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HALFNETS AND PARTIAL 3-LOOPS

JAROSLAVA JACHANOVA
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In this paper there are generalized some results given in [3] concerning 3-nets and loops for k-nets
and their corresponding algebras of loops. The first part deals with problems of halfnets and their
extensions, and with a construction of a maximal extension chain. There are made notions of a free
net and P, ,—centered free net. In the second part there is defined first the partial J-loop for co-
ordinatization of P, ,—centered halfnet. This structure has been built as a generalization of J-loops
from [5]. Secondly there is studied a homomorphism of partial §-loops and free J-loops in connection
with a homomorphism of halfnets and free nets.

1 Halfnets

Definition 1.1. A halfnet is an ordered tetrad (2, &, (£),cs, ) Where 2 is a set
of elements called points, & is a set of elements called lines, (£,),es is a system of
mutually disjoint subsets of &, the union of whichis &, £ is a set of indices; # 4 = 3,
I c %% is an incidence relation and the following conditions are satisfied:

(i) VPe? Vies #{p|Plp,pe2} <1,
(i) Va,pes;a+ p ke, Vhes, #{P| Pk P} =1

Note. From (i) it follows:
VieS Vi heP,; k+ h {X]|XIk, Xlh} = 0.
Definition 1.2. A net is a halfnet (2, &, (£,),cs, 1) such that # % @ and

() VPe? Vie s Fhel, Plh,
()Va,pef;a+pf VheP,, VkeL; 3PP Plh, Plk.

The set £, is called the o™ pencil, its lines the a-lines. Lines of the same pencil
(distinct pencils) are called parallel (non-parallel). Points A, B are termed joinable if
there is a line p such that Alp, Blp; if moreover A = B, then this line is called a join
of A, B and is written as AB. A point P, for which PlA, Plk with h, ke %; h + k,
is called the point of intersection and is written as /1 [ k. As customary we say B is
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“on” p or p “‘passes through” B if BIp. A line from the «™ pencil passing through
the point B is written as «(B). Let # = (2, L, (L )ics. D). If Xe P and xe ¥ we
say that X and x are in #, respectively. If moreover Xlx, we say that X is on x
in #.

Definition 1.3. Let (2, &, (£,),cs, 1) be a halfnet. The cardinality of the set S
is called the degree of this halfnet.

Definition 1.4. Let (2, &, (% )es. 1) = # and (2, L, (L)ics, ) = H' be
halfnets. By a homomorphism of the halfnet 5 into the halfnet #’ we mean a pair
of mappings (¢, ) ¢ : ? > 2, d : ¥ — &’ such that the following holds:

@ peP,=>p’ef,, acs,
(b) Blp = B°Ip®, Be #,pec Z.

The homomorphism (@, ) of S into #" is called an isomorphism if ¢ and ¢ are
bijections and (¢!, # ') is a homomorphism of #’ into #.

Definition 1.5. Say that the halfnet # = (2, &, (% )),cs, 1) is a subhalfnet of the
halfnet #' = (2, ', (L)es, ) f Pc P, L <P, L c ¥, Vaes, Il
and (idg, id,) is @ homomorphism of 3 indo . If J# is a subhalfnet of the
halfnet 5#’, we say that J# is in ' and we write # < J#'.

Definition 1.6. If 2 is a subhalfnet of the halfnet #’ and # is a net, we say
that & is a subnet of the halfnet #’.

Definition 1.7. A halfnet # = (2, L, (L ).cs, ) where 2 = (), and there exists
just one 1 € £ such that & = &, is called a degenerate halfnet.

Definition 1.8. By a trivial halfnet we understand a halfnet # = (2, %, (% ).cs» F)
where

M #22L,Viesd, $ 2,51,
(2)VpeZ,VYBe? Blp.

Note. It is easy to verify that in every non-trivial net there exist at least two lines
in any pencil and at least two points on any line. Throughout, the degenerate halfnets
will be excluded from our consideration.

Definition 1.9. A subhalfnet # = (2, %, (£,).cs,]) of the halfnet #' =
=(?,%',(L).c1, ) is termed closed in #', if the following implications hold:

BeZZABl'hheZ')=>hel
hkeZAh[k=Qe?)=>Qe2?

Clearly, any subnet . of a net A" is closed in A.
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Definition 1.10. We say that the halfnet #’ is generated by its subhalfnet s if #’
is the only subhalfnet of #’ containing H and being closed in #".

Theorem 1.11. (The theorem generalizes the theorem 1.1 in [3]). Let (¢, ®)
and (¥, ¥) be two homomorphisms of the halfnet # into a halfnet #’ and let #
be generated by its subhalfnet . If X? = X¥ and x® = x¥ for every point X and
every line x in 7", then ¢ = and ¢ = V.

Proof. Let 7 be the subhalfnet of J# consisting of those points and lines of s#
for which X? = X¥ and x® = x¥. Clearly, # < 7. Let besides  be closed in .
Namely, if Bisin 7, hisin # and Bl in #, then B?I'h® and BYI'A¥ in #'. However
B? = BY, and there is at most one line in every pencil passing through the point
B? = B%in #. Hence 1® = h¥ and hisin 7. Similarly, if h, k are two lines of distinct
pencils in 7 and if Ak = Q is in 4, then h® = A¥, k® = k¥ and Q° and QY are
on h® and on k® in . Since h® % k® (by definition 1.4.2) necessarily Q® = QV.
Hence Q is in 7. Since # generated by ¢ and 4 < 7, it holds # = J; that is
(9, D) = (¥, ¥).

