Chuan Liu
A note on paratopological groups

Persistent URL: http://dml.cz/dmlcz/119624

Terms of use:
© Charles University in Prague, Faculty of Mathematics and Physics, 2006

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these *Terms of use.*

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project *DML-CZ: The Czech Digital
Mathematics Library* http://project.dml.cz
A note on paratopological groups

CHUAN LIU

Abstract. In this paper, it is proved that a first-countable paratopological group has a regular G_δ-diagonal, which gives an affirmative answer to Arhangel’skii and Burke’s question [Spaces with a regular G_δ-diagonal, Topology Appl. 153 (2006), 1917–1929]. If G is a symmetrizable paratopological group, then G is a developable space. We also discuss copies of S_ω and of S_2 in paratopological groups and generalize some Nyikos [Metrizability and the Fréchet-Urysohn property in topological groups, Proc. Amer. Math. Soc. 83 (1981), no. 4, 793–801] and Svetlichnyi [Intersection of topologies and metrizability in topological groups, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 4 (1989), 79–81] results.

Keywords: paratopological group, symmetrizable spaces, regular G_δ-diagonal, weak bases, Arens space

Classification: Primary 54H13, 54H99

1. Introduction

Recently, paratopological groups have been studied by many topologists ([3], [4], [19]). It is natural to ask what results on topological groups are valid on paratopological groups. In this paper, by discussing copies of S_ω and of S_2 on paratopological groups, we generalize some results from [14], [15] and [18]. We also discuss first-countable paratopological groups and prove that a first-countable paratopological group has a regular G_δ-diagonal, and give an affirmative answer to a question from [3].

Recall that a paratopological group is a group with a topology such that the multiplication is jointly continuous.

All spaces are regular T_1 unless stated otherwise. \mathbb{N} denotes natural numbers and e denotes the neutral element of a group. We refer to [6] for notations and terminology not given explicitly.

2. Main results

A space X is said to have a regular G_δ-diagonal if the diagonal $\Delta = \{(x, x) : x \in X\}$ can be represented as the intersection of the closures of a countable family of open neighborhoods of Δ in $X \times X$. According to Zenor [21], a space X has a regular G_δ-diagonal if and only if there exists a sequence $\{G_n : n \in \omega\}$ of open covers of X with the following property:
Since that this is a contradiction.

In [3], Arhangel’skii and Burke proved that every Hausdorff first countable Abelian paratopological group G has a regular G_δ-diagonal. We sharpen the result by showing the following

Theorem 2.1. Let G be a Hausdorff first-countable paratopological group. Then G has a regular G_δ-diagonal.

Proof: Fix a countable base $\{V_n : n \in \mathbb{N}\}$ at the neutral element e in G with $V_{n+1}^2 \subset V_n$. Let $x \in G$; then xV_n, V_nx are open for $n \in \mathbb{N}$ since G is a paratopological group. For $x \in G$, $n \in \mathbb{N}$, let $W_n(x) = xV_n \cap V_n x$. Then $W_n(x)$ is a neighborhood of x. Let $G_n = \{W_n(x) : x \in G\}$ for $n \in \mathbb{N}$. Then $\{G_n : n \in \mathbb{N}\}$ is a sequence of open coverings of G.

By Zenor’s characterization of regular G_δ-diagonal, we only prove the following

Claim: For $y, z \in G$, $y \neq z$, there is $k \in \mathbb{N}$ such that no element of G_k intersects both yV_k and zV_k.

Suppose not; for any $n \in \mathbb{N}$, there is an element $W_n(x_n) \in G_n$ such that $yV_n \cap W_n(x_n) \neq \emptyset$ and $W_n(x_n) \cap zV_n \neq \emptyset$. Then there are a_n, b_n, c_n, d_n and f_n in V_n such that $ya_n = x_nb_n$, $x_nc_n = d_nx_n = zf_n$, $ya_n = d_n^{-1}d_nx_nb_n = d_n^{-1}zf_nb_n$. Since $a_n \to e$, we have $ya_n \to y$, hence $d_n^{-1}zf_nb_n \to y$. $d_n \to e$ since $d_n \in V_n$, G is a paratopological group, then $d_n^{-1}zf_nb_n \to ey = y$, hence $zf_nb_n \to y$. Notice that $f_nb_n \in V_n$, thus $f_nb_n \to e$, hence $zd_nb_n \to z$. G is Hausdorff, then $y = z$, this is a contradiction.

