure operator j on Lmay be viewed as a morphism of complete join-semilattices

from L to jL such that j(
∨

S) =
∨jL j(S), for any subset S of L. (

∨jL denotes
supremum in jL.)
Conversely, suppose that M too is a complete lattice and f : L −→ M is a

morphism of complete join-semilattices. Define f∗ : M −→ L by the following
equivalence (which defines it unambiguously):

x ≤ f∗(y) ⇔ f(x) ≤ y.

The reader who is familiar with the relevant category theory will recognize that the
relationship between f and f∗ as functors on the categories L andM , respectively,
is one of adjointness. As a consequence of this relationship we have the following
properties, which are well known and straightforward to prove directly.

1. x ≤ f∗f(x), for each x ∈ L, and ff∗(y) ≤ y, for each y ∈ M .

2. f∗ preserves arbitrary infima.

3. ker(f) ≡ { x ∈ L : f(x) = 0 } = ↓ f∗(0).

4. Assuming that f is surjective as well, we have:

(a) f · f∗ = 1M .

(b) j ≡ f∗ · f : L −→ L is a closure operator, and f∗ induces a lattice
isomorphism of M onto jL, the inverse of which is f |jL.

(c) The following are equivalent:
i. L is j-semisimple (in the sense of 1.1.12);
ii. f∗(0) = 0;
iii. f(x) = 0 implies that x = 0.

A frame morphism f : L −→ M which satisfies 4c(ii) above is said to be dense.

To conclude this general introduction on frame-theoretic attributes, we give
a brief account of our work on regular algebraic frames, as these are, at least
with the assumption of FIP, the algebraic frames of dimension 0. What follows
is [MZ03, Theorem 2.4]. A version of that, without any mention of regularity
appears as [M73a, Theorem 2.4].

Remark 1.4. Let L stand for an algebraic frame. The following are equivalent:

1. L is regular;
2. for each c ∈ k(L), c ∨ c⊥ = 1;
3. for each a ≤ c, a, c ∈ k(L) there is a b ∈ k(L) such that a ∧ b = 0 and

a ∨ b = c;
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4. L has the FIP and each prime of L is minimal.

Thus, if L has FIP then it is regular precisely when dim(L) = 0.

For the rest of this article, we shall assume that all algebraic frames

have the FIP, unless the contrary is expressly indicated.

2. Computing dimension using compact elements

It seems obvious from the start of any serious consideration of dimension in
algebraic frames, that one should like to have computational devices that are
either entirely or primarily couched in terms of the compact elements. Thinking
of the duality between spatial frames and sober spaces, and the primes as points of
the latter, this can perhaps be rephrased by saying that one should like a pointfree
characterization of dimension.

In [M04a, Theorem 3.8] such a characterization is obtained. One needs to
impose an additional assumption on the frame, that of ‘disjointification’, and in
the context of [M04a] and the applications considered there, this characterization
yields a substantial amount of information. Recently, in [CL02, Theorem 2.9] and
[CLR03, Theorem 1.4], the authors give a primefree characterization of dimension
in a coherent frame, without the additional disjointification. We will cull these two
theorems into one, which we will refer to as the Coquand-Lombardi-Roy Theorem
(Theorem 2.7 below). Now, these theorems are not phrased in terms of frames,
rather for distributive lattices; indeed, [CL02, Theorem 2.9] is immersed in the
language and notation of logic, and while the context of [CLR03, Theorem 1.4]
is more transparent, the proof is sketchy. At any rate, we assumed there had to
be a strictly frame-theoretic proof for the Coquand-Lombardi-Roy Theorem that
would not be too long, and we believe that the proof of Theorem 2.7 succeeds on
both counts.

In advance of the theorem, we need three preliminaries. The first item is a
standard frame-theoretic lemma, which is basic to the proofs that come after. The
second is an observation about primes of L vs primes of ↑ x. The final preliminary
(Lemma 2.6) will be an inductive estimation of dimension. This is also the place
where boundary quotients make their appearance. It is worthwhile repeating, with
regard to boundary quotients, and looking ahead at the discussion of boundaries
in the upcoming section, that what makes the development of Coquand, Lombardi
and Roy more tractable than the comparable criterion from [M04a], is precisely
this inductive ‘environment’.

The following lemma appears as [M73a, Corollary 2.5.1]. The proof involves
ultrafilters of compact elements. By a filter F of compact elements we mean a
subset of k(L) \ {0}, closed under finite meets and such that c ≤ d in k(L) with
c ∈ F implies that d ∈ F . An ultrafilter of compact elements is a maximal filter
of compact elements.
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Lemma 2.1. Suppose L is an algebraic frame. Then p ∈ Spec(L) is minimal if
and only if

Fp = { c ∈ k(L) : c 6≤ p }

is an ultrafilter on k(L). In this case,

p =
∨

c∈Fp

c⊥.

Remark 2.2. Let Min(L) denote the set of all minimal prime elements of L.
Zorn’s Lemma easily shows that in any frame each prime element exceeds a min-
imal prime. It is also a routine matter to verify that, in any algebraic frame, each
polar is an infimum of minimal primes.

Lemma 2.1 implies the following; this corollary amounts to half the proof of
Lemma 2.6, as we shall presently see.

Corollary 2.3. Let L be an algebraic frame. For each a ∈ k(L) and each p ∈
Min(L), we have a ∨ a⊥ 6≤ p.

Next, we have the following observation; we leave the details of the proof to
the reader.

Lemma 2.4. Let L be an algebraic frame. For each y ∈ L, the map jy(x) = x∨y

is an inductive nucleus and jyL =↑ y. Thus, Spec(↑ y) consists of the primes of
L that exceed y.

Proof: That jy is actually a nucleus and inductive are routine to verify. The
claim about primes then follows from 1.1.8. �

Before proceeding with Lemma 2.6, let us pause to introduce a term which,
apart from being suggestive, will actually mirror the topological reality of our
subsequent applications.

Definition 2.5. Let L be an algebraic frame, and a ∈ k(L). We denote La ≡↑
(a ∨ a⊥), and call La the boundary quotient over a.

The proof of Lemma 2.6 closely follows the spirit of the corresponding argument
in [CLR03].

Lemma 2.6. Suppose that L is an algebraic frame. Then dim(L) ≤ k if and
only if, for each a ∈ k(L), the dimension of the boundary quotient La over a is
≤ k − 1.

Proof: Corollary 2.3 immediately implies that, if dim(L) ≤ k, then dim(La) ≤
k−1, for each compact element a. To see the converse, if suffices to observe that,
whenever p < q are primes of L, then there is a c ∈ k(L) such that c ≤ q but
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c 6≤ p. Thus, using Lemma 2.4, if p0 < p1 < · · · < pm is any maximal chain of
primes in L (with p0 necessarily minimal), there is a compact element c such that
the boundary Lc over c has a chain of primes of length m − 1. �

The proof of Theorem 2.7 is now a relatively easy induction argument.

Theorem 2.7 [The Coquand-Lombardi-Roy Theorem]. Let L be an algebraic
frame. Then dim(L) ≤ k if and only if

1 = xk ∨ (xk → (· · · (x1 ∨ (x1 → (x0 ∨ x⊥0 ))) · · · )),

for all x0, x1, . . . , xk ∈ k(L).

Proof: We induct on k. L has dimension zero precisely when every boundary
quotient of L is trivial; that is, each dim(La) = −1 (see 1.4(a)).
As to the induction step, note that if

1 = xk+1 ∨ (xk+1 → (· · · (x1 ∨ (x1 → (x0 ∨ x⊥0 ))) · · · )),

for all x0, x1, . . . , xk, xk+1 ∈ k(L), then (in Lx0)

1 = jx0(xk+1) ∨ (j
x0(xk+1)→ (· · · (j

x0(x1) ∨ ((j
x0(x1))

⊥)) · · · )),

which according to the induction hypothesis means that each dim(Lx0) ≤ k.
By Lemma 2.6 this implies that dim(L) ≤ k + 1. These steps are reversible,
completing the proof; we leave the details to the reader. �

We close the section with a local version of Theorem 2.7.

Theorem 2.8. Let L be an algebraic frame. Then dim(L) ≤ k if and only if for
each set of compact elements a0, a1, . . . , ak, ak+1 there exist compact elements
b0, b1, . . . , bk such that

ak+1 ≤ ak ∨ bk, ak ∧ bk ≤ ak−1 ∨ bk−1, . . . , a1 ∧ b1 ≤ a0 ∨ b0, and a0 ∧ b0 = 0.

Proof: Apply Theorem 2.7, iterating the observation that, for any compact
elements a and b in L,

a ≤ b ∨ (b → y) iff ∃ c ∈ k(L), with a ≤ b ∨ c and b ∧ c ≤ y.

�

Remark 2.9. Briefly, we make note of the fact that the condition in Theorem 2.7
coincides with the one obtained in [AB91]. The context in that article is that of
clopen downsets in a Priestley space.
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3. Frames of open sets of a Tychonoff space

This section is primarily expository, and designed to set up the applications of
Section 2 to frames of ideals of a ring of continuous functions. Recall that our
interest is principally in the frame of z-ideals of such a ring.
The scope of the discussion of this section may be extended to a general frame-

theoretic setting, but we are satisfied here to restrict it to Tychonoff spaces and
their rings of continuous functions. In preparation, we need to recall a fundamen-
tal correspondence between distributive lattices and algebraic frames (with the
FIP, as previously announced).
First and foremost, though, we should remind the reader of the topological

terminology that will be needed in the sequel.

Definition & Remarks 3.1. Let X be a topological space. C(X) denotes the
ring of all continuous real valued functions on X , under pointwise operations.
C(X) is always a commutative ring with identity, and it is semiprime; that is to
say, there are no nonzero nilpotent elements. When considering C(X) one may,
without loss of generality, take X to be a Tychonoff space; that is, a space which
is Hausdorff, and in which for each closed set K and each point p not in K, there
is an f ∈ C(X) such that f(K) = {0} and f(p) = 1.
For any topological space X , we shall use O(X) to denote the frame of open

sets (under ordinary set-theoretic union and intersection). For each f ∈ C(X) let

coz(f) = { x ∈ X : f(x) 6= 0 };

this is the cozeroset of f . Coz(X) shall denote the set of all cozerosets of X .
Coz(X) is a sublattice of O(X), and, indeed, it is closed under countable unions.
It is well known that X is a Tychonoff space if and only if Coz(X) is a base for
O(X); [GJ76, 3.2].
For each f ∈ C(X), the zeroset Z(f) of f is the complement of coz(f). Z[X ]

stands for the set of all zerosets of X . We shall be interested in boundaries of
zerosets and cozerosets in the sequel. Let W ∈ Coz(X); the boundary of W ,
denoted bW , is bW = clX W ∩ (X \ W ). For a zeroset Z = Z(f) we shall also
write bZ for b coz(f) whenever convenient.

Next, we review the categorical equivalence alluded to in the introduction to
this section.

Definition & Remarks 3.2. (a) If L is an algebraic frame then k(L) is a dis-
tributive lattice with bottom 0. Conversely, if B is a distributive lattice with
bottom 0, then the lattice I(B) of all ideals of B is an algebraic frame with FIP.
Recall that J ⊆ B is an ideal of B if

(i) J is closed under finite suprema and
(ii) 0 ≤ a ≤ b ∈ J implies that a ∈ J .
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(b) A frame homomorphism g : L −→ M is coherent if g(k(L)) ⊆ k(M). Now
recall that the assignments

B 7→ I(B) and L 7→ k(L)

define the object portions of an equivalence between the category D of all dis-
tributive lattices with bottom, together with all lattice homomorphisms which
preserve bottom, and the category AFrm of all algebraic frames with FIP, to-
gether with all coherent frame homomorphisms. Observe that if g : B1 −→ B2 is
a morphism in D then I(g) is defined by

I(g)[〈 bi : i ∈ I 〉] = 〈 g(bi) : i ∈ I 〉.

(Note: 〈T 〉 denotes the ideal of B generated by T ⊆ B.) Conversely, if h : L1 −→
L2 is a AFrm-morphism, then k(h) is the restriction to k(L1).

(c) The functor I may also be regarded as the ‘free frame’ over a distributive
lattice with bottom. First, label the function which ‘embeds’ the D-object B

in I(B) in recognition of what it is: a 7→↓B(a). Now if F is a frame and B a
D-object, and h : B −→ F is a morphism in D, then there is a unique frame

morphism h̃ : I(B) −→ F such that h̃· ↓B= h; i.e., such that the diagram below
commutes.

B
↓B //

h

��1
11

11
11

11
11

11
I(B)eh

��























F

In fact, h̃[〈T 〉] =
∨

h(T ).
Obviously, I is, in this view, the left adjoint of the functor AFrm −→ D which

forgets the frame structure and the top, remembering merely the D-structure.
In the sequel B will frequently be a sublattice of F which generates it, in the

sense that each x ∈ F is a supremum of members of B; h will then denote the

inclusion. It is an easy exercise to show that h̃ is then onto F . Likewise, it is easy

to prove that if h is one-to-one then h̃ is dense, in the sense that if h̃(J) = 0 then
J = {0} — which is the sense of 1.3.
Finally, assuming again that h is inclusion of a generating set B in F , we

observe that if F is compact, then h̃ is codense, meaning that if h̃(J) = 1, then
J = B. (Note: if B generates F then k(F ) ⊆ B.)
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Remark 3.3. One should observe, when comparing the results of the preceding
section with those of Coquand, Lombardi, and Roy, that they phrase their discus-
sion in the language of the subcategory D1 of D of all distributive lattices which
also have a top 1. By appealing to the categorical correspondence of 3.2(b), one
may view their results as results about coherent frames. Theorem 2.7 shows that
the compactness of the frame in question does not play a role.

Next, we include a remark, which completes the general account of adjoint
situations, as set out in 1.3; the reader will readily appreciate its relevance in
questions of dimension.

Remark 3.4. As in 1.3, let f : L −→ M denote a complete join-homomorphism
of complete lattices. We assume throughout here that f is surjective.

1. Assume L is an algebraic lattice. By [M04b, Proposition 1.3], f is a coherent
map if and only if j = f∗ · f is an inductive closure operator. If so, then
M ∼= jL is also algebraic.

2. Now assume L is a frame. Then f is a frame homomorphism — that is, it
preserves finite infima — if and only if j = f∗ · f is a nucleus. In this event,
M ∼= jL is also a frame ([M04b, Proposition 1.4]).

3. Finally, assume that L and M are frames, and that f is a frame homo-
morphism. As is well known, and easy to prove, f∗(Spec(M)) ⊆ Spec(L),
whence f∗ induces an order embedding from Spec(M) −→ Spec(L). Thus,
if, in addition, L andM are algebraic frames with FIP and f is also coherent,
we have that dim(M) ≤ dim(L).

Let us focus more closely on the problem of computing the dimension of I(U)
where U is a naturally defined base of open sets of a Tychonoff space. We will
motivate the usage of the phrase ‘naturally defined’, as we have in mind potential
applications to various frames of ideals of C(X), which are determined by the
topology on X . Apart from the discussion of z-ideals and d-ideals contained in
this article, we leave other ‘potential’ applications for a later writing.

Definition & Remarks 3.5. We begin with the following rather general setup.
All spaces in this discussion are Tychonoff spaces.

1. Assume l : O −→ L is an assignment which associates to each space X a
nucleus lX : O(X) −→ L(X), with L(X) = lXO(X).

Now let f : Y −→ X be a map of Tychonoff spaces. We shall require that
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f be natural for l; that is to say, the following diagram commutes:

O(X)

lX

��

O(f) // O(Y )

lY

��
L(X)

L(f) // L(Y )

Note that we do not assume that L(f) coincides with the action of O(f)
on L(X). The reader would not be far off the mark in thinking of the
application of lX as a ‘relative topological closure’; indeed, define, for each
U ∈ L(X),

L(f)(U) = lY (O(f)(U)).

Tl will stand for the subcategory of Tychonoff spaces and l-natural (continu-
ous) maps. Tch denotes the category of Tychonoff spaces and all continuous
maps. Note that f : Y −→ X is a Tl-map if and only if

L(f) · lX = lY · O(X).

It is then routine to verify that Tl is a (generally, non-full) subcategory
of Tch; we refer to the example cited in 3.6(b), as an illustration of ‘non-
fullness’.

2. Observe that the right adjoint of lX — in the sense of 1.3 — is the inclusion
map of L(X) in O(X).

3. Next is the concept of a natural base: s : b −→ L. By this we mean that
b(X) is a sublattice of L(X), containing the top, X , and the bottom of L(X)
(not necessarily ∅ — see 5 below), with each sX : b(X) −→ L(X) being the
inclusion, such that the diagram below commutes.

L(X)
L(f) // L(Y )

b(X)

sX

OO

b(f) // b(Y )

sY

OO

for all Tl-maps f , with the stipulation b(f) ≡ L(f)|b(X).
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4. Putting all these ingredients together we get the following commutative
diagram, for each Tl-map f : Y −→ X :

O(X)
O(f) //

lX

��

O(Y )

lY

��
L(X)

L(f) // L(Y ) (•)

b(X)

b(f)

++

sX

66mmmmmmmmmmmmmm

↓b(X) ((QQQQQQQQQQQQQ b(Y )

sY

::uuuuuuuuu

↓b(Y ) $$II
IIIII

II

I(b(X))
I(b(f))

//

fsX

OO

I(b(Y ))

fsY

OO

5. For future reference we shall think of the operators on open sets in the
foregoing discussion as a triple (l, L, b), and refer to it as a natural typing
of open sets . We call the natural typing (l, L, b) dense if each lX is a dense
nucleus, or, equivalently, if ∅ ∈ L(X).

Both of the natural typings of open sets discussed below are dense.

Examples 3.6. (a) First, let L = O, with b(X) = Coz(X), for each space X .
In this case, all continuous maps are l-natural, as l = 1. The natural typing
(1, O,Coz) gives rise to the frame of z-ideals, as we shall see in Section 4.

(b) Let L(X) = RO(X), the frame of regular open sets of X . Recall that
U ∈ O(X) is regular if intX clX U = U . The reader should be reminded of the
lattice operations in RO(X):

∨

i∈I

Ui = intX clX

( ⋃

i∈I

Ui

)
and

∧

i∈I

Ui = intX clX

( ⋂

i∈I

Ui

)
.

For brevity, we shall use ̺X to denote the nucleus on O(X) defined by ̺XU =
intX clX U . In this connection we recall that the finite intersection of regular open
sets is regular. Thus, to say that f : Y −→ X is a T̺-map means that

(∗) ̺Y f−1(̺XU) = ̺Y f−1(U),

for each U ∈ O(X).
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In the sequel we shall examine the natural typing of open sets (̺, RO, b̺),
where the natural base for RO(X) is

b̺(X) = { ̺X coz(f) : f ∈ C(X) }.

The reader will readily verify that the latter is a sublattice of RO(X). We shall
refer to this typing as the regular typing of open sets.
It is an easy exercise to check that, relative to the regular typing of open sets,

the retraction of the reals R, with the usual topology, onto any closed bounded
interval is not a T̺-map.

We have the following narrower description of the T̺-maps, in the context of
the regular typing introduced above. The proposition we have in mind is preceded
by a lemma, the proof of which is left to the reader.

Lemma 3.7. Let A, B be open subsets of X , with A ⊆ B. The following are
equivalent:

(a) ̺XA = ̺XB;
(b) clX A = clX B;
(c) for any open set U , A ∩ U = ∅ ⇒ B ∩ U = ∅;
(d) B \ A is nowhere dense.

The maps described in Proposition 3.8(c) are called skeletal in the literature.

Proposition 3.8. Let f : Y −→ X be a continuous function. The following are
then equivalent:

(a) f is ̺-natural;
(b) for all U ∈ O(X) andW ∈ O(Y ), f−1(U)∩W = ∅ ⇒ f−1(̺XU)∩W = ∅;
(c) f is skeletal; i.e., the inverse image of each dense open set is dense open.

Proof: The equivalence of (a) and (b) is clear.
(b) ⇒ (c): if U is dense open, then, applying (b) and the lemma to the con-

tainment of U in X = clX U , we have that f−1(U) is dense open in Y .
(c)⇒ (b): Let U ∈ O(X) andW ∈ O(Y ). Since G = ̺XU \U is nowhere dense

and f is skeletal, we conclude that f−1(G) is nowhere dense. Thus, if W ∩ ̺XU

is nonempty and W ∩ U = ∅, then

∅ 6= f−1(W ∩ ̺XU) ⊆ f−1(G),

contradicting that f−1(G) is nowhere dense. �

If Y is a subspace of X and the inclusion of Y in X satisfies Proposition 3.8(c),
we shall call it a skeletal embedding. Based on the foregoing, we have the following
immediate corollary. By contrast with it, please note that a nowhere dense closed
proper subspace is not skeletal.
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Corollary 3.9. Let Y be a subspace of X . Y ⊆ X is a skeletal embedding if Y

is dense in X or open in X .

Proof: Apply Proposition 3.8(c). �

We wind up the section with some general observations, intended to both set
up and motivate the discussion of the next section. The reader would be well
served with a review of the discussion in 1.3.

Definition & Remarks 3.10. (a) Suppose that (l, L, b) is a dense natural typing
of open sets. Given U ∈ b(X), define

blU = X \ (U ∨ U⊥),

with the U⊥ calculated in the frame L(X). We call blU the l-boundary of U .
In view of Lemma 2.6 on boundary quotients, it seems reasonable to investigate
further the l-natural l-boundaries of X . For any inclusion of a subspace i : Y −→
X , we appeal directly to 3.5.1, to conclude that i is l-natural precisely when, for
each open set W ,

L(i)(lX(W )) = lY (W ∩ Y ).

(b) Next, assume that the inclusion i : Y −→ X is l-natural, and consider the
frame homomorphism I(b(i)), which we, henceforth, will abbreviate as ΦY . It
will be helpful to explicitly describe ΦY and its adjoint Φ

∗
Y .

1. For an ideal J of b(X),

ΦY (J ) = 〈lY (W ∩ Y ) : W ∈ J 〉.

2. For an ideal K of b(Y ),

Φ∗Y (K) = {V ∈ b(X) : lY (V ∩ Y ) ∈ K }.

Of some significance is the situation in which ΦY is surjective; recall 1.3.4(a):
ΦY ·Φ∗Y = 1I(Y ), if (and only if) ΦY is surjective. Checking the diagram (•), will

reveal that if the restriction b(i) is surjective, then so is ΦY . A direct calculation
will verify the same thing.
But the reverse is also true. That is part of the subject of the next lemma,

which also articulates where the image of Φ∗Y lies when ΦY is surjective.

Lemma 3.11. Suppose that (l, L, b) is a dense natural typing of open sets, and
that i : Y −→ X is an l-natural embedding. Then ΦY is surjective if and only if
b(i) is. In this case, for each J ∈ I(b(X)),

ΦY (J ) = { lY (W ∩ Y ) : W ∈ J }.
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Moreover, each Φ∗Y (K) contains the ideal JY ≡ {V ∈ b(X) : V ∩ Y = ∅ }.

Proof: Suppose that ΦY is surjective. By 1.3.4(a), ΦY (Φ
∗
Y (K)) = K, for each

ideal K of b(Y ). Thus, if lY V ∈ b(Y ), then

〈lY V 〉 ⊆ ΦY (Φ
∗
Y (〈lY V 〉)),

which implies that there is an W ∈ b(X) such that lXW ∈ Φ∗Y (〈lY V 〉) and
lY V ⊆ lY (W ∩ X); that is, there is an W ∈ b(X) such that

lY V ⊆ lY (W ∩ X) ⊆ lY V.

Therefore, lY V = lY (W ∩ X), for a suitable W ∈ b(X), and b(i) is indeed onto.
The final two assertions are clear. �

Definition & Remarks 3.12. Suppose that (l, L, b) is a dense natural typing
of open sets, and that i : Y −→ X is an l-natural embedding. We shall say that
i is a z(l)-embedding if Φ ≡ ΦY is surjective. From the remarks in 3.4.3, we are
able to conclude that if Y is a z(l)-embedded subspace, then

dim(I(b(Y ))) ≤ dim(I(b(X))).

The last assertion of Lemma 3.11 may be interpreted to say that, if Y is z(l)-
embedded in X , then the fixed set of the nucleus Φ∗ ·Φ is contained in the frame
quotient ↑ JY . If this fixed set is precisely ↑ JY then we say that Y is optimally
l-embedded in X .
Let us now return to the consideration of an l-boundary i : blU −→ X (with

U ∈ b(X)). Note that blU is optimally l-embedded if and only if the fixed set of

Φ∗ ·Φ is ↑ ((↓ U)∨ (↓ U)⊥). (The reader will doubtless recognize the latter as the
boundary quotient of I(b(X)) over ↓ U , as defined in 2.5.) When blU is optimally
l-embedded we also speak of an optimal l-boundary; observe that whether or not
an l-boundary is optimal may in fact depend on the open set U in question.

We have the following immediate consequence of Lemma 2.6.

Theorem 3.13. Suppose that (l, L, b) is a dense natural typing of open sets.
Assume that the l-boundary of every U ∈ b(X) is an optimal l-boundary. Then,
for each nonnegative integer k, dim(I(b(X))) ≤ k if and only if, for each U ∈
b(X), dim(I(b(blU))) ≤ k − 1.

To contrast, let us now identify a crucial limitation to the inductive method of
Theorem 3.13. Simply put, it is an instance where reality disappoints.

Remark 3.14. Let (l, L, b) be a dense natural typing of open sets. It may
happen that L(X) is a boolean algebra, for each space X . This occurs in the
natural typing (̺, RO, b̺) of 3.6(b). If this is the case then every l-boundary is
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empty, and it is easy to see that the empty set is always z(l)-embedded. However,
blU = ∅ is optimal if and only if X = U ∨ V for a suitable V ∈ b(X), with
U ∩ V = ∅. Thus, Theorem 3.13 applies if and only if k = 0.
We will say what we can about d-ideals and d-dimension in Section 6. However,

as the base b̺ appears to be crucial in getting a handle on the d-ideals of C(X)
(see Lemma 6.2), having empty boundaries (in this typing) probably means that
d-dimension behaves differently from z-dimension in a fundamental way.

Finally, a comment which ought to invite speculation.

Remark 3.15. (a) In the introductory section we alluded to a ‘spatial’ dimension
of topological spaces. Let us formalize this notion now. Suppose that U is any
base for the open sets O(X) of the (not necessarily Tychonoff) space X ; assume
that U is

1. a distributive lattice under inclusion (though not necessarily a sublattice of
O(X)), and

2. that U contains X and ∅.

Let us refer to such a base as a lattice base of open sets . The dimension of I(U)
is called the U-dimension of X , and denoted dim(X, U).

(b) Suppose that U is a lattice base of open sets. If U is a sublattice of O(X),
then dim(X, U) = 0 if and only if U is also a (boolean) subalgebra of O(X); that is
to say, if and only if each V ∈ U is complemented in U: apply Theorem 2.8 directly.
The reader will then easily see that X is zero-dimensional , in the usual sense;
namely, that the collection of all clopen sets, B(X), forms a base. Conversely, if
X is zero-dimensional, then dim(X, B(X)) = 0.
Happily, the notions of dimension coincide.

(c) In the context of a dense natural typing (l, L, b), Theorem 3.13 could
then be interpreted as an expression that b(X)-dimension (when finite) satisfies
dim(X, b(X)) = 1 +m, where

m = sup{ dim(blU, b(blU)) : U ∈ b(X) },

as long as the l-boundary of each member of the base b(X) of X is an optimal
l-boundary .

4. z-dimension of C(X)

In this section we apply the foregoing to the frame of z-ideals of a ring of
continuous real valued functions on a Tychonoff space. Throughout, X denotes
a fixed Tychonoff space, which is arbitrary, until we get to the point where it
becomes necessary to make some assumptions in order to get any reasonable
results.
We recall the definition and basic features of z-ideals from [GJ76, Chapter 2].

We shall also employ terminology from the theory of lattice-ordered groups —
henceforth, ℓ-groups — and for this we refer the reader to [D95] and [BKW77].
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Definition & Remarks 4.1. An ideal r of C(X) is a z-ideal if for each f ∈ r and
g ∈ C(X), with coz(g) ⊆ coz(f), it follows that g ∈ r. It is well known that any
z-ideal is closed under the lattice operations; we shall say, in this regard, that it is
an ℓ-subgroup. In addition, any z-ideal r is (order) convex ; that is, 0 ≤ g ≤ f ∈ r

implies that g ∈ r.
The set Cz(X) of all z-ideals is an frame algebraic frame under the ordering of

inclusion. In fact, it is shown in [M04a] that Cz(X) is the set of fixed elements
under an inductive nucleus z — see also 1.1.9 — which assigns to each convex
ℓ-subgroup A of C(X) the least z-ideal zA containing A. More precisely,

zA = { g ∈ C(X) : coz(g) ⊆ coz(f) for some f ∈ A }.

For future reference we stipulate that C(C(X)) shall denote the frame of all convex
ℓ-subgroups of C(X); the latter is a frame under the operations of intersection
and supremum defined as the subgroup generated by the family which is to be
majorized.
It is easy to check directly that k(Cz(X)) consists of the principal z-ideals; that

is, the z-ideals of the form, for each f ∈ C(X),

〈f〉z = z{f} = { g ∈ C(X) : coz(g) ⊆ coz(f) }.

For example, to prove that each compact z-ideal is of the prescribed form, note
that if r is a z-ideal which is generated by f1, f2, . . . , fm, we may assume without
loss of generality — by passing from fi to |fi| — that each of the generators is
positive. It is then clear that r = 〈(f1 + f2 + · · ·+ fm)〉z .
Note, finally, that Cz(X) is compact, and therefore coherent; the top is 〈1〉z .

The most immediate goal is to make the connection between the frame of z-
ideals and the frame of ideals of Coz(X). That is the subject of the next lemma.
From the comments above the proof is immediate, and we leave it to the reader.

Lemma 4.2. Let X be a space. The map

ηz
X (coz(f)) = 〈f〉z , (f ≥ 0),

is a lattice isomorphism from Coz(X) onto k(Cz(X)).

As a consequence of Lemma 4.2 and the discussions in 3.2(b) and 3.5, we have
the following, in which we feature an amalgam of the diagram in 3.5.4 with the
new information.

Proposition 4.3. Let X be a space. We have the frame isomorphism from
I(Coz(X)) onto Cz(X) defined by extending the map ηz

X to the frame of ideals
(calling the extension ηz

X as well). Moreover, we have, for any continuous function
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f : Y −→ X between spaces the commutative diagram, in which Cz(f)(r) =
〈{ g · f : g ∈ r }〉z :

O(X)
O(f) // O(Y )

Coz(X)

Coz(f)

++

sX

66mmmmmmmmmmmmmm

↓Coz(X) ((QQQQQQQQQQQQQ
Coz(Y )

sY

99rrrrrrrrrr

↓Coz(Y ) %%LLLLLLLLLL

I(Coz(X))

ηz
X

��

I(Coz(f))
//

fsX

OO

I(Coz(Y ))

ηz
Y

��

fsY

OO

(•z)

Cz(X)
Cz(f)

// Cz(Y )

Thus, ηz is a natural equivalence between the functors I ·Coz and Cz.

It is time to turn to z-dimension of a C(X) and its supporting space.

Definition & Remarks 4.4. The z-dimension of C(X), denoted dimz(C(X)),
is the dimension of the frame Cz(X) (or, equivalently, that of I(Coz(X))). We
shall also speak of the z-dimension of X itself, and write it dimz(X); note as well
that, treating Coz(X) as a sublattice base of open sets, we have, in the notation
of 3.15, that dimz(X) = dim(X,Coz(X)).
The definition implies immediately that dimz(X) = dimz(υX), where υX

denotes the realcompactification of X . We shall not comment further on this;
the reader is referred to [GJ76, Chapter 8].

Let us now factor in the results of Section 2, specifically coupling Theorem 2.8
with Proposition 4.3, to give a spatial characterization of z-dimension.

Theorem 4.5. Let X be a space. Then dimz(X) ≤ k if and only if for each
sequence of cozerosets U0, U1, . . . , Uk there exist cozerosets V0, V1, . . . , Vk such
that

X = Uk ∪ Vk, Uk ∩ Vk ⊆ Uk−1 ∪ Vk−1, . . . , U1 ∩ V1 ⊆ U0 ∪ V0, and U0 ∩ V0 = ∅.

Remarks 4.6. (a) It is easy to see from Theorem 4.5 that dimz(X) = 0 precisely
when each cozeroset is closed. This is one of the many equivalent definitions of a
P -space; see [GJ76, Theorem 14.29].
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(b) In [HMW03], the authors studied the spaces for which dimz(X) ≤ 1 (with-
out using any of the machinery or terminology introduced here, and without
mentioning dimension). Such spaces were called quasi P in [HMW03]; reciting
Theorem 4.5 for the case k = 1, we have the following characterization of quasi
P -spaces: X is quasi P if and only if for each cozero sets U0 and U1 there exist
cozerosets V0 and V1 such that X = U1∪V1, U1∩V1 ⊆ U0∪V0, with U0∩V0 = ∅.

(c) At least one of the open questions of [HMW03] can now be answered with
ease. Recall that if {Xi : i ∈ I } is a family of spaces, and X denotes the disjoint
union of the Xi, then X is called the topological union if its topology is defined
as follows: V ∈ O(X) if and only if each V ∩ Xi ∈ O(Xi). Note that if X is the
topological union of the Xi, then V ∈ Coz(X) precisely when V ∩Xi ∈ Coz(Xi);
then also C(X) is canonically isomorphic — as a ring and as an ℓ-group — to the
direct product

∏
i∈I C(Xi).

In [HMW03] it was asked whether the topological union of any number of
quasi P spaces is quasi P . Several affirmative partial results were obtained, but
the general question remained unresolved.

We can now settle the matter and get a more general theorem on z-dimension.
The proof is a straightforward application of the topological union and Theo-
rem 4.5; we leave the details to the reader.

Proposition 4.7. Suppose that X is the topological union of the spaces Xi

(i ∈ I). Then
dimz(X) = sup

i∈I
dimz(Xi).

It is time to discuss z-embeddings, in order to apply Theorem 3.13. For the
literature on z-embedding we refer the reader to [Bl76], [BlH74] and [HJ61].

Definition & Remarks 4.8. Suppose that X is a space and Y is a subspace.
We say that Y is z-embedded in X if every zeroset of Y is of the form Z ∩ Y , for
some Z ∈ Z[X ]. It is clear from Lemma 3.11 that ‘z-embedding’ coincides with
‘z(1)-embedding’ (with regard to the natural typing (1, O,Coz)).
For our purposes it is enough to recall the following specifics.

1. The reader is reminded that a space is Lindelöf if every open cover by a
family of open sets has a countable subcover. Note that every closed sub-
space of a Lindelöf space is also Lindelöf, and that any Lindelöf space (here
being Tychonoff and therefore regular) is normal ([En89, Theorem 3.8.2]).

2. Any Lindelöf space is z-embedded in any space containing it as a subspace;
see [HJ61, 5.3].

3. In particular, if X is Lindelöf, then every closed subset — and hence any
boundary bU = X \ (U ∪ intX(X \U)), with U ∈ Coz(X) — is z-embedded.

4. Suppose that X is Lindelöf. Note that, since every cozeroset is a countable
union of closed sets, each U ∈ Coz(X) is Lindelöf (and also z-embedded).
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Now we proceed to extract the consequences of the main theorem from Sec-
tion 2, as interpreted by Theorem 3.13 and the remarks of 3.10. The first result
also uses 3.4.3.

Proposition 4.9. Suppose that Y is z-embedded in X . Then dimz(Y ) ≤
dimz(X).

Next, we have the best result on z-dimension, in the sense that the ‘Lindelöf’
hypothesis appears to be the most general one which insures that all the bound-
aries of cozerosets are optimally embedded. In the proof of this theorem we return
to the notation of 3.10 and 3.12.

Theorem 4.10. Suppose that X is a Lindelöf space. Then

(a) every boundary bU (U ∈ Coz(X)) is optimally embedded;
(b) for each nonnegative integer k, dimz(X) ≤ k if and only if dimz(bU) ≤

k − 1, for each boundary bU (U ∈ Coz(X)).

Proof: It should be obvious that (b) follows from (a). We proceed to prove (a).
Since X is Lindelöf, every boundary bU is z-embedded, according to 4.8.3.

Thus, to finish the proof, it suffices to show that the restriction of Φ to induces a
frame isomorphism from ↑ ((↓ U) ∨ (↓ U)⊥) onto I(Coz(bU)). (Note: we revert
to the notation of 3.10, where Φ = ΦbU .)
From 3.10(b), we have that Φ ·Φ∗ = 1I(Coz(bU)), and it is easy to calculate and

show that Φ∗ maps to the quotient ↑ ((↓ U) ∨ (↓ U)⊥). It will be enough then to

show that, restricted to ↑ ((↓ U) ∨ (↓ U)⊥), Φ∗ · Φ = 1. Note that, by 1.3.1, we
already have that J ⊆ Φ∗(Φ(J )), for any ideal J of Coz(X).
We will complete the proof by showing that Φ∗(Φ(J )) ⊆ J , for each ideal

J ∈↑ ((↓ U) ∨ (↓ U)⊥). Suppose that S ∈ Φ∗(Φ(J )); we leave it to the reader to
verify that this means that there is a cozeroset T ∈ J , such that S∩bU = T ∩bU .
Therefore, (S \ T ) ∩ bU = ∅, and so S \ T ⊆ U ∪ intX(X \ U), which, in turn,
implies that

S ⊆ U ∪ intX(X \ U) ∪ (S ∩ T ).

Now, S is a cozeroset in a Lindelöf space, and therefore also Lindelöf. Hence, by
a subcovering argument, there are countably many cozerosets W1, W2, . . . , each
disjoint from U , such that

S ⊆ U ∪ W1 ∪ W2 ∪ . . . ∪ (S ∩ T ) = U ∪ W ∪ (S ∩ T ),

where W = W1 ∪ W2 ∪ . . . , and W is also a cozeroset disjoint from U . Since
J ∈↑ ((↓ U) ∨ (↓ U)⊥), it follows that U and W are both in J , whence S ∈ J ,
and this completes the proof. �

The foregoing has important consequences for compact spaces of finite z-
dimension. We reserve that discussion for the next section.
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5. Compact spaces of finite z-dimension

Throughout this section X will stand for a compact space, unless the contrary
is expressly stated. The objective is Theorem 5.3, stating that dimz(X) ≤ k

precisely when X is scattered of CB -index ≤ k + 1 (where k ≥ −1 is an integer).
We begin the development leading up to Theorem 5.3 by briefly reviewing

scattered spaces and, in particular, the so-called Cantor-Bendixson derivatives of
a space.

Definition & Remarks 5.1. In this general commentary Y is an arbitrary
Tychonoff space.

(a) Y is said to be scattered if each nonvoid subspace S has an isolated point
of S. Many properties of scattered spaces are summarized in Z. Semadeni’s me-
moir [Se59]; we also refer the reader to his book [Se71]. It is easy to see that if
each nonempty closed subspace of Y has an isolated point, then Y is scattered.
A compact scattered space is necessarily zero-dimensional. The Stone dual is

a superatomic boolean algebra: every homomorphic image has an atom. For the
‘boolean algebra side’ of scattered spaces the reader is referred to [Ko89, §17].
It is well known that if X is scattered, then so is any continuous image of X .

(b) If Y is a space let Is(Y ) denote its set of isolated points, and let: Y (0) = Y ,

Y (1) = Y \ Is(Y ). For any ordinal η, let Y η+1 = (Y (η))(1), and if η is a limit
ordinal, let

Y (η) =
⋂

{ Y (ξ) : ξ < η }.

The spaces Y (η) are called Cantor-Bendixson derivatives of Y . The reader will
note that these derivatives form a decreasing transfinite sequence of closed sub-
spaces of Y . From cardinality considerations there is an ordinal α such that

Y (α) = Y (α+1); then, in fact, Y (α) = Y (β), for each β > α. Let CB(Y ) denote

the smallest ordinal for which Y (α) = Y (α+1); this is the CB-index of a space Y .

Now, it is easily seen that Y is scattered if and only if Y (α) = ∅, for suitable α.
If Y is scattered and CB(Y ) = α, then α is also the least ordinal for which

Y (α) = ∅. In particular, CB(Y ) = 1, with Y scattered, simply means that Y is a
nontrivial discrete space.
Obviously, if Y is scattered, then any subspace S is also scattered, and CB(S) ≤

CB(Y ).

If Y is compact, scattered, and α = CB(Y ), then it is clear that
⋂

η<α Y (η)

is nonempty. It follows that α has a predecessor γ such that Y (γ) is finite and,
hence, the last nonempty Cantor-Bendixson derivative. (To illustrate, CB(Y ) = 1
means that Y itself is finite and nonempty; CB(Y ) = 2 means that Y \ Is(Y ) is
finite, but nonvoid; and so on.)
Note that if Y is compact and scattered, then CB(Y ) = 2 if and only if Y is a

finite topological sum of one-point compactifications of discrete spaces (of which
at least one is infinite).
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(c) It is well known that a compact space X is scattered if and only if the
closed unit interval is not a continuous image of X .

(d) If X is scattered, with finite CB -index, then an easy induction argument
establishes that each nonisolated point p ∈ X is the limit of a sequence p1, p2, . . . ;

moreover, if p is isolated in X(i), then pn may be chosen so that it is isolated in

X(in), with in ≤ i.

To prove Theorem 5.3 we will apply Theorem 4.10. In order to accomplish that
we shall need the following lemma. Let us state what is obvious in its assertion:
that (b) implies (c). The implication ‘(c) ⇒ (a)’ in the lemma was, so far as we
know, first proved by Mart́ınez and McGovern. It may, however, be part of the
folklore of scattered spaces; to our knowledge, it is not published anywhere.

Lemma 5.2. For any (compact) space X space the following are equivalent:

(a) X is scattered;
(b) for each open set O, bO is scattered;
(c) for each cozeroset U , bU is scattered.

If X is scattered, then, for each nonnegative integer k, CB(X) ≤ k if and only if
CB(bU) ≤ k − 1, for each cozeroset U of X .

Proof: (a) ⇒ (b) If O is any open set of X then it is clear that, since bO is

nowhere dense, bO ⊆ X(1), and hence that CB(bO) ≤ k − 1. This also proves the
necessity in the second part of the lemma.

(c) ⇒ (a) Suppose that every cozeroset boundary of X is scattered. Suppose,
by way of contradiction, that the closed unit interval I is a continuous image ofX ,
and let g : X −→ I be such a continuous surjection. Let C be the canonical copy
of the Cantor set in I, and let V = g−1(I\C). Then V is a cozeroset, and therefore
bV is scattered. On the other hand, restricted to bV , g maps continuously onto
the Cantor set, a contradiction. By 5.1(c), X is scattered, as claimed in (a).

Suppose, finally, that (c) holds, and each cozeroset boundary has CB -index

≤ k − 1, yet X(k) 6= ∅. Let p be an isolated point of X(k). Let W be a compact

neighborhood of p excluding all other isolated points of X(k). Since the standing

hypotheses here also hold forW , andW (k) 6= ∅, we may, without loss of generality,
assume W = X .

Using 5.1(d), we may select a sequence p1, p2, . . . , converging to p. The set
K = { p1, p2, . . . , p } is C∗-embedded in X , and it should be clear that there is
a cozeroset V of X such that V ∩ K = { p1, p2, . . . } and p ∈ bV . Note that

p ∈ (bV )(k−1), so that CB(bV ) ≥ k, contradicting the assumptions.

This completes the proof of Lemma 5.2. �

It should be noted that Theorem 5.3 generalizes [HMW03, Theorem 4.1(II)].
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Theorem 5.3. Suppose X is a space. Then dimz(X) ≤ k if and only if X is
scattered and CB(X) ≤ k + 1; (k ≥ −1 is an integer).

Proof: For k = −1, both dimz(X) ≤ k and CB(X) ≤ k + 1 are true precisely
when the space X = ∅. Now suppose that k ≥ −1, and the theorem holds for all
compact spaces of z-dimension ≤ k. Observe that dimz(X) ≤ k+ 1 if and only if
dimz(bU) ≤ k, for each cozeroset U of X , which, by induction, is true if and only
if each cozeroset boundary bU is scattered of CB -index ≤ k+1. Finally, applying
Lemma 5.2, the latter holds if and only if X itself is scattered and CB(X) ≤ k+2.

�

Let us conclude this section with a number of corollaries and remarks. The
first of these is a refinement of the statement of Lemma 5.2.

Remark 5.4. Suppose X is scattered, with CB(X) ≤ k+1 (with k ≥ −1). Then
there are at most finitely many cozeroset boundaries bU with CB -index exactly k.

The reason for this is simply that X(k) is finite, and only the points of X(k) may
lie in such cozeroset boundaries. There are some details to be worked out here,
along the lines of the argument in the proof that (c) implies (a) in Lemma 5.2.
We shall leave these details to the reader.
Thus, if X is compact and scattered and dimz(X) ≤ k, then there are indeed

at most finitely many cozeroset boundaries bU for which dimz(bU) = k − 1.

We refer the reader to [Bl76] for amplification of the next remark.

Remark 5.5. (a) Recall that a Tychonoff space Y is almost compact if its Stone-
Čech compactification βY is also its one-point compactification. Each almost
compact space is C-embedded in any space containing it as a subspace ([GJ76,
6J]), and therefore also z-embedded. Thus, if Y is almost compact and Y is a
subspace of X , with dimz(X) ≤ k < ∞, then Y also has finite z-dimension.
On the other hand, C(Y ) = C(βY ) — see [GJ76, 6J] — for any almost compact

space Y . Therefore, by Theorem 5.3, and since dimz(Y ) = dimz(βY ), dimz(Y ) <

∞ implies that Y is scattered, with finite CB -index.
In particular, no space of finite z-dimension contains any copies of the ordinal

line ω1; note that this spaces is scattered, but its CB -index is ω1.

(b) Note as well that βN, the Stone-Čech compactification of the discrete nat-
ural numbers, has infinite z-dimension. Thus, any space containing a copy of βN

also has infinite z-dimension. This includes all the compact F -spaces (see [GJ76,
Theorem 14.25]), and all the compact SV -spaces of [MLMW94].

Finally, for locally compact spaces we can state the following.

Proposition 5.6. Suppose that Y is locally compact and it has finite z-dimen-
sion. Then Y is scattered.

Proof: Suppose that K ⊆ X is closed and p ∈ K. Let C be a compact neigh-
borhood of p in X ; note that C ∩K is compact and therefore C∗-embedded and,
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certainly, z-embedded. Thus, dimz(C ∩ K) < ∞, and C ∩ K is a neighborhood
of p in K, which must contain an isolated point of K. �

On the other hand, for noncompact, locally compact spaces the relationship
between z-dimension and CB -index is not clear. Witness the following two situ-
ations.

Example 5.7. In [Mr70, 1.2] there is an example of a space T which is first-
countable, nonnormal, locally compact and scattered of CB -index 2; in fact,

T (1) = N, with the discrete topology. This example is discussed in [HMW03]
(Example 7.4), where it is pointed out that dimz(T ) ≥ 2 (although not in the
language of z-dimension).
Indeed, it is not clear whether T has finite z-dimension. What is true is that

dimz(bU) = 0, for each cozeroset boundary bU , since all such boundaries are
discrete. Theorem 4.10 does not apply, as T is not Lindelöf. (If it were, then said
theorem would show that dimz(T ) ≤ 1, which is not true.) Thus, this example
does show, at least, that some assumptions are needed for Theorem 4.10.

Example 5.8. The reader is referred to the class of spaces Ψ discussed in [GJ76,
5I]. Each such space is scattered of CB -index 2, and, indeed, a union of the dis-
crete natural numbers N and an uncountable discrete set D, the points of which
are in one-to-one correspondence with members of a maximal almost-disjoint fam-
ily of subsets of N. Ψ is locally compact, but not Lindelöf. It is pseudocompact,
and as is demonstrated in [HMW03, Example 4.4], every noncompact, pseudo-
compact scattered space of CB -index 2 has z-dimension at least 2. But as with
the preceding example, the boundary of any cozeroset is discrete, and therefore
has z-dimension 0.
It is unknown what dimz(Ψ) is; since Ψ is pseudocompact this depends on

whether βΨ is scattered or not; this too seems to be unknown.

6. d-dimension of C(X)

Throughout this section, the topological spaces are assumed to be Tychonoff,
unless the contrary is specified. We examined the dimension of C(X) associated
with d-ideals, and its relationship to the natural typing of open sets (̺, RO, b̺)
of Example 3.6(b).
We begin with an account of d-ideals which bypasses the more traditional one,

given in more general setting, such as that of [HuP80a], [HuP80b], for Riesz
spaces, or the frame-theoretic context of [MZ03], [M04a].

Definition & Remarks 6.1. An ideal r of C(X) is called a d-ideal if f ∈ r and
coz(g) ⊆ clX coz(f) imply that g ∈ r.

(a) To accentuate the parallels with z-ideals and the discussion about Cz(X)
in 4.1, we note the following.
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1. Every d-ideal is a z-ideal.

2. Each d-ideal is a convex ℓ-subgroup, and, clearly, the intersection of any
family of d-ideals is a d-ideal.

3. It is established elsewhere — see, for example, [MZ03] — that the lattice
Cd(X) of all d-ideals is a nuclear and inductive closure system in the frame
C(C(X)) of all convex ℓ-subgroups. Thus, there is an inductive nucleus d

on C(C(X)) for which the fixed family is precisely Cd(X).

4. For each A ∈ C(C(X)),

dA = { g ∈ C(X) : coz(g) ⊆ clX coz(f) for some f ∈ A }.

5. The compact elements of Cd(X) are the ideals of the form 〈f〉d = d{f}.

(b) Let A be a commutative ring with identity, and assume for our purposes
that A contains no nonzero nilpotent elements. Recall that an ideal r of A is an
annihilator ideal if there is a subset S ⊆ A such that

r = S⊥ ≡ { a ∈ A : sa = 0, ∀ s ∈ S }.

Note that r is an annihilator ideal if and only if r = r⊥⊥. (Note: the ⊥-notation
is used here in accord with similar notation employed elsewhere in this paper in
the context of ‘pseudocomplementation’.) If S = {f} we shall write f⊥ for S⊥;

the meaning of the notation f⊥⊥ ought to be clear.
In a ring of continuous functions C(X) it is easy to see that f ∈ S⊥ precisely

when coz(f)∩ coz(g) = ∅, for each g ∈ S, and so f ∈ S⊥⊥ if and only if coz(f) ⊆
clX coz(g), for each g ∈ S, which makes it clear that every annihilator ideal of
C(X) is a d-ideal.

Indeed, r ∈ Cd(X) if and only if f ∈ r implies that f⊥⊥ ⊆ r. Note then that

〈f〉d = f⊥⊥, for all f ∈ C(X).

(c) Finally, it ought to be noted that the inductive closure d is none other than

(̂·)⊥⊥ — see 1.1.9 — applied to the frame C(C(X)).

Next, we state, for completeness and without any commentary, the analogues
of Lemma 4.2 and Proposition 4.3. Notice the reappearance of skeletal maps,
as they are the l-natural maps in this categorical context. Recall that the map
f : Y −→ X between Tychonoff spaces is skeletal if the inverse image of every
dense open set is dense.

Lemma 6.2. Let X be a space. The map

ηd
X (̺X coz(f)) = 〈f〉d, (f ≥ 0),

is a lattice isomorphism from b̺(X) onto k(Cd(X)).
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Proposition 6.3. Let X be a space. We have the frame isomorphism from
I(b̺(X)) onto Cd(X) defined by extending the map ηd

X to the frame of ideals

(calling the extension ηd
X as well). Moreover, we have, for any continuous skele-

tal function f : Y −→ X between spaces the commutative diagram, in which
Cd(f)(r) = 〈{ g · f : g ∈ r }〉d:

RO(X)
RO(f) // RO(Y )

b̺(X)

b̺(f)

++

sX

66mmmmmmmmmmmmm

↓b̺(X) ((QQQQQQQQQQQQQ
b̺(Y )

sY

99ttttttttt

↓b̺(Y ) %%JJJJJJJJJ

I(b̺(X))

ηd
X

��

I(b̺(f))
//

fsX

OO

I(b̺(Y ))

ηd
Y

��

fsY

OO

(•d)

Cd(X)
Cd(f)

// Cd(Y )

Thus, ηd is a natural equivalence between the functors I · b̺ and Cd.

Definition & Remarks 6.4. Let X be a space. The d-dimension of X (or
of C(X)), denoted dimd(X) (resp. dimd(C(X))) is the dimension of Cd(X) ∼=
I(b̺(X)). As with z-dimension, one has, in terms of the usage in 3.15, that
dimd(X) = dim(X, b̺(X)). As before, dimd(X) = dimd(υX), where υX stands
for the realcompactification of X .

As every d-ideal is a z-ideal, it follows that dimd(X) ≤ dimz(X), for every
space X . As to when these dimensions agree, let us combine Theorems 7.7 and
10.3(ii) from [HuP80b]. First recall that X is an almost P -space it has no proper
dense cozerosets. The following are equivalent:

(a) X is an almost P -space;
(b) every cozeroset of X is regular open;
(c) every z-ideal of C(X) is a d-ideal;
(d) every maximal ideal of C(X) is a d-ideal.

Evidently, then if X is almost P , it follows that dimd(X) = dimz(X).

The converse is false: let X be a disjoint union of a copy of αN and αD, where
D is an uncountable discrete space. By Proposition 4.7 (above) and Corollary 6.7
(below), dimd(X) = dimz(X) = 1. However, X is not almost P .
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Remarks 6.5. It is easily seen that dimd(X) = 0 precisely when, for each coze-
roset U of X , there is a cozeroset V of X such that U ∩V = ∅ and U ∪V is dense.
Such spaces are called cozerocomplemented ; they have been extensively studied,
and most recently by Henriksen and Woods ([HW04]). It is well known, that X

is cozerocomplemented if and only if the space of minimal prime ideals of C(X)
is compact in the induced hull-kernel topology. This class of spaces includes all
metric spaces and all spaces with the countable chain condition.

The one-point compactification αD of an uncountable discrete space D is not
cozerocomplemented; indeed, since dimz(αD) = 1, as the space is scattered with
CB -index 2, dimd(αD) = 1 as well. As βN is cozerocomplemented, but its z-
dimension is infinite, one readily realizes that z-dimension and d-dimension can
be quite different.

Next, we state the analogue of Theorem 4.5 for d-dimension, letting the reader
sort out the details as an exercise. Suffice it to observe about the operator ̺X

that, for any two open sets U and V of X , we have ̺X(U ∩ V ) = ̺XU ∩ ̺XV ,
while ̺X(U ∪ V ) = ̺XU ∨ ̺XU , where ∨ denotes the supremum in RO(X).

Theorem 6.6. Let X be a space. Then dimd(X) ≤ k if and only if for each
sequence of cozerosets U0, U1, . . . , Uk there exist cozerosets V0, V1, . . . , Vk such
that Uk ∪ Vk is dense in X , U0 and V0 are disjoint, and

Uk ∩ Vk ⊆ clX(Uk−1 ∪ Vk−1), . . . , U1 ∩ V1 ⊆ clX(U0 ∪ V0).

As a corollary we now have the analogue of Proposition 4.7. It follows easily,
as in topological unions closure and interior are taken componentwise.

Corollary 6.7. Suppose that X is the topological union of the spaces Xi (i ∈ I).
Then

dimd(X) = sup
i∈I
dimd(Xi).

References

[AB91] Adams M.E., Beazer R., Congruence properties of distributive double p-algebras,
Czechoslovak Math. J. 41 (1991), 395–404.

[BP04] Ball R.N., Pultr A., Forbidden forests in Priestley spaces, Cah. Topol. Géom. Différ.
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[Es98] Escardó M.H., Properly injective spaces and function spaces, Topology Appl. 89
(1998), 75–120.

[GJ76] Gillman L., Jerison M., Rings of Continuous Functions, Graduate Texts in Math-
ematics 43, Springer, Berlin-Heidelberg-New York, 1976.

[HJ61] Henriksen M., Johnson D.G., On the structure of a class of archimedean lattice-
ordered algebras, Fund. Math. 50 (1961), 73–94.

[MLMW94] Henriksen M., Larson S., Mart́ınez J., Woods R.G., Lattice-ordered algebras that
are subdirect products of valuation domains Trans. Amer. Math. Soc. 345 (1994),
no. 1, 195–221.

[HMW03] Henriksen M., Mart́ınez J., Woods R.G., Spaces X in which all prime z-ideals of

C(X) are either minimal or maximal, Comment. Math. Univ. Carolinae 44 (2003),
no. 2, 261–294.

[HW04] Henriksen M., Woods R.G., Cozero complemented spaces: when the space of min-
imal prime ideals of a C(X) is compact, Topology Appl. 141 (2004), 147–170.

[HuP80a] Huijsmans C.B., de Pagter B., On z-ideals and d-ideals in Riesz spaces, I, Indag.
Math. 42 (1980), no. 2, 183–195.

[HuP80b] Huijsmans C.B., de Pagter B., On z-ideals and d-ideals in Riesz spaces, II, Indag.
Math. 42 (1980), no. 4, 391–408.

[J82] Johnstone P.J., Stone Spaces, Cambridge Studies in Advanced Mathematics, vol.
3, Cambridge Univ. Press, Cambridge, 1982.

[JT84] Joyal A., Tierney M., An extension of the Galois theory of Grothendieck, Mem.
Amer. Math. Soc. 51 (1984), no. 309, 71 pp.

[Ko89] Koppelberg S., Handbook of Boolean Algebras, I, J.D. Monk, Ed., with R. Bonnet;
North Holland, Amsterdam-New York-Oxford-Tokyo, 1989.

[M73a] Mart́ınez J., Archimedean lattices, Algebra Universalis 3 (1973), 247–260.

[M04a] Mart́ınez J., Dimension in algebraic frames, Czechoslovak Math. J., to appear.

[M04b] Mart́ınez J., Unit and kernel systems in algebraic frames, Algebra Universalis, to
appear.

[MZ03] Mart́ınez J., Zenk E.R., When an algebraic frame is regular, Algebra Universalis
50 (2003), 231–257.

[MZ06] Mart́ınez J., Zenk E.R., Dimension in algebraic frames, III: dimension theories, in
preparation.

[Mr70] Mrowka S., Some comments on the author’s example of a non-R-compact space,
Bull. Acad. Polon. Sci., Ser. Math. Astronom. Phys. 18 (1970), 443–448.

[Se59] Semadeni Z., Sur les ensembles clairsemés, Rozprawy Mat. 19 (1959), 39 pp.



636 J.Mart́ınez, E.R. Zenk

[Se71] Semadeni Z., Banach Spaces of Continuous Functions, Polish Scientific Publishers,
Warsaw, 1971.

Department of Mathematics, University of Florida, P.O. Box 118105, Gainesville,

FL 32611-8105, USA

E-mail : jmartine@math.ufl.edu

Department of Mathematics, Vanderbilt University, 1326 Stevenson Center,

Nashville, TN 37240, USA

E-mail : eric.zenk@Vanderbilt.Edu

(Received November 2, 2004, revised September 20, 2005)


		webmaster@dml.cz
	2012-04-30T23:15:08+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