Definition 1.12. We say that a halfnet # = (2, %, (£ \)),cs, 1) is an L-extension
of its subhalfnet o#' = (2, L', (£ ),cs, 1) if:

() 2 =2,
(@ VpeZ\Z 3IBe? Blp,

H is a complete L-extension of H#' if besides:
B)VBe? Vies Ipe, Blp,

H is a free L-extension of A’ if (1), (2) and the following condition are satisfied:
@)VpeZL\¥ # {B|Be? Blp} < 1.

Definition 1.13. We say that a halfnet # = (2, %, (% ).es, ) is a P-extension
of its subhalf #' = (2. L', (L ),es, 1) if:

() £ =2,
(2 VBe2\ 2 4 {plpe¥, Blp} =2,

H is a complete P-extension of #' if moreover:
B) VpeZ, VheZLy Vo, fecfa*f 3 B € #Blp, BlA,
N is a free P-extension of H#' if (1), (2) and the following condition holds:
2 VBe2\? # {p|lpe¥, Blp} <2.
Definition 1.14. The sequence of halfnets (#°, 5!, ...)
HOc H e HPc ... c HPcHP I,
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where s#2n+1 s an P-extension of #2" and #27+2 is a P-extension of H2n+1 g
called an extension chain of #°. If all #* are complete extension of H#*~1 it js
called a maximal extension chain of #°. If moreover all - and P-extensions are
free, then this chain is called a maximal chain of free extensions of #° (or a maximal
free extension chain).

Note. Let
HOc Hlc..c Hrc.. (D

be an extension chain of #°, where #* = (2*, L*, (£5),cs, I¥). Let us put & ;=
=y Y= U& &= UL Vae S, I:= U I". Then, obviously, # :=
n=0 n

n=0 =0 n=0
= (2, %,(ZL),cs, ] is a halfnet. Let us write A4 = UH™".

If chain (1) is maximal, then U#" is a net because every point B € P is in some
halfnet #%%*! in which exactly one line p from any pensil exists such that BI?<*1p,
and each two lines A, k of distinct pencils in U™ are both in some halfnet s#2%+2
with exactly one point B for any pair of non-parallel lines such that B is on 4 and
on k, as well. )

If the chain (1) is a maximal chain of free extensions of 3#°, then UJ#™ is a net
with infinite number of points on any line and infinitely many lines passing through
any point.

Proposition 1.15. Let s#° be a subhalfnet of a halfnet 2#. Then " is generated
by the halfnet #° if and only if there exists an extension chain # < #' c ...
c #* c ... of #9 such that # = UA".

Proof is given in [3] p. 503 for a halfnet of degree three. The proposition nor
its proof are independent of the degree of halfnets.

With regard to the definition of a net and to that of the complete extension we have:

Corollary 1.16. Let 5#° be a subhalfnet of a net A". Then N is generated by the
subhalfnet #0 if and only if there exists a maximal chain #° < #! < ... ¢ #* ...
of an extension of #, such that #" = LA™

Definition 1.17. Let = us#", where #° = # and #**! is a free (&- or 2-)
extension of #* for every integer k. Then 2 is said to be freely generated by the
halfnet 5.

Note. The net A is freely generated by a halfnet # if &” = UH#", where #° =
= J and the chain (1) of a free extension of #° is maximal.

Definition 1.18. Let A = (2, %, (% ).cs,]) be a net freely generated by its
subhalfnet (#', %', (¥),cs, ). The net A is called a free net if #' = ().
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Construction 1.19. Let o — (yo’ 30, (g?)‘e‘;, IO) be a halfnet. Let us define:
ng+1 c= ka

LML= LG (4, P) | P e 22, u(P) is not in #Y, 1€ S
RZi - U g‘ZkH

S = TR (P, (1, P)) | Pe 2%, (1, P) e #7571\ 2%},

This evidently implies that sp2k+1 _ (g2k+1 g2k+1 (gp2k+ Y., ,, 126+1) is a halfnet.
Since the conditions (1), (2), (2'), and (3) of definition 1.12. are satisfied, the halfnet
H#***1 is a complete free L-extension of the halfnet #2*.

Now, let us define:

P2 . pRtL {{k, b} k e Z2+1, /1e$12’k+1; a % B, kM his not
in %2k+1}9 .

$2k+2 :=$2k+1

LPF =PIy e g,

ST e G (K, B | (k) € @A\ gD e pBHT)
U {({h, K}, K) | {h, K} € P62\ 241 | g peH ),
Again, it is obvious that s 2k+2 = (p2k*2 @2kt2 (gk+2y  12k+2) g g halfnet
and a complete free Z-extension of the halfnet s#2k+1,

Hence, the halfnet #2**! satisfies the condition (i") of definition 1.2 i.e. exactly
one line of every pencil passes through every point and the halfnet #2%*2 satisfies
the condition (ii') i.e. every two lines of distinct pencils intersect in a single point.
Hence the chain #° < #'!' < ... c #?* c #*+! < #2%*2  is the maximal
chain of free extensions of #° and A = U™ is a net freely generated by #0.