Therefore, G has a regular G_δ-diagonal.

A subset A of a space X is said to be bounded [3] in X if every infinite family ξ of open subsets of X such that $V \cap A \neq \emptyset$ for every $V \in \xi$, has an accumulation point X. If X is bounded in itself, then we say that X is pseudocompact.

Notice that a pseudocompact or bounded subset of a regular space X is metrizable if X has a regular G_δ-diagonal [3]. We have the following

Corollary 2.1. Let G be a regular first-countable paratopological group. Then every pseudocompact subspace of G is a metrizable compactum.

Corollary 2.2. Let G be a regular first-countable paratopological group. Then every bounded subspace of G is metrizable.

The above theorem and corollaries give an affirmative answer to Arhangel’skii and Burke’s question [3, Problem 25].

A space X is an $w\Delta$-space [8] if there exists a sequence (G_n) of open covers of X such that if $x_n \in st(x, G_n)$ for each $n \in \mathbb{N}$, then the set $\{x_n : n \in \mathbb{N}\}$ has a cluster point in X.
Since a space X with a regular G_δ-diagonal has a G_δ^*-diagonal, by [8, Theorem 3.3], we have the following

Corollary 2.3. Let G be a first-countable paratopological group. Then G is a Moore space if G is an $w\Delta$-space.

A space X is *quasi-developable* [8] if there exists a sequence (\mathcal{G}_n) of families of subsets of X such that for each $x \in X$, $\{\text{st}(x, \mathcal{G}_n) : n \in \mathbb{N}\}$ is a base at x. Recall that a topological space is said to be *symmetrizable* if its topology is generated by a *symmetric*, that is, by a distance function satisfying all the usual restrictions on a metric, except for the triangle inequality [1].

Theorem 2.2. Every symmetrizable paratopological group G is a Moore space.

Proof: We fix a symmetric d on the paratopological group G generating the topology on G. Since G is weakly first-countable [1], by a result of Nyikos [15], G is first-countable. Put $B(x, 1/n) = \{y \in G : d(x, y) < 1/n\}$, and fix an open base $\{V_n : n \in \mathbb{N}\}$ at e with $V_n \subset \text{int}(B(e, 1/n))$ and $V_n^{2} \subset V_n$. Let $A_{ij} = \{x \in G : V_i x \subset \text{int}(B(x, 1/j))\}$ and $\mathcal{G}_{ij} = \{V_i x : x \in A_{ij}\}$ for $i, j \in \mathbb{N}$. Since $\{V_i x : i \in \mathbb{N}\}$ and $\{\text{int}(B(x, 1/j)) : j \in \mathbb{N}\}$ are bases at x, $G = \bigcup \{A_{ij} : i, j \in \mathbb{N}\}$.

We prove that $\{\text{st}(x, \mathcal{G}_{ij}) : i, j \in \mathbb{N}\}$ is a base at $x \in G$. Let U be an open subset of X with $x \in U$. There exists $k \in \mathbb{N}$ such that $x \in \text{int}(B(x, 1/k)) \subset U$ and pick $m, n \in \mathbb{N}$ such that $m < n$, $V_n x \subset V_m x \subset \text{int}(B(x, 1/k))$. We choose k' such that $B(x, 1/k') \subset V_n x$ since $\{B(x, 1/i) : i \in \mathbb{N}\}$ is a weak base at x. For $x \in V_n y \in \mathcal{G}_{nk'}$, since $V_n y \subset B(y, 1/k')$, $d(x, y) = d(y, x) < 1/k'$, hence $y \in B(x, 1/k') \subset V_n x$. $V_n y \subset V_n V_n x \subset V_m x \subset \text{int}(B(x, 1/k)) \subset U$, hence $x \in \text{st}(x, \mathcal{G}_{nk'}) \subset U$. Therefore G is quasi-developable.

G is symmetrizable and first-countable, hence G is semi-stratifiable [8, Theorem 9.8], thus every closed subset of G is a G_δ-set. Therefore G is a developable space [8, Theorem 8.6].

We cannot replace “symmetrizable” with “first-countable” in Theorem 2.2, Sorgenfrey line is a first-countable paratopological group but not a Moore space.

