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On groups of similitudes in associative rings

Evgenii L. Bashkirov

Abstract. Let R be an associative ring with 1 and R× the multiplicative group of invert-
ible elements of R. In the paper, subgroups of R× which may be regarded as analogues
of the similitude group of a non-degenerate sesquilinear reflexive form and of the isom-
etry group of such a form are defined in an abstract way. The main result states that
a unipotent abstractly defined similitude must belong to the corresponding abstractly
defined isometry group.
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Classification: 16U60, 20H25

First we give the definition of the main ring-theoretical notion we use and study
in the present short paper.

Definition. Let R be an associative ring with an identity element 1. An element
g ∈ R is called unipotent if (g − 1)k = 0 for some integer k ≥ 1.

Unipotent elements of full matrix rings over fields, that is, matrices all eigen-
values of which equal 1 are meaningful for the theory of linear groups because the
most important and interesting classical linear groups are generated by such ele-
ments. In particular, in papers devoted to linear groups over associative division
rings, assertions about the impossibility for unipotent elements in the similitude
group of a sesquilinear reflexive form to have the similitude multiplicator different
from 1 appear remarkably often. In other words, these assertions state that every
unipotent element in the similitude group of a certain sesquilinear reflexive form
must belong to the isometry group of the form itself. Sometimes such statements
are proved, mainly for division rings of particular kinds ([11, 1.18]) and also for
special unipotent elements ([10, 4.2.7]), but largely they are taken for granted
being regarded as manifest (see, for instance, [1], [2], [3], [4]). At the same time,
a rather favorable frequency of appearing of such results in articles on classical
linear groups allows us to say about their importance for the study of these groups
and simultaneously suggests an idea of the existence of their general background.
Indeed, in this note, we establish a result, which provides the desired background
within the framework of the ring theory, and thereby implies the above mentioned
assertions on similitude groups of reflexive sesquilinear forms as its specific cases.
Therefore, the results obtained may prove helpful for better understanding of the
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nature of similitudes relative to sesquilinear forms. It is worth mentioning that
our approach is elementary in nature and the prerequisite to the present paper is
a knowledge of the content of Chapter 1 in Dieudonné’s book [5]. We shall also
base the proof of our main result on elementary calculations using well known
properties of binomial coefficients.

So, to begin with, denote by R an associative ring with an identity element 1
and let R× be the multiplicative group of all invertible elements of R. Let J be an
antiautomorphism of R, that is, an automorphism of the additive group of R such
that J(ab) = J(b)J(a) for all a, b ∈ R. Note that the mapping J may be identity
if R is commutative. Now fix an element r ∈ R× and let C be a subsemigroup of
the multiplicative semigroup of R (that is, ab ∈ C whenever a, b ∈ C) with the
property 1 ∈ C. Suppose C consists of elements lying in the center of R. Then
define H(r, C, J) to be the collection of all g ∈ R for which there exists c ∈ C

(depending on g) such that

(1) J(g)rg = cr.

We refer to the elements of H(r, C, J) as similitudes or, more precisely, as simil-
itudes in the ring R. Since r is invertible, c figuring in (1) is uniquely defined
by g. Therefore, c is denoted by cg and this cg is called the multiplicator of the
similitude g. One can directly check that H(r, C, J) is a subsemigroup of the mul-
tiplicative semigroup of R. We call H(r, C, J) the similitude semigroup (in the
ring R). For any g, h ∈ H(r, C, J), the equation cgh = cgch is true because cg, ch

lie in the center of R, and this shows that the mapping g → cg is a homomorphism
of the semigroup H(r, C, J) into the semigroup C. Now assume that g is a simil-
itude in H(r, C, J) such that g is invertible in R. Then (1) implies that cg ∈ R×,

g−1 ∈ H(r, C, J) and cg−1 = c−1g . Thus the set H(r, C, J) ∩ R× := S(r, C, J)

is a subgroup of R× and we can obtain a homomorphism of this group into the
group C ∩ R× ≤ R× by restricting the mapping g → cg to S(r, C, J). The im-
age of S(r, C, J) under this homomorphism is denoted by M(S(r, C, J)) and we
designate its kernel by G(r, C, J). Accordingly, G(r, C, J) is a normal subgroup
of S(r, C, J) and

G(r, C, J) = {g ∈ R× | J(g)rg = r}.