Note. 1. By the construction, any halfnet may be embedded in a net at least in
one way.

2. The net A" of the construction 1.19. is a free net if 2° = 0, ¥° + § holds for
the halfnet #° = (29, £°,(#),.,1°).

Theorem 1.20. Let o#' = (', %', (L)),cs,1) be a free (#- or £-) extension
of the halfnet #° = (29, £°, (#°),.,,19. Then any homomorphism of #° into
anet A = (2, %,(%)i;1, 1) may be explicitly extended to a homomorphism of #”
into A",

Proof. Let (¢, ®) be a homomorphism of s#° into A".

1. Let # be a free Z-extension of the halfnet #°°. Let us define a pair of mappings
W, ¥): A — A as follows:

VXed® <, X/ =X°
Vhesocw, KW =h®
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since
Vhe Z\%? 3 Be2° Bl'h
and
VBe#?° ke, B® = BYIk
we may put
W =k for he ' \%°

Hence the mapping (¢, ¥) is single-valued and it is a homomorphism of s into A
and (, ¥)/#° = (¢, ?). Hence (¢, ®) is extended to the homomorphism (i, ¥)
of ' into A",

2. Let #’ be a free P-extension of the halfnet #°°. Let us define a pair of mappings
(n, ) : #' — A" as follows:

VXeP « 2, X =X
Vhed'c P, W= n®

furthermore, let X € 2\ 2°, then there exist lines i, k he Z), ke ¥, o, fe f;
« + B such that both 4 and k pass through the point X. Since 4% = 4" and k® = k",
there exists exactly one point Q € 2, Q is on /#® and on k®, as well. Then X" = Q
and hence (z, IT) is defined uniquely and is a homomorphism of #” into 4" and
(n, IN/A° = (¢, D).

Theorem 1.21. Let #’ = (2, %', (¥%)),cs, ') be a halfnet generated by a halfnet
HO = (P, L0, (£D),.s,1° and let every homomorphism of #7° into a net A& =
= (2, %,(Z).cs,]) be extendable to a homomorphism of " into A4". Then #”’
is a net freely generated by the halfnet s#0°.

Proof. By proposition 1.15. there exists an extension chain of a halfnet ;#°
such that #’ = U™, where #' "1 is #- or P-extension of #'. We have to show
that these extensions are free. By the presuppositions of the theorem it is clear that
the homomorphism of #* into a net 4" has already been extended to that of /#**"
into A" where #*, #**" are members of the extension chain of the halfnet 0.

1. Let s#2**! be an Z-extension of #2*, Suppose that this extension is not free.
Then there is at least one line A e #2*1\ #2* sych that both distinct points B,
Qe 2% are on h. Consider a maximal chain of the free extension of 3#2*:

A= H ... cH ..

Then U™ = M is a net (P, L, (ZL,),.4, D). If we take the identity homomorphism
(id, id) of #?* into a net .4, it is extendable to a homomorphism (¢, @) of the halfnet
H**Vinto M, where B = B?Th® and Q = Q”IA®. Since B, Q € 22X, then necessarily
h® e ¥?*. Since h, h® belong to the same pencil and BI**h, BI4® then necessaril
h = h®. Therefore he #?* in contradiction to our assumption.
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2. Let #**2 be 3 P-extension of H#2k+1 Suppose that this extension is not free.
Then there is at least one point B € #2k+2 \ 22*! such that there exist three distinct
lines 4, k, le $?**1 passing through B in #2%*2. Consider a net .# = U#" with
a maximal free extension chain of #2k+1 The homomorphism (id, id) of s#2x+!
into .# is extendable to a homomorphism (i, ¥) of #2**2 into .4, where BYIA¥,
BYIk¥, B'II*, hence BY e #**'. Since h¥ = h, k¥ =k, I¥ = I, then necessarily
B” = B and B e 2%*! in contradiction to our assumption.

Theorem 1.22. Let 5 = (2, £, (£L,),cs, D) be a halfnet. Then there exists a net A~
freely generated by the halfnet . If 47, A" are two nets freely generated by #,
then they are isomorphic.

Proof. The existence of a freely generated net by a helfnet # follows from 1.19.
Let 47, & be two nets freely generated by /. Then the identity homomorphism of
# < N into A is extendable to a homomorphism (¢, @) : & — A", Since N@®
is a net generated by H, then necessarily #"® = 4", Similarly, the identity homo-
morphism of # < A" into A" is extendable to a homomorphism (/, ¥) : &/ = A
and again #'®¥) = 4. Then &/ @D ") = 4 and

X% =Xy =X'=X, VXe2
and
0)‘!’

P> =(p =p¥ =p, Vpe¥

and thus ¢y = id and @¥ = id. Similarly y¢ = id and ¥¢ = id. This implies
that (@, @) and (, ¥) are reciprocal isomorphisms of A" into A”". Thus A7, A" are
isomorphic nets.