Let S_κ be the quotient space obtained by identifying all limit points of the topological sum of κ many convergent sequences. S_ω is called sequential fan. The Arens’ space $S_2 = \{\infty\} \cup \{x_n : n \in \mathbb{N}\} \cup \{x_n(m) : m, n \in \mathbb{N}\}$ is defined as follows: Each $x_n(m)$ is isolated; a basic neighborhood of x_n is $\{x_n\} \cup \{x_n(m) : m > k, \text{for some } k \in \mathbb{N}\}$; a basic neighborhood of ∞ is $\{\infty\} \cup (\bigcup \{V_n : n > k \text{ for some } k \in \mathbb{N}\})$, where V_n is a neighborhood of x_n.

In [14], it was proved that a topological group contains a (closed) copy of S_ω if and only if it contains a (closed) copy of S_2. We do not know if the result is still true for paratopological groups, but we have the following theorem by modifying Lemma 2.1 in [14].
Theorem 2.3. Let G be a paratopological group. Then G contains a (closed) copy of S_ω if G has a (closed) copy of S_2.

Proof: Let $A = \{e\} \cup \{x_n : n \in \mathbb{N}\} \cup \{x_n(m) : m, n \in \mathbb{N}\}$ be a closed copy of S_2, where e is the neutral element of G. For $n, m \in \mathbb{N}$, let $y_n(m) = x_n^{-1}x_n(m)$. Then $y_n(m) \to e$ as $m \to \infty$ for $n \in \mathbb{N}$. For each n, let $S_n = \{y_n(m) : m \in \mathbb{N}\}$. Then $F = \{n : S_m \cap S_n$ is infinite \} is finite (otherwise, pick distinct $x_{n_i}^{-1}x_{n_i}(m_i) \in S_m \cap S_{n_i}$ for $n_i \in F$ with $n_i < n_{i+1}$, $x_{n_i}^{-1}x_{n_i}(m_i) \to e$, $x_{n_i} \to e$, hence $x_{n_i}(m_i) \to e$, a contradiction). Without loss of generality, we assume $S_i \cap S_j = \emptyset$ if $i \neq j$. Let $B = \{e\} \cup \{y_n(m) : n, m \in \mathbb{N}\}$.

Claim: B is a closed copy of S_ω.

Suppose B is not closed. Then there is $x \in X \setminus B$ with $x \in \overline{B}$. Since A is closed, there exists an open neighborhood V of the neutral element e such that Vx meets $\{x_n(m) : m \in \mathbb{N}\}$ for at most one n. Let U be open neighborhood of e with $U^2 \subset V$; Ux contains an infinite subset $\{y_{n_i}(m_i) : i \in \mathbb{N}\}$ of B. Since $x_n \to e$, without loss of generality, $\{x_{n_i} : i \in \mathbb{N}\} \subset U \subset \{x_{n_i}(m_i) : i \in \mathbb{N}\} \subset Ux \subset Vx$, it means $\{x_{n_i}(m_i) : i \in \mathbb{N}\}$ contains an infinite subset $\{y_{n_i}(m_i) : i \in \mathbb{N}\} \subset C$, hence $x_{n_i}(m_i) = x_{n_i}y_{n_i}(m_i) \in Ux \subset Vx$ for each $i \in \mathbb{N}$, which is a contradiction. Hence B is a copy of S_ω. \hfill \Box

Nogura, Shakhmatov and Tanaka proved the following corollary as G is a topological group [14]. By Theorem 2.3, we can see the following corollary is still true for a paratopological group G.

Note that a sequential space is an A-space\(^1\) if and only if it contains no closed copy of S_ω [20]. By Theorem 2.3, a paratopological group contains no closed copy of S_2 if it is an A-space. A sequential space that each point is a G_δ-set or is hereditarily normal is strongly Fréchet if it contains no closed copy of S_ω and S_2 [20, Theorem 3.1]. A strongly Fréchet space is an α_4-space\(^2\) [2, Theorem 5.26].

