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Gδ-modi�
ation of 
ompa
ta and 
ardinal invariantsA.V. Arhangel'skiiAbstra
t. Given a spa
e X, its Gδ-subsets form a basis of a new spa
e Xω , 
alled the

Gδ-modi�
ation of X. We study how the assumption that the Gδ-modi�
ation Xω ishomogeneous in
uen
es properties of X. If X is �rst 
ountable, then Xω is dis
reteand, hen
e, homogeneous. Thus, Xω is mu
h more often homogeneous than X itself.We prove that if X is a 
ompa
t Hausdor� spa
e of 
ountable tightness su
h that the
Gδ-modi�
ation of X is homogeneous, then the weight w(X) of X does not ex
eed 2ω(Theorem 1). We also establish that if a 
ompa
t Hausdor� spa
e of 
ountable tightnessis 
overed by a family of Gδ-subspa
es of the weight ≤ c = 2ω , then the weight of X isnot greater than 2ω (Theorem 4). Several other related results are obtained, a few newopen questions are formulated. Fedor
huk's hereditarily separable 
ompa
tum of the
ardinality greater than c = 2ω is shown to be Gδ-homogeneous under CH. Of 
ourse,it is not homogeneous when given its own topology.Keywords: weight, tightness, Gδ-modi�
ation, 
hara
ter, Lindel�of degree, homogeneousspa
eClassi�
ation: 54A25, 54B10Let T be a topology on a set X . Then the family of all Gδ-subsets of X isa base of a new topology on X , denoted by Tω and 
alled the Gδ-modi�
ationof T . The spa
e (X, Tω) is also denoted by Xω and is 
alled the Gδ-modi�
ationof the spa
e (X, T ). Clearly, the Gδ-modi�
ation Xω of any topologi
al spa
e isa P -spa
e, that is, every Gδ-subset of Xω is open in Xω .In general, the spa
e (X, Tω) is very di�erent from the spa
e (X, T ). Manyproperties of (X, T ), su
h as 
ompa
tness, Lindel�ofness, para
ompa
tness areeasily lost under Gδ-modi�
ations. On the other hand, properties of the spa
e 
angreatly improve under the operation of Gδ-modi�
ation. For example, if (X, T )is �rst 
ountable, then the spa
e (X, Tω) is dis
rete. Thus, no matter whi
h �rst
ountable spa
e (X, T ) we take, the resulting spa
e (X, Tω) will be metrizable,zero-dimensional, �Ce
h-
omplete and homogeneous! We see that the di�eren
e inproperties between the spa
es (X, T ) and (X, Tω) 
an indeed be tremendous!Some interesting fa
ts on Gδ-modi�
ations and on P -spa
es were establishedin [12℄, where also a survey of what is known in this dire
tion is given. Seealso [11℄.Resear
h partially supported by National S
ien
e Foundation grant DMS-0506063.



96 A.V.Arhangel'skiiIt is our goal in this arti
le to show that homogeneity of Gδ-modi�
ation has adeep in
uen
e on the stru
ture of the spa
e itself and on the relationship betweenits 
ardinal invariants. Our main result in this dire
tion (Theorem 1 below) isinspired by R. de la Vega's re
ent result that the weight of any homogeneous
ompa
t Hausdor� spa
e of 
ountable tightness is ≤ 2ω. We generalize de laVega's theorem as follows:Theorem 1. Let X be a 
ompa
t Hausdor� spa
e of 
ountable tightness su
hthat the Gδ-modi�
ation Xω of X is homogeneous. Then the weight w(X) of X ,as well as the weight of Xω, is not greater than 2ω.Proof: We 
laim that there is a non-empty open subspa
e U of Xω su
h that
w(U) ≤ 2ω. Indeed, sin
e X is a non-empty 
ompa
t Hausdor� spa
e of 
ountabletightness, there exists a non-empty Gδ-subset U of X su
h that the weight of thesubspa
e U of X is not greater than 2ω ([2℄, [1℄). Then U is an open subspa
e of
Xω and the weight of the subspa
e U of Xω is also not greater than 2ω. Sin
e
Xω is homogeneous, it follows that every point in Xω has an open neighbourhood
Ox in Xω su
h that w(Ox) ≤ 2ω.A

ording to a result of E.G. Pytkeev [14℄, the Lindel�of degree of the Gδ-modi�
ation of any 
ompa
t Hausdor� spa
e of 
ountable tightness does not ex-
eed 2ω (see Theorem 4 in [14℄). Therefore, l(Xω) ≤ 2ω. Sin
e the lo
al weight of
Xω does not ex
eed 2ω, it follows that there exists an open 
overing γ of Xω su
hthat w(U) ≤ 2ω, for ea
h U ∈ γ, and |γ| ≤ 2ω. Fixing a base of 
ardinality ≤ 2ωin ea
h U ∈ γ, and taking the union of these bases, we obtain a base of 
ardinality
≤ 2ω in Xω. Thus, w(Xω) ≤ 2ω. Sin
e, X is a 
ontinuous image of Xω, we have
nw(X) ≤ w(Xω) ≤ 2ω. However, sin
e X is 
ompa
t, w(X) = nw(X) ≤ 2ω ([9℄).