Theorem 1.23. (This theorem is a generalization of theorem 1.4. from [3] p. 511,
for nets of any arbitrary degree.) Let /” = (2, Z, (£,),cs, 1) be a net. Then there
exists a free net 4 and a homomorphism (¢, ®) of .# into 4 such that
MO = N

Proof. Let # = (2, %,(%)).cs,]) be an arbitrary net. Let he ¥, (x€ F).
Let us make

& = {h}
P = {Xe?|Xlh}
&L= {h}
Li=0 VieS\{a}

I''=1In(?'x%)

Then clearly #' = (£’, 2, (£)),cs, ') is a subhalfnet of the net A4~ generating A",
for there doesnot exist any closed subhalfnet in .47, containing # being different
from 4. Namely, every point of 4" being not in 3’ is joinable with the points of "
by means of lines of different pencils.
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Furthermore let B e & \ {«}. Let us make #° = (2°, #0, (), ,, I°) as follows:

PO =0

Fo:={htu{plpeLy, hMpe?}
L2 = {h}

&Ly =%

P°:=0 ViesS\{ B}

0:=0

Consider the maximal chain of the free extension of the halfnet 5#°. Then # =
= UM#" is a free net. The identity homomorphism of #° < 4 onto #° < A is
extendable to the homomorphism (¢, @) : # — A" and since A is generated by #°,
then necessarily A" = .#@®,

Definition 1.24. Let # = (2, %, (L )),cs,]) be a halfnet. Let &, neS; & 1,
P e 2. The halfnet J# is called a P, ,-centered if the following conditions are satisfied:

(i) VReP VYies IpeZRip,
(i) Vpe L \Z: {Xe2 | Xlp, XIEP)} + 0
VpeZ\Z, {Xe2|Xlp, XIn(P)} + 0.

Note that a net is P, -centered for its any point P and any pair of different
indices &, n. :

Theorem 1.25. (The theorem is a generalization of theorem 1.8. in [3] p. 524.)
Let /" = (2, %, (%)es, D) be a net, #' = (2, % ,(¥L),.s, 1) be its subhalfnet
with Pe 2', ¢, ne F; & # n. Then there exists an explicitely defined P ,-centered
halfnet s#* such that

() #* = N,
(b) #* is generated by H#,
(c) every subhalfnet %" satisfying # < A" < H*; A + A*is not P, ,-centered.

Proof: We see that the P, ,-centered halfnets containing # exist in A"; for
instance, A" itself. Let # * be the intersection of all P, ,-centered subhalfnets of the
net A containing . Now it is easy to verify that #* is a P, ,-centered subhalfnet
of A satisfying (c). Suppose that there exists a halfnet # < 4 such that # < A <
< H*, with A closed in #*. Then clearly, " is P, ,-centered, as well, and therefore
A = H*, so that #* is generated by #.

From here on we shall use the notation (', P, &, %) for the halfnet #* from
theorem 1.25.

Corollary 1.26. Let A = (2, %,(%),cs,]) be a net freely generated by its
subhalfnet " = (2, %', (£ ),cs,1') and let Pe P, {,ne S, & + . Then A is
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freely generated by (4, P, &, ). This corollary is an immediate consequence of
theorem 1.25.

Note. Obviously (A4, P, &, 1), P, &, n) = (A, P, &, ).

Definition 1.27. Let & = (2, %, (% )),cs, ) be a net freely generated by its

P, ,-centered subhalfnet (2, £', (L ).cs> L 0 (P x ZL")). Let the following implica-
tion hold:

Re P = RI&P) v RIy(P) )

Then the net A" is called the P, ,-centered free net.
Theorem 1.28. A net A4 is a P, ,-centered free net if and only if 4" is a free net.

Proof. I. Let /" = (2, £, (& ).cs, ) be a P, ,-centered free net generated by
a halfnet (A, P, &, n) = (2, L, (L)cs, I 0 (P xF’). Let us put

P* =0
LEi=0 VieI\{n}
L =Y

&y = {mP)} n(P e,
L*i=FLiuLy;
I*:=0
Clearly (2%, L*,(£5),e,, I*) is a halfnet freely generating 4. Since #* = §§ the
net A" is a free net.
IL. Let A" be a free net generated by its subhalfnet # = (2", £", (¥!),cs, 1 0

N (P"xZL")), with 2" = (). In the maximal chain of free extension of 3 we have
H = #', but #' & A#? Let P be an arbitrary point of #2. Then there exist
exactly two lines /i, k of distinct pencils such that P4, P1k. Let us constitute a halfnet
H* < N for which 2* = (P}, &* = £"\ {h, k} holds. Obviously #? is freely
generated by s * and therefore A is freely generated by #* as well. Then, however,
A is freely generated even by its P, -centered subhalfnet (5%, P, £, n) for any
& e S5 € + n. Now we show that the halfnet (A%, P, £, n) satisfies implication (2).
Suppose that there exists a point Q in # * such that Q is neither on &(P) nor on n(P).
By definition 1.24.(i) there exists a line p € &, for every 1 € # so that QIp, however
at most two of them are in 2. Therefore there should exist a P, ,-centered haifnet =¢"
in which Q is on two lines only and 2# <« 4 < (#*, P, &, n), which, according to
theorem 1.25., is not possible.