Corollary 2.4. Suppose that G is a sequential paratopological group such that either (a) $e \in G$ is a G_δ-set, or (b) G is hereditarily normal. Then the following

\(^1\)A space X is an A-space if, whenever $\{A_n : n \in \mathbb{N}\}$ is a decreasing sequence of subsets of X, and $x \in X$ is a point with $x \in \bigcap\{A_n \setminus \{x\} : n \in \mathbb{N}\}$, then for every $n \in \mathbb{N}$ one can find a (possibly empty) set $B_n \subset A_n$ such that $\bigcup\{B_n : n \in \mathbb{N}\}$ is not closed in X.

\(^2\)A countable collection $\{S_n : n \in \mathbb{N}\}$ of convergent sequences in a space X is called a sheaf (with a vertex x) if each sequence S_n converges to the same point $x \in X$. A space is called α_4-space, if for every point $x \in X$ and each sheaf $\{S_n : n \in \mathbb{N}\}$ with the vertex x, there exists a sequence converging to x which meets infinitely many sequences S_n.\
A note on paratopological groups

are equivalent:

(1) \(G \) is an \(\alpha_4 \)-space;

(2) \(G \) is an \(A \)-space, and

(3) \(G \) is strongly Fréchet.

A paratopological group \(G \) is said to have the property (**), if there exists a sequence \(\{x_n : n \in \mathbb{N}\} \subset G \) such that \(x_n \to e \) and \(x_n^{-1} \to e \). Obviously, every topological group has the property (**). Not every paratopological group has the property (**), for instance, Sorgenfrey line \(S \) does not have the property (**).

A paratopological group having the property (**) need not be a topological group: for instance, if \((\mathbb{R}, +)\) is the real line with the usual topology, then \(S \times \mathbb{R} \) is a paratopological group having the property (**) but not a topological group.

Theorem 2.4. Let \(G \) be a paratopological group having the property (**). Then \(G \) has a (closed) copy of \(S_2 \) if it has a (closed) copy of \(S_\omega \).

Proof: Let \(A = \{e\} \cup \{y_n(m) : m, n \in \mathbb{N}\} \) be a closed copy of \(S_\omega \), for each \(n, y_n(m) \to e \) as \(m \to \infty \). Since \(G \) has the property (**), there is a sequence \(\{x_n : n \in \mathbb{N}\} \) such that \(x_n \to e \) and \(x_n^{-1} \to e \). Let \(U_n \) be an open neighborhood of \(x_n \) for each \(n \) with \(\overline{U_i} \cap \overline{U_j} = \emptyset \) if \(i \neq j \). Let \(x_n(m) = x_ny_n(m) \) for \(n, m \in \mathbb{N} \). For any \(n \in \mathbb{N} \), we have \(x_n(m) \to x_n \) as \(m \to \infty \). Without loss of generality, we assume \(\{x_n(m) : m \in \mathbb{N}\} \subset U_n \). Let \(B = \{e\} \cup \{x_n : n \in \mathbb{N}\} \cup \{x_n(m) : n, m \in \mathbb{N}\} \).

Claim: \(B \) is a closed copy of \(S_2 \).

Suppose \(B \) is not closed. Then there exists \(x \notin B, e \neq x \in \overline{B \setminus \{x\}} \). Since \(A \) is closed, there is a neighborhood of \(e \) such that \(V_x \cap (A \setminus \{x\}) = \emptyset \). Let \(U \) be a neighborhood of \(e \) with \(U^2 \subset V \) and \(Ux \) contains at most one \(x_n \). \(Ux \) contains infinitely many elements of \(B \), since \(U \) contains infinitely many \(x_n \)’s, \(UUx \) contains infinitely many \(y_n(m) \). Hence \(Vx \) contains infinitely many elements of \(A \), this is a contradiction.

If \(f : \omega \to \omega \), similarly as in the proof of Theorem 2.3, \(\{x_n(m) : n \geq k \text{ for some } k, m \leq f(n)\} \) is closed. Hence \(B \) is a closed copy of \(S_2 \).

Note that a Fréchet-Urysohn space contains no closed copy of \(S_2 \), then a Fréchet-Urysohn paratopological group having the property (**) contains no closed copy of \(S_\omega \) by Theorem 2.4, hence it is a strongly Fréchet space [20] (or countably bisequential space [13]), therefore it is an \(\alpha_4 \)-space [2, Theorem 5.23].

Corollary 2.5. Let \(G \) be a paratopological group with the property (**). If \(G \) is a Fréchet-Urysohn space, then \(G \) is a \(\alpha_4 \)-space.