�This theorem immediately implies that the 
ardinality of every �rst 
ountable
ompa
t Hausdor� spa
e does not ex
eed 2ω [Arh2℄. Indeed, the tightness of �rst
ountable spa
es is 
ountable, and, obviously, if the weight of a �rst 
ountableHausdor� spa
e is ≤ 2ω, then the 
ardinality of X is also not greater than 2ω.Theorem 1 also implies de la Vega's result that the weight of any homogeneous
ompa
t Hausdor� spa
e of 
ountable tightness is ≤ 2ω, sin
e the Gδ-modi�
ationof a homogeneous spa
e is homogeneous.A spa
e Y is power-homogeneous if Y τ is homogeneous, for some τ > 0 (see [4℄).Weakening one of the assumptions in Theorem 1, we arrive at a weaker 
on
lusion:Theorem 2. Let X be a 
ompa
t Hausdor� spa
e of 
ountable tightness su
hthat the Gδ-modi�
ation of X is power-homogeneous. Then the 
hara
ter of Xis not greater than 2ω.Proof: Take any non-empty Gδ-subset Y of X . There exists a non-empty Gδ-subset U of Y su
h that the weight of the subspa
e U of the spa
e X is notgreater than 2ω ([2℄, [1℄). Then U is an open subspa
e of Xω and the weight



Gδ-modi�
ation of 
ompa
ta and 
ardinal invariants 97of the subspa
e U of Xω is also not greater than 2ω. It follows that the set Zof all x ∈ X su
h that the 
hara
ter of x in Xω is not greater than 2ω is densein the spa
e Xω. Sin
e Xω is power-homogeneous and Z 6= ∅, it follows fromTheorem 7 in [4℄ that the set M of all Gc-points in Xω is 
losed. Obviously,
Z ⊂ M . Therefore, M = X ; thus, ea
h x ∈ X is a Gc-point in Xω.Fix an arbitrary a ∈ X . A

ording to Pytkeev's theorem (see the proof ofTheorem 1), the Lindel�of degree of Xω is not greater than c = 2ω. Put A =
X \ {a}. Sin
e a is a Gc-point in Xω, it follows that l(A) ≤ 2ω, where A is
onsidered as a subspa
e of Xω. Sin
e the identity mapping of Xω onto X is
ontinuous, we 
on
lude that the Lindel�of degree of A, 
onsidered as a subspa
eof X , does not ex
eed 2ω as well. This implies that a is a Gc-point in X . Sin
e
X is 
ompa
t and Hausdor�, it follows that the 
hara
ter of X at a is not greaterthan 2ω ([9℄). �Theorem 3. Let X be a sequential Hausdor� 
ompa
t spa
e su
h that the Gδ-modi�
ation of X is power-homogeneous. Then |X | ≤ 2ω.Proof: It follows from Theorem 2 that χ(X) ≤ 2ω. However, the 
ardinality ofevery sequential Hausdor� 
ompa
t spa
e su
h that χ(X) ≤ 2ω does not ex
eed 2ω(see [2℄). �The last result generalizes Corollary 3.8 in [5℄ and an earlier result on the
ardinality of homogeneous 
ompa
t sequential spa
es in [2℄.The te
hnique of Gδ-modi�
ation 
an be used to obtain some addition theoremsfor the weight that do not involve the assumption of homogeneity. In parti
ular,we have:Theorem 4. Let X be a 
ompa
t Hausdor� spa
e of 
ountable tightness, andsuppose that X is 
overed by a family γ of Gδ-subsets su
h that the weight of
P is not greater than 2ω, for ea
h P ∈ γ. Then the weight of X is not greaterthan 2ω.Proof: The proof is 
lose to the proof of Theorem 1. Consider the Gδ-modi�-
ation Xω of X . The family γ is an open 
overing of Xω , and the weight of ea
h
P ∈ γ, interpreted as a subspa
e of Xω, is not greater than 2ω. By Pytkeev'stheorem (see the proof of Theorem 1), the Lindel�of degree of Xω is not greater than
c = 2ω. Therefore, the weight of Xω is not greater than 2ω (to get an appropriatebase of Xω , just take the union of the bases of 
ardinality ≤ 2ω of elements of γ).Sin
e X is a 
ontinuous image of Xω, we have nw(X) ≤ w(Xω) ≤ 2ω. However,
X is 
ompa
t. Hen
e, w(X) = nw(X) ≤ 2ω. �For some results related to Theorem 4 see [15℄ and [6℄.The assumption of 
ountable tightness in the last statement 
an be repla
edby some other 
onditions.