2. Partial 3-loops

Definition 2.1. Let H be a set, 0 € Hand let Dom(+) « HxHand +: Dom(+) —
— H be a partial binary operationin H. H := (H, o, +)is called a half-loop whenever
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(i) YVac H (a,0),(0,a)e Dom(+) a+ 0 =0+ a=a,
(i) Va,d,feH (a,d),(a,f)eDom(+) a+td=a+f=d=f,
Va,b,ceH (b,a),(c,a)eDom(+) b+a=c+a=b=c.

A half-loop (H, o, +) is called a semi-loop whenever Dom(+) = Hx H. A semi-loop
(H, o, +) is called a loop whenever

(il Va,beH N (x, ) eHxHa+x=0b,y +x=0>.

Definition 2.2. Let S, I be nonempty sets, (7,),c5 a system of permutations of S,

(+,).ey @ system of partial binary operations on S, 0 € S and iet the following condi-
tions be satisfied:

1.39€3, 04 =idg,
2.YV1e€3, 0" = o,
3.Vi1e3J (S, 0, +,) is a half-loop,

4. for every o, fe3; a« +  and every a,be S there exists at most one pair
(x,»)€SxSsuch that x™ +,y = aAx™ +,y =b,

5.Va,beS V13, (a™, b)e Dom(+,) <> (a, b) e Dom(+y).
Then S := (S, 0, (0,),c3, (+).cy) is called a partial 3-loop.
Definition 2.3. A partial 3-loop S is termed a J-loop whenever
3.Vie3 (S, o0, +))is a loop,
4. Voa,fe3;a+p Va,beS 3 (x,y)eSxS
xX*+,y=a x"+,y=0b
Obviously 5 is valid for every J-loop.

Construction 2.4. Given a partial J-loop S = (S, 0, (0)),eq3, (+iey)- Let g,
w, ¢ 3; 0, + w,, and o4 = idg. Let us put

S =3 u{w;, w,}
2 .= Dom (+,)
L =1x8
Foi={a}xS,aeSf
I

L= lJS{((xay)a (601, a)) | (x,y)e P, x = a} v
leS {((X, J’), ((1)2, b)) I (X, y) eP, y = b} v

LJS {((x, )’), (l’ C)) | (X, y)e P, x7 —}-iy = C}

€Y
With respect to properties 3. and 4. of the partial J-loop S we see that
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(P, ZL,(L).es,]) is a halfnet. We denote the halfnet determined by the partial
S-loop S, by writing A(S, @,, ®2)-

Proposition 2.5. Let (S, 0, (0)ie3: (+)e3) =S be a partial I-loop. Then the
halfnet #(S, w,, w,) is (0, 0),,»,-centered.

Proof: Obviously (o, 0) € #, because (0, 0) e Dom(+,); 0 +40 = 0. If x€8,
then 0 +4x = xe S and therefore (0,X)e P, x +,0=x€S and (x,0)e? as
well. Let R = (r, q) e 2. Then (r, g) € Dom(+,) and therefore (r”, g) e Dom(+,)
Vie3J by 5. of definition 2.3. Thus Rl(w,, r), RI(w,, q), RI(1,z)V1eJ, where
z, = r" +,q, and the condition (i) of the definition regarding the P, ,-centered
halfnet is satisfied. Furthermore it holds:

(w,,x) M (@y,0) =(0,x) Yxe8§
G, X)M(wg,0)=(0,x) Vie3, xeS
(0, %)M (w,,0) =(x,0) YxeS§
(, XN (wy,0)=(x"0) YVieJ, xe$
So the condition (ii) of definition 1.24. is satisfied for the point (o, 0) and for the pair
of indices w,, w,.
Now it can be readily verified:

Corollary 2.6. Let L = (S, 0,(0,),cq, (+,).cy) be a J-loop, & n¢3J. Then
N (L, &, n)is a net.

Theorem 2.7. Let # = (2, L, (£ ),c5, ) be an 0, ,-centered halfnet. Then there
exists a partial 3-loop S such that A(S, &, 1) and (2, L, (£,).cs, 1) are isomorphic.

Proof. Let us define: S := {X e 2| XI&(0)}, 3 := £ \ {&, n}. We choose 9 € 3.
Let g, : S— S (V1 e 3) be a mapping defined as follows:

x™ = 1(3(x) M 7(0)) M &), VxeS (fig. 1

Define the operation +, to every 1 € J as follows: (a”, b) e Dom(+,) : <> there exists
a point £(1(a) [ n (0)) [ n(b). Let for (a”, b) € Dom(+,) hold:

a” +,b:=1lu(a) M n©0) Mn®) M&0), (fig.2)
and next x”* = 3(3(x) [ 7(0)) [1£(0) = x VxeS. Hence o4 = idg.
07 = 1(8(0) M1 7(0)) 17 £(0) = 1(0) [ &(0) = 0,V1€e 3.