Corollary 2.5 gives a partial answer to Nyikos’ question [15, Problem 3]: “Is a Fréchet-Urysohn paratopological group an \(\alpha_4 \)-space?”.

Question 2.1. Can we omit the property (**) in Theorem 2.4 or in Corollary 2.5?
A space X is called weakly quasi-first countable or \aleph_0-weakly first-countable ([17], [18]) if for each $i \in \mathbb{N}$, there exists a mapping $B^i : \mathbb{N} \times X \rightarrow \mathcal{P}(X)$, where $\mathcal{P}(X)$ denotes the power set of X, such that the following (1) and (2) hold:

(1) for $i \in \mathbb{N}$, for each $n \in \mathbb{N}$ and $x \in X$, $B^i(n + 1, x) \subset B^i(n, x)$, and

 \(\{x\} = \bigcap \{B^i(n, x) : n \in \mathbb{N}\} \); and

(2) a subset V of X is open if and only if for each $y \in V$ and for each $i \in \mathbb{N}$ there exists $n(i)$ with $B^i(n(i), y) \subset V$.

If $B^i = B$ for $i \in \mathbb{N}$, then X is called weakly first countable or g-first countable. Obviously, a weakly first countable space is weakly quasi-first countable.

Corollary 2.6. Let G be a Fréchet-Urysohn paratopological group with the property (**). If G is \aleph_0-weakly first-countable, then G is first-countable.

Proof: By Corollary 2.5, G is an α_4-space, hence G is weakly first-countable [10], thus G is first-countable [15, Theorem 2]. □

By Corollary 2.5, we have the following:

Corollary 2.7 ([18]). A Fréchet-Urysohn, \aleph_0-weakly first-countable topological group is metrizable.

Next, we discuss when we cannot embed a copy of S_{ω_1} to some paratopological group.

A family $\{B_\alpha : \alpha \in I\}$ of subsets of a space X is hereditarily closure-preserving (weakly hereditarily closure-preserving [5]) (simply, HCP (wHCP)) if

\[
\bigcup \{C_\alpha : \alpha \in J\} = \left(\bigcup \{C_\alpha : \alpha \in J\} \right) \left(\{x_\alpha : \alpha \in J\} \text{ is closed discrete} \right),
\]

whenever $J \subset I$ and $C_\alpha \subset B_\alpha (x_\alpha \in B_\alpha)$ for each $\alpha \in J$. Obviously, a HCP family is wHCP. Spaces with a σ-wHCP weak base (base) were discussed in [11], [12]. Let \mathcal{P} be a cover of a space X. Then \mathcal{P} is a k-network for X if whenever $K \subset U$ with K compact and U open in X, $K \subset \bigcup \mathcal{P}' \subset U$ for some finite $\mathcal{P}' \subset \mathcal{P}$. A k-network is a network. A space with a σ-locally finite k-network is an \aleph-space [16]. S_{ω_1} is a closed image of a metric space, hence it has a σ-HCP closed k-network [7] but it is not an \aleph-space [9].

Theorem 2.5. Let G be a paratopological topological group with the property (**). If G has a σ-wHCP closed k-network, then G contains no closed copy of S_{ω_1}.

Proof: Suppose G contains a closed copy of $S_{\omega_1} = \{e\} \cup \{x_n(\alpha) : \alpha < \omega_1, n \in \mathbb{N}\}$, where e is the neutral element of G and $x_n(\alpha) \rightarrow e$ as $n \rightarrow \infty$. Since G has the property (**), there exists a sequence $\{x_n : n \in \mathbb{N}\} \subset G$ such that $x_n \rightarrow e$, $x_n^{-1} \rightarrow e$. G is regular, we take open subsets U_n of G such that $x_n \in U_n$,

\[
U_n \cap \overline{U_m} = \emptyset \ (n \neq m)
\]

and

\[
U_n \cap \{x_n : n \in \mathbb{N}\} = \{x_n\}.
\]

For each $m \in \mathbb{N}$, $x_m x_n(\alpha) \rightarrow x_m(\alpha \rightarrow \infty)$, $\{x_m x_n(\alpha) : n \in \mathbb{N}\}$ is eventually in U_m for $\alpha < \omega_1$. Without loss of generality, we assume $\{x_m x_n(\alpha) : n \in \mathbb{N}\} \subset U_m$.