We refer to S(r, C, J) as a similitude group (in the ring R). This definition of
a similitude group both supports and extends the traditional definition which is
given in [5, Chapter 1, §9]. The group G(r, C, J) may be thought of as a group
comparable to the corresponding classical linear one. The quotient of S(r, C, J)
by G(r, C, J) is isomorphic to the abelian group M(S(r, C, J)), and so G(r, C, J)
is a subgroup of the commutator subgroup of S(r, C, J).

Now we make a simple observation which turns out to be very useful for our fur-
ther study. Define T to be the mapping from R into R such that T (g) = r−1J(g)r
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for each g ∈ R. It is straightforward to verify that T is an antiautomorphism of
R and

H(r, C, J) = H(1, C, T ), S(r, C, J) = S(1, C, T ), G(r, C, J) = G(1, C, T ).

Thus without loss of generality we may restrict ourselves to the case r = 1.
We write S(C, J) and G(C, J) instead of S(1, C, T ) and G(1, C, J) respectively.
Moreover, since G(C, J) does not depend on C, we may also write G(J) instead
of G(C, J).
Next we want to supply the readers with some examples, which can be studied

in a truly elementary way, to illustrate the notions introduced. With this end
in view, let us assume that J leaves C invariant as a whole, that is, J(c) ∈ C

whenever c ∈ C. In this case, S(C, J) contains enough much elements, namely,
every c ∈ C is a similitude in S(C, J), the multiplicator of c being J(c)c. In
general, if g ∈ G(J) and z ∈ C, then zg = gz is a similitude in S(C, J) such that
the multiplicator of z is equal to J(z)z. Conversely, if s is a similitude in S(C, J)
and the multiplicator of s has the form J(z)z with z ∈ C, then sz−1 ∈ G(J).
Now we are ready to formulate and prove our main result.

Proposition 1. Suppose the ring R is an algebra over its commutative subring A.

Assume A contains no nilpotent elements and M(S(C, J)) ≤ A×. If g ∈ H(C, J)

and (g − 1)k = 0 for some integer k ≥ 1, then g ∈ G(J).

Proof: As is well known, in every associative ring each nilpotent element being
added to the identity always gives an invertible element. So g is invertible and we
have actually that g ∈ S(C, J). If k = 1, then there is nothing to prove. Suppose
k ≥ 2 and let c be the multiplicator of g, that is J(g)g = c. It follows that g and
J(g) are permutable, and so we have

(2) J(g)kgk = ck.

Further, the condition (g − 1)k = 0 implies that

(3) gk =

k
∑

m=1

(

k

m

)

gk−m(−1)m−1,

where
(

k
m

)

denotes, as usual, the binomial coefficient
(

k
m

)

= k!
m!(k−m)!

modulo the

characteristic of R. On substituting (3) into (2) we obtain

(4)

k
∑

m=1

k
∑

l=1

(

k

m

)(

k

l

)

J(g)k−mgk−l(−1)m+l−2 = ck.
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But J(g)k−mgk−m = ck−m whence it follows that J(g)k−m = ck−mg−k+m.

Therefore, J(g)k−mgk−l = ck−mgm−l, and hence

k
∑

m=1

k
∑

l=1

(

k

m

)(

k

l

)

ck−mgm−l(−1)m+l−2 − ck = 0.

Multiplying both sides of the last equation by gk−1 yields

(5)

k
∑

m=1

k
∑

l=1

(

k

m

)(

k

l

)

ck−mgk+m−l−1(−1)m+l−2 − ckgk−1 = 0.

Next let us write g as the sum 1+ h with h ∈ R. On substituting this expression
into (5) we find that

(6)
k
∑

m=1

k
∑

l=1

(

k

m

)(

k

l

)

ck−m(1 + h)k+m−l−1(−1)m+l−2 − ck(1 + h)k−1 = 0.

Recall now that h is nilpotent, hk = 0. Then (6) shows that h is a root of a
polynomial, say q, in one variable with coefficients in A whose degree s does not
exceed k. Calculate the constant term of q. To do this we use the following well
known elementary formula

(7)
k
∑

l=1

(

k

l

)

(−1)l = −1.