The unigueness of the partial operations +, in S follows from the properties of
0, ,-centered halfnet (2, %, (£ ).y, D). Clearly, the point 0 is the zero element
in all partial operations +,. Both cancellaticn laws for S are easily verified from the
above construction. Hence (S, 0, +,) are half-loops for every 1 € 3. Since any two
lines of the distinct pencils intersect at most in one point, there holds condition 4.
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of definition 2.2. If @™ +, b is defined for a,b€e S, 1€ T, then (a”, b) e Dom(+)).
Hence there exists a point £(1(a”) [117(0)) [ n(b) = &(3(a) [ n(0)) 1 n(b). This is
however a necessary and sufficient condition for the purpose of (a™, b) e Dom(+,)
V1 € 3 which proves the validity of (5) of definition 2.2. We have thus proved that
(8,0,(0),eg (+)).e3) is a partial J-loop.

o)y

: [%4
x\ al+‘ b\. ~
\ S
\\ ~ ~
\ b <
&N \(x) ~
X N \
\\ \
\
. N \\\ . E(P(a)rn(0)
. [/ N
N\ \\\ ”2(0’ ~ ~ L(Q‘:)
0"‘ N ~
\\\ } N a '"‘ﬁa\)\ RN
\ N =< ~
v\ o) DN
N 0 <
(o)
Fig. 1. Fig. 2.

Let us define a pair of mappings ¢ : Dom(+,) - 2,
X xS — & as follows:

a(a, b) = &(3(a) [ n(0)) [ n(b),

2(1,¢) = 1(c) whenever 1€ J \ {¢},

Z(&, ©) = &(3(c) T n(0)).
Itis obvious that the mappings g, ¥ are single-valued and that (o, X) is an isomorphism
of the halfnet A(S, &, ) onto the halfnet (2, .%, (£)).cs, ). The dependence of
a partial 3-loop on the O, ,-centered halfnet # = (2, %, (ZL),es, D) Will be written
as L(A#,0,¢ n)and L(Z, Z, (L ),cs> 1), 0, &, 1), respectively. The proofis complete.

Note. 1. If S = (5,0, (0,),e3, (+.)e3) IS @ partial 3-loop, w, w,, o}, 0y ¢ J;
o; ¥ w,, 0 ¥ wy, then the halfnets A (S, 0, w,), A(S, w}, w}) are clearly
isomorphic. Therefore we will write A4(S) in place of #(S, w;, »,) whenever this
does not lead to any confusion.
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2. It is easily verified that the halfnets A/ (L((2, Z, (L ).cs> D, 0, &, 1), &, 1) and
((‘@’ y’ ("g;);els I): 09 é’ }1) are iSOmOrphiC.

Definition 2.8. Let S = (S, 0, (0,).eq5 (+,)c3) and 8" = (S, 0", (0 egr (+1),c9)
be partial 3-loops. By a homomorphism of the partial 3-loop S into the partial 3-loop S’
we mean a mapping 7 : S —» S’ with the following conditions:

(1) o™ = o,

(2) (a™, b)e Dom(+,) = (&™), b") e Dom(+}) and (a™ +;b)" = (@™ +!b".

Definition 2.9. We say that the partial J-loop S = (S, 0,(0),c5, (+,)icy) is
embedded into the partial 3-loop 8" = (§', 0', (6)),c5, (+)),ep) if S8, 0 =0,
0; =0,/S, +, = +,/SxS and idg is a homomorphism of S into S'.

Note. It is easy to verify:

a) If S is a proper partial 3-loop embedded in S’, then A7(S) is a proper subhalfnet
of the halfnet A(S").

b) If (#, 0, & 1) is a proper subhalfnet of the halfnet (#', 0, &, n), then
L(#,0, &, n) is a proper embedded partial 3-loop in the partial 3-loop L(:#",0, €, ).

With respect to the above note it follows from theorem 2.7:

Corollary 2.10. Let & = (2, £, (£)),es, 1) be a net. Then L(A, &, ) is a 3-loop
forany &, ne S; ¢ + 1.

Theorem 2.11. Let = be a homomorphism of the partial J-loop S = (S, o, @)ieq»
(+.ey) into the partial J-loop ' = (8, 0', ()5 (+icg)s @15 @2 ¢ T; 0y F 5.
Let two mappings ¢ : Dom(+idg) » Dom(+'idg), @ : (3 U {w;, w,}) xS —
- (3 U {w;, ®,}) xS be given as follows:

(.a! b)‘p = (an’ bn)’ (19 c)‘p = (l’ cn)

Then the pair of mappings (¢, ®) is a homomorphism of the halfnet A7(S) into the
halfnet #°(S").