Claim: $B = \{x_{n(\alpha)}x_{m(\alpha)}(\alpha) : \alpha < \omega_1\}$ is a discrete subset of G for $n(\alpha), m(\alpha) \in \mathbb{N}$.

Case 1: $\{n(\alpha) : \alpha < \omega_1\}$ is finite.

We rewrite $\{n(\alpha) : \alpha < \omega_1\} = \{r_1, \ldots, r_k\}$. Since $\{x_{g(\alpha)}(\alpha) : \alpha < \omega_1\}$ is discrete for every $g : \omega_1 \to \mathbb{N}$, then $\{x_{r_i}x_{g(\alpha)}(\alpha) : \alpha < \omega_1\}$ is discrete for each $i \leq k$, hence B is discrete.

Case 2: $\{n(\alpha) : \alpha < \omega_1\}$ is infinite.

Suppose B is not discrete and let x be the cluster point of B. For every $g : \omega_1 \to \mathbb{N}$, there exists an open neighborhood V of e such that $|V \cap \{x_{g(\alpha)}(\alpha) : \alpha < \omega_1\}| \leq 1$. Let U be an open neighborhood of e with $U^2 \subset V$. Then $C = Ux \cap \{x_{n(\alpha)}x_{m(\alpha)}(\alpha) : \alpha < \omega_1\} \neq \emptyset$ for infinitely many $n(\alpha)$. Since $x_{n^{-1}} \to e$, $\{x_n : n \in \mathbb{N}\}$ is eventually in U, $\{x_{n^{-1}} : n \geq k\}C \subset UUx \subset Vx$. Then $|V \cap \{x_{g(\alpha)}(\alpha) : \alpha < \omega_1\}| \geq \omega$, a contradiction.

For $\alpha < \omega_1$, let $C_\alpha = \{e\} \cup \{x_n : n \in \mathbb{N}\} \cup \{x_nx_i(\alpha) : n \in \mathbb{N}, i \geq f(\alpha)\}$. Note that $x_nx_{j_n}(\alpha) \to e(n \to \infty)$, where $j_n \geq f(\alpha)$. Since every infinite subset of C_α has a cluster point in it, C_α is a countably compact. Since every countably compact space with a σ-wHCP network has a countable network [12, Proposition 6], C_α is compact [11].

Let $\mathcal{P} = \bigcup\{\mathcal{P}_n : n \in \mathbb{N}\}$ be a σ-wHCP k-network consisting of closed subsets. Then there is a finite $\mathcal{P}' \subset \mathcal{P}$ such that $C_0 \subset \bigcup \mathcal{P}'$. Pick $P_0 \in \mathcal{P}'$ so that P_0 contains $k_0 = x_{n(0)}x_{m(0)}(0)$ and infinitely many x_n’s. We assume that for each $\alpha < \beta$, there exists $P_\alpha \in \mathcal{P}$ such that P_α contains infinitely many x_n’s and a point $k_\alpha = x_{n(\alpha)}x_{m(\alpha)}(\alpha)$. We have $C_\beta \subset G \setminus \{k_\alpha : \alpha < \beta\}$, which is open in G by the Claim. There is a finite $\mathcal{P}'' \subset \mathcal{P}$ such that $C_\beta \subset \bigcup \mathcal{P}'' \subset G \setminus \{k_\alpha : \alpha < \beta\}$, pick $P_\beta \in \mathcal{P}''$ so that P_β contains infinitely many x_n and $k_\beta = x_{n(\beta)}x_{m(\beta)}(\beta)$. By induction, we obtain $\{P_\alpha : \alpha < \omega_1\} \subset \mathcal{P}$ such that $P_\alpha \neq P_\beta$ if $\alpha \neq \beta$ and each P_α contains infinitely many x_n’s, hence there are uncountably many $P_\alpha \in \mathcal{P}_n$ for some $n \in \mathbb{N}$. Note that \mathcal{P}_n is wHCP and there is a subsequence L of $\{x_n : n \in \mathbb{N}\}$ such that L is discrete, which is a contradiction. □

References

Department of Mathematics, Ohio University-Zanesville Campus, Zanesville, OH 43701, USA

(Received November 28, 2005)