Employing (7) allows us to deduce from (6) that the constant term of q is equal
to

k
∑

m=1

k
∑

l=1

(

k

m

)(

k

l

)

ck−m(−1)m+l−2 − ck

= −

(

ck +

k
∑

m=1

(

k
∑

l=1

(

k

l

)

(−1)l

)

(

k

m

)

ck−m(−1)m−1

)

= −

(

ck +

k
∑

m=1

(

k

m

)

(−1)mck−m

)

= −(c − 1)k.

This and equation (6) are combined to yield that for some a1, a2, . . . , as ∈ A we
have

(8) (c − 1)k = a1h+ a2h
2 + · · ·+ ash

s.
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The subring A is contained in the center of R. Consequently, the element in the
right hand side of (8) is nilpotent, since it is the sum of nilpotent elements which

are pairwise permutable. Hence (c − 1)k is nilpotent and so is c − 1. But the
last element belongs to the ring A which possesses no nonzero nilpotent elements.
Thus c − 1 = 0 completing the proof of the proposition. �

It should be pointed out that in Proposition 1 we cannot remove the assumption
that the subring A contains no nonzero nilpotent elements. In order to make sure
that this is so, we can consider the following example. Let k be an integer, k ≥ 2,
P a field of characteristic different from 2, R a commutative and associative P -
algebra with a basis 1, v, v2, . . . , vk−1, where 1 is an identity element and vk = 0.
We think of R as an algebra over A = R and take the identity automorphism of
R as J . Then G(R×) = {±1} and g = 1 + v is a similitude in S(R×, J) with the

multiplicator (1 + v)2 = 1 + 2v + v2 6= 1. But (g − 1)k = vk = 0, and so g is a
unipotent element in S(R×, J) \ G(R×).
At this point, we turn to some specific examples of similitudes in rings. These

examples are actually the motivating ones of similitudes. They can be merged
into the facts about similitudes given by Proposition 1 thereby well justifying
terminology we have introduced.
Let E be a right vector space of finite dimension n ≥ 2 over an associative

division ring K. Assume K admits an involution, that is, an antiautomorphism
a → a (a ∈ K) such that a = a. If U is a matrix whose coefficients belong
to K, then U denotes the matrix obtained from U by applying the involution −

to each element of U ; in turn tU denotes the transposed matrix of U . Let f be
a nondegenerate reflexive sesquilinear form on E × E with respect to −; thus
f is a biadditive mapping f : E × E → K such that f(xa, yb) = af(x, y)b for
all x, y ∈ E and a, b ∈ K and the relations f(x, y) = 0 and f(y, x) = 0 are
equivalent. We remind that a linear mapping u : E → E is called a similitude
relative to f if there exists c ∈ K× such that f(u(x), u(y)) = cf(x, y) for all
x, y ∈ E. Choose a basis {e1, . . . , en} = (ei) of E and let D be the matrix of
f relative to (ei). A linear transformation u of E is a similitude relative to f if
and only if its matrix U in (ei) satisfies the condition

tUDU = cU . It is readily
seen that c belongs to the center of K (see [5, Chapter 1, §9]). Since the mapping
J : U → tU is an involution of the ring of all matrices of degree n over K, the
definition of similitudes in associative rings given in the present paper is quite
comparable with the definition of similitudes relative to a reflexive sesquilinear
form. Therefore Proposition 1 has the following corollary which was the main
motivation to write the present work.

Proposition 2. Let n be an integer, n ≥ 2, and let f denote one of the following:

(a) a nondegenerate −-skew-Hermitian form in n variables over a division ring

K with an involution −;

(b) a nondegenerate alternative form in n variables over a field K;
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(c) a nondegenerate symmetric bilinear form in n variables over a field K of

characteristic different from 2.

Let Un(K, f), Spn(K, f), On(K, f) be, as usual, the subgroups of the general
linear group GLn(K) that are the isometry subgroups of the form f from items

(a)–(c) respectively, that is, the unitary, symplectic and orthogonal groups re-
spectively, and let GUn(K, f), GSpn(K, f), GOn(K, f) be the corresponding
similitude groups. If g is a unipotent element in GUn(K, f) (respectively in
GSpn(K, f) or in GOn(K, f)), then g ∈ Un(K, f) (respectively g ∈ Spn(K, f) or
g ∈ On(K, f)).

Now let us turn our attention to another aspect of the problem under consid-
eration. Namely, as we have already said, G(J) is a normal subgroup of S(C, J),
and so S(C, J) is contained in the normalizer of G(J) in R×. Thus we are led to
the following question: when does S(C, J) coincide with the normalizer of G(J)
in R×? As to this question, we can prove the following simple assertion.