Proof. Let (a, b) be a point in A(S), i.e. (a”, b) Dom(+,) 1€ 3. Then there
exists a z e S such that z = @™ +, b for a1 € 3. Clearly, @, b* € S’ and hence (by (2)
of definition 2.8.) (@™ +,b" = (a°* +,b)" = z" e S'. Thus ((a®)°, b™) € Dom(+}),
and from here (&", b™) is a point in 4"(S") and the mapping ¢ is a single-valued mapp-
ing of the points from A47(S) into the set of points of A°(S"). Let 0 := (o, 0). Then
0% = (0, 0)* = (0", 0™) = (0, 0') =:0". We have then for the points (a, ), (@ 2)
ontheline (¢, @) : (a, y)* = (a", ¥, (a, 2)? = (a”, z") which leads to (a, y)? I'(¢, a") =
= (¢, a)® and also to (a,2)¢ I'(¢, d") = (¢, @)®. Similarly: (x, b), (v, b) I(n, b) and
(x, b)? = (x5, b™), (3, b)® = (", b"), hence (x, b)*, (», b)” I'(n, b)®. Let us now consider
the points (x, »), (x”* +, », 0) on the same i-line in A"(S). Then the points (x, ¥ =
= (x", "), (X" +,;9,0) = (™ +,»)%0)) = (x")" +,)",0) are on the same
t-line in A(S").
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Theorem 2.12. Let S = (S, 0, (6,)ic3 (T )iex): S = (8, 0/, (0)),eg> (+1iey) be
two partial J-loops and let &, n¢3J; & + 1 and oy = idg, 05 = idg, 3€3J. Let
besides (¢, ®) be a homomorphism of the halfnet A(S) into the halfnet A7(S) such
that (0, 0)? = (o', 0'), (&, 0)® = (&, 0'), (n, 0)® = (n, 0') and {(}, ¢)® | ceS} =
= {(9,¢")| ¢’ €S'}. Then there exists a homomorphism n of the partial J-loop S
into the partial J-loop S’ such that (x, »)* = (x", »™) and (i, ¢)® = (1, ¢ for all
x,y,ceSandallieJ v {¢ n}

Proof. Let us define the mapping n : S — S’ as follows: (x, 0)* = (x", 0").

Now (o, x), (0, 0) are on (&, 0) in A(S) and thus (o0, x)*, (0, 0)* are on (&, 0)® =
= (¢, 0) in A(S"). Consequently (o, x)? = (o', z) for some zeS’. Furthermore
(x, 0), (0, x) are on (3, ¢) for some ¢ € S. Hence (x, 0)? = (x", 0') and (o, x)* = (0/, 2)
are on the same 9-line in A(S'). Therefore (x™)°® +40 = o' +4z or z = x" and
from here (o, x)? = (0’, x™). Finally, (x, y)* = (x", y™), because (x, y)? = (w, z) and
(x, 0)? = (x", 0) are on the same &-line in A°(S"). Thus w = x", and the points
(x, »)? = (w, 2) and (o, »)® = (0', y,) are on the same y-line in A°(S"). Consequently
z=y"

Let us now consider (x, y), (x” +,y,0)1(1,¢) ce€S. Then the points (x, y)* =
= (x", ") and (x* +,¥,0)? = ((x™* +,)»)", 0') are on the same i-line in A(S").
Hence (x™ 4, »)" = (x™)°" 4", i.e. 7 is a homomorphism of the partial J-loop S
into the partial 3-loop S'.

Definition 2.13. Let S = (S, 0, (0,),c3, (+,).ey) be a partial J-loop embedded
in the partial 3-loop 8" = (8, 0', (0)),eq, (+1).c3)- We say that the partial 3-loop S
is closed in the partial 3-loop S’ if the following statements hold:

(i) If two of the elements x, y, ze S’ belong to S and x* +/y = z holds in S’
for some 1 € 3. Then the third element is in S as well.

(i) If @,beS and there are v, we S’ such that v°* +.w =a A v’ +.w=2b,
o, f€3; o+ f, thenv, we S as well.

Obviously, any J-loop S embedded in the partial 3-loop S’ is closed in S’

Definition 2.14. Let S = (S, 0, (0,),c3- (+,)ie3) be a partial J-loop embedded
in the partial 3-loop S’ = (S, 0, (6,3, (+1)eg)-

A. We say that the partial J-loop S’ is generated by the partial 3-loop S if S’
is the only partial 3-loop containing S and is closed in S'.

B. We say that the partial 3-loop S’ is free over the partial J-loop S if every homo-
morphism of S into some partial 3-loop K is extendable to a homomorphism of S’
into K.

~

C. We say that the partial 3-loop S’ is freely generated by S, if S’ is free over its
generating embedded partial J-loop S.
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Proposition 2.15. The partial J-loop S = (S, 0, (6,).e5> (+)icq) is closed in the
partial S-loop S’ = (S, 0, (6)),cq> (+1).ey) if and only if the halfnet #(S, ¢, 1) =
= (P, %L, (%)cy, D is closed in the halfnet A(S', ¢, n) = (P, L (L )es: )

Proof. I. Let the partial 3-loop S be closed in the partial J-loop S'.

1. Let (a,b)e 2. Then a,be S and let (o, ¢c) e &', whereby (a, b) I'(, ¢). Then
ceS and a° +.b=cin S Since a,be S and S is closed in §’, then necessarily
ceSand (a,c)eZ.

2. a) Let (v,a), B,0)e? o,feT; a+ f. Then a,beS. Let (v, w):=
t= (o, a) [1(B,b) e ?". Then v, weS and o™ +.w = a, v +,w = b. Since
a,be S and S is closed in §', then necessarily v, we S and (v, w) € 2.

b) Let (¢, a), (B,c)e, BeT, £¢3. Then a,ceS. Let (£,a) (B, c)e .
Then there exists b e S’ such that a”* +5b = cand (¢ a) (B, c) = (a,b). Since S
is closed in S', then necessarily b € S, and (a, b) € 2.

c) Let (a,¢), 1, b)e &, 0eJ, ne S \J. Then b, ceS. Let (o, ¢) [ (7, b) e Z'.
Then there exists ae S’ such that ¢° +.b = ¢ in S’ and («, ¢) [ (1, b) = (a, b).
Since S is closed in S’, then necessarily a e S, and (a, b) € 2.

II. Let the halfnet A°(S, &, #) be closed in the halfnet A (S, &, 7).

1. Let ¢, b,ceS and ¢ +!b = c.

a) Let a,beS, ceS'. Then (a,b)e?, (1,c)e&’. Since a’ +!b=c, then
necessarily (a, b)) I'(, ¢) in A#°(S") and because A(S) is closed in A(S’), we obtain
(1,c)e&. Thus ceS.

b) Let a,ce S, beS'. Then (&, a), (1, c) e &, (a, b) e #' and (a, b) I'(1, ¢) because
a” +!b = c. Hence (a,b) = (&, @) [ (1, ¢). Since A(S) is closed in A(S'), then
necessarily (a, b) € 2, and b e S.

¢) Let b,ceS, aeS'. Then (4, b),(1,c)eZ, (a,b)e " and (a, b)'(, ¢). Then
(a, b) = (n, b) [ (1, ¢). Since A(S) is closed in A°(S'), we have (a,b) € ?, and a€S.

2. Let a,beS, v,weS and v +.w=a, ™ +sw=2>0. Then (v,w) =
= (a, @) [1 (B, b). Since a, b €S, then necessarily (a, a), (8, b) € &, and since A(S)
is closed in A7(S"), we have (v, w) e 2, and v, weS.

Proposition 2.16. The partial J-loop S' = (S, 0, (6)),c3, (+1).e3) is generated
by its embedded partial 3-loop S = (S, 0, (d,),e3, (+,),c7) exactly if #7(S") is generat-
ed by A7(S).

Proof. I. Let the partial 3-loop S’ be generated by the partial 3-loop S. Suppose
that there exists a halfnet /# = (2, £, (Z).cs> ) + A(S") such that #(S) =
c M < /(S') and that .# is closed in A°(S"). Then there must exist a partial
J-loop L(#, 0, &, n) # S’ closed in S’ which is impossible.

II. Let A#7(S’) be a halfnet generated by the halfnet A(S). Suppose next that
there exists a partial J-loop K + S’ such that S « K = S’ and being closed in S')
Then the halfnet A4(K) must be closed in A4(S") which is imposible.
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Proposition 2.17. The partial J-loop S’ = (S', 0’ (G).e3 (+).5%) is fr.eely generat-
ed by its embedded partial J-loop S = (S, 0', (3),e3»> (+.)ie3) Precisely if the halfnet
A(S') is freely generated by the halfnet A/(S).

Proof. I. Let A7(S") be freely generated by A7(S). Let = be a homomorphism of
the partial 3-loop S into a J-loop K. Then A7(K) is a net and, by theorem 2.11.,
there exists a homomorphism (¢, ®) of A(S) into A"(K) extendable to a homo-
morphism (, ¥) of A(S') into A (K) (cf. theorem 1.20). By theorem 2.12. there
is a homomorphism g : S" — K where ¢/S = n. Therefore the partial J-loop S’
is freely generated by the partial J-loop S.

IL Let S’ be freely generated by S. Let (¢, @) be a homomorphism of the halfnet
A(S) into a net A = (P, L, (£ )),cs, D). Since A(S) is an 0, ,-centered halfnet for
one of its point 0 and a pair of indices &, neJ; & + 5, then 4 is necessarily
0% ,-centered and L(#, 0%, , n) is a J-loop. By theorem 2.12. there exists a homo-
morphism 7 : S —» L(.#, 0%, £, ) extendable to a homomorphism ¢ : S’ —» L(#, 0°,
&, n). Then, by theorem 2.11., there exists a homomorphism (i, ¥) of the halfnet
(A7(S) into the net .4 where (Y, ¥)/A(S) = (¢, ). Hence A(S") is freely generated
by A7(S) (see theorem 1.21.).

Definition 2.18. Let L = (S, o, (6).e3, (+)icy) be a J-loop freely generated by
its embedded partial 3-loop S’ = (S', 0, (67),eq, (+),c3)- Let next the following
implication hold:

a,beS=((a,b)eDom(+y)<>a=0vb=0). 3)

Then L is called a free 3-loop.

Theorem 2.19. The 3J-loop L = (S, 0, (0,),cy, (+.).c3) is a free J-loop if and
only if /(L) is a free net.

Proof. The 3-loop L is freely generated by its embedded partial J-loop S if and
only if A°(L) s freely generated by its subhalfnet A4°(S) (according to proposition 2.17).
Besides, implication (3) follows from implication (2) of definition 1.27, and vice
versa. These facts and theorem 1.28. prove the validity of theorem 2.19.

Theorem 2.20. Let S = (S, 0,(0,),ey, (+,),e3) be a partial J-loop. Then there

exists exactly one (except for an isomorphism) J-loop L which is freely generated
by S.

Theorem 2.21. Let L = (S, 0,(0,),c3, (+),),e3) be a J-loop. Then there exist
a free J-loop L' = (8, 0, (6),e3, (+1),ey) and a homomorphism 7 of L into L’
such that {x"|xeS'} =

With regard to proposition 2.17. and theorem 2