98 A.V.Arhangel'skiiTheorem 5. Let X be a s
attered 
ompa
t Hausdor� spa
e 
overed by a family
γ of Gδ-subsets su
h that the weight of P is not greater than 2ω, for ea
h P ∈ γ.Then the weight of X does not ex
eed 2ω.Proof: The Lindel�of degree of the Gδ-modi�
ation Xω of the spa
e X doesnot ex
eed ω ([13℄). Sin
e γ is an open 
overing of Xω , we 
an assume that γ is
ountable. It follows that w(Xω) ≤ 2ω, whi
h implies that nw(X) ≤ w(Xω) ≤ 2ω.Finally, sin
e X is 
ompa
t, we have w(X) = nw(X) ≤ 2ω. �The proof of the next result should be 
lear by now:Theorem 6. Let X be a s
attered spa
e. Then the Gδ-modi�
ation Xω of Xis power-homogeneous if and only if the pseudo
hara
ter of X is 
ountable (thatis, if and only if the Gδ-modi�
ation of X is dis
rete).Problem 7. Suppose that X is a 
ompa
t Hausdor� spa
e 
overed by a family γof Gδ-subsets P su
h that the weight of P is not greater than 2ω, for ea
h P ∈ γ.Is the weight of X not greater than 2ω?Problem 8 (Arhangel'skii, Buzyakova). Let X be a 
ompa
t Hausdor� spa
eof 
ountable tightness su
h that the 
hara
ter of X does not ex
eed 2ω. Is theweight of X not greater than 2ω?Consistently the answer to the last question is \yes". Indeed, it was shown in[7℄ to be 
onsistent with ZFC to assume that every 
ompa
t Hausdor� spa
e of
ountable tightness is sequential. It remains to apply the following result from [2℄:the 
ardinality of every sequential Hausdor� 
ompa
t spa
e su
h that χ(X) ≤ 2ωdoes not ex
eed 2ω.Closely related to Problem 8 is the following question: Let X be a 
ompa
tHausdor� spa
e of 
ountable tightness su
h that the Gδ-modi�
ation of X ishomogeneous. Is |X | ≤ 2ω? The answer to this question is independent of ZFC.Under Proper For
ing Axiom (PFA) (for the dis
ussion of (PFA) see [8℄) theanswer is \yes". In fa
t, we 
an prove a stronger statement:Theorem 9. Assume (PFA), and let X be a Hausdor� 
ompa
t spa
e of 
ount-able tightness su
h that the Gδ-modi�
ation of X is power-homogeneous. Then
X is �rst 
ountable (and hen
e, |X | ≤ 2ω and w(X) ≤ 2ω).Proof: A. Dow has shown in [Dow℄ that under (PFA) every non-empty 
ompa
tHausdor� spa
e of 
ountable tightness has a point of �rst 
ountability. It followseasily from this result that, under (PFA), the set of isolated points is dense in the
Gδ-modi�
ation Xω of the 
ompa
tum X .Sin
e Xω is power-homogeneous, it follows from Theorem 7 in [4℄ that the set
M of all Gδ-points in Xω is 
losed. Therefore, M = X , that is, ea
h x ∈ X is a
Gδ-point in Xω . Sin
e Xω is a P -spa
e, we 
on
lude that the spa
e Xω is dis
rete.Hen
e, the pseudo
hara
ter of the spa
e X is 
ountable. Sin
e X is 
ompa
t andHausdor�, it follows that X is �rst 
ountable. �



Gδ-modi�
ation of 
ompa
ta and 
ardinal invariants 99On the other hand, we have the following result:Theorem 10 (CH). Let X be a hereditarily separable 
ompa
t Hausdor� spa
ewithout points of �rst 
ountability. Then the Gδ-modi�
ation of X is homoge-neous.This theorem will follow from a more general result below. Noti
e that Fe-dor
huk has 
onstru
ted [10℄ a 
onsistent example of a hereditarily separable,nowhere �rst 
ountable, 
ompa
t Hausdor� spa
e X su
h that the 
ardinality of
X is greater than 2ω. In the model of Set-theory he 
onsidered (CH) was alsosatis�ed.Theorem 11 (CH). Let X be a 
ompa
t Hausdor� spa
e of the weight ω1 su
hthat the 
hara
ter of X at ea
h point is exa
tly ω1. Then the Gδ-modi�
ation
Xω of X is homeomorphi
 to the Gδ-modi�
ation of the 
ompa
tum Dω1 .Fix a set A of the 
ardinality ω1 = c = 2ω, give A the dis
rete topology, andlet B be the Gδ-modi�
ation of the produ
t spa
e Aω1 .Claim 1: The Gδ-modi�
ation of Dω1 is homeomorphi
 to the spa
e B.This is obvious.By Claim 1, it is enough to prove that Xω is homeomorphi
 to B. For that,we need the following lemma:Lemma 12. Let X be a non-s
attered 
ompa
t Hausdor� spa
e. Then thereexists a disjoint 
overing γ of X by non-empty 
losed Gδ-sets su
h that |γ| = 2ω.Proof: Sin
e X is not s
attered, there exists a 
ontinuous mapping f of X ontothe 
losed interval I = [0, 1℄ (see [9℄). Then γ = {f−1(y) : 0 ≤ y ≤ 1} is, 
learly,the 
overing we are looking for. �Below we will need the following slightly stronger version of Lemma 12:Lemma 13. Let X be a non-s
attered 
ompa
t Hausdor� spa
e and F0 be a
losed Gδ-subset of X . Then there exists a disjoint 
overing γ1 of X by non-empty 
losed Gδ-sets su
h that |γ1| = 2ω and F0 = ⋃

η, for some subfamily ηof γ1.Proof: We 
an �x a 
ontinuous real-valued fun
tion g on X su
h that g−1(0) =
F0, sin
e X is normal. Take also a disjoint 
overing γ of X by 
losed Gδ-subsetssu
h that |γ| = 2ω (this is possible by Lemma 12). Now let γ1 be the family
{g−1(a) ∩ P : a ∈ R, P ∈ γ} \ {∅}, where R is the set of reals. Obviously, γ1 isthe 
overing we are looking for. �Proof of Theorem 11: A standard 
onstru
tion by trans�nite re
ursion along
ω1, using (CH) and Lemmas 12 and 13, provides us with a trans�nite sequen
e
{γα : α < ω1} of disjoint 
overings of X by 
losed non-empty Gδ-subsets of Xsu
h that the following 
onditions are satis�ed:1) γβ re�nes γα, whenever α < β < ω1;



100 A.V.Arhangel'skii2) for ea
h P ∈ γα, the 
ardinality of the family ηP = {F ∈ γα+1 : F ⊂ P}is ω1;3) the family S = ⋃
{γα : α < ω1} is a network of the spa
e X .Observe that 
ompa
tness of X and the above 
onditions ensure that the fol-lowing 
ondition is satis�ed:4) for every un
ountable 
entered family ξ of elements of S, the interse
tionof ξ 
onsists of exa
tly one point xξ , ξ is a network of X at x, and ξ is abase of the Gδ-modi�
ation Xω at x.Note, that elements of S are open-
losed subsets of Xω, and that if ξ ⊂ S is
ountable, then either ⋂
ξ = ∅ or the 
ardinality of ⋂

ξ is c = ω1.The above properties of the family {γα : α < ω1} allow to establish a homeo-morphism between the spa
e Xω and the spa
e B in an obvious routine way. �Corollary 14 (CH). Let X be a 
ompa
t Hausdor� spa
e of the weight ω1 su
hthat the 
hara
ter of X at ea
h point is exa
tly ω1. Then the Gδ-modi�
ation
Xω of X is homogeneous. Furthermore, Xω is homeomorphi
 to a topologi
algroup.Proof: Indeed, by Theorem 11 Xω is homeomorphi
 to the Gδ-modi�
ation Bof the 
ompa
tum Dω1 . However, the spa
e B is homogeneous, sin
e Dω1 ishomogeneous. Hen
e, Xω is homogeneous as well. In fa
t, B is homeomorphi
 toa topologi
al group, sin
e Dω1 is a topologi
al group. �Problem 15. Can (CH) be dropped in the above statement?The following long standing problems posed in [3℄, [1℄, [2℄ remain open:Problem 16. Is it true in ZFC that every homogeneous 
ompa
t sequential spa
eis �rst 
ountable?Problem 17. Is it true in ZFC that every homogeneous 
ompa
t spa
e of 
ount-able tightness is �rst 
ountable?A
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