Proposition 3. Let C be a subgroup of the multiplicative group of the center

of R. If the centralizer of the group G = G(J) in R× is contained in C, then

S = S(C, J) is the normalizer of G in R×.

Proof: Let N denote the normalizer of G in R×. It suffices to show that N ⊆ S.
Let h ∈ N . This means that hgh−1 ∈ G for any g ∈ G. By the definition of G, we
have J(hgh−1)hgh−1 = 1. Since J is an antiautomorphism of R, the last equation
may be rewritten as J(g)J(h)hg = J(h)h. But g ∈ G, and so J(g) = g−1. Hence
g−1(J(h)h)g = J(h)h. Thus J(h)h commutes with any g ∈ G. So the assumption
on the centralizer of G leads us to the inclusion J(h)h ∈ C which is amount to
the relation h ∈ S. The proposition is proved. �

When K is a field of characteristic different from 2, it is well known that the
groups Un(K, f), Spn(K, f), On(K, f) with n ≥ 2 are absolutely irreducible sub-
groups of GLn(K) (see [6, p. 36] for a definition of this term). Consequently, their
centralizers in GLn(K) consist of scalar matrices only. Therefore, if K

× is taken
as C, then by Proposition 3, the groups GUn(K, f), GSpn(K, f), GOn(K, f) are
the normalizers of the groups Un(K, f), Spn(K, f), On(K, f) respectively. These
facts were obtained first by King [8], [9], and Dye [7]. On the other hand, we can
easy exhibit a ring which does not handle the requirements of Proposition 3. The
next paragraph features the corresponding example.
Suppose a fieldK contains more than two elements. Let R be the ringM2(K)⊕

M2(K), the direct sum of two copies of the ring M2(K) of all matrices of degree
2 over K. We write elements in R as pairs (a, b) with a, b ∈ M2(K). Let I be an
involution on M2(K) such that

I

((

x y

z t

))

=

(

t −y

−z x

)

for all

(

x y

z t

)

∈ M2(K).
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Define an involution J on R as follows: J(a, b) = (I(a), I(b)) for a, b ∈ M2(K).
Let C be the subgroup of R× = GL2(K) × GL2(K), the direct product of two
copies of GL2(K), consisting of all elements (r12, r12), where r runs through K×

and 12 denotes the identity matrix in M2(K). Then G(J) = SL2(K) × SL2(K)
and S(C, J) consists of all pairs (g1, g2) ∈ GL2(K) × GL2(K) such that the
determinants of g1 and g2 are equal. Nevertheless, the normalizer of G(J) in R×

coincides with the group GL2(K) × GL2(K) which is different from S(C, J) for
K contains more than two elements.
We close this paper by making the remark that the converse of Proposition 3 is

false. For instance, let us consider a commutative and associative two-dimensional
algebra R over a field P with a basis 1, v such that 1 is the identity element of
R and v2 = 0. It should be clear that R is an algebra with the involution J

defined by J(a + bv) = a − bv for all a, b ∈ P . Let C be the subgroup of R

consisting of all squares in P , that is, C = {a2 | a ∈ P×}. Then S(C, J) = R×

and G(J) = {±1 + bv | b ∈ P}. Observe that the normalizer and the centralizer
of G(J) in R× coincide with R× because R is commutative. However R× 6⊆ C

and this is just that we intend to show.
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[5] Dieudonné J., La Géométrie des Groups Classiques, Ergebnisser der Mathematik, Springer,
Berlin-New York, 1997.

[6] Dixon J.D., The Structure of Linear Groups, Van Nostrand Reinhold Company, London,
1971.

[7] Dye R.H., Maximal subgroups of GL2n(K), SL2n(K), PGL2n(K) and PSL2n(K) associ-
ated with symplectic polarities, J. Algebra 66 (1980), no. 1, 1–11.

[8] King O.H., On subgroups of the special linear group containing the special orthogonal
group, J. Algebra 96 (1985), no. 1, 178–193.

[9] King O.H., On subgroups of the special linear group containing the special unitary group,
Geom. Dedicata 19 (1985), no. 3, 297–310.

[10] O’Meara O.T., Symplectic Groups, American Mathematical Society, Providence, R.I., 1978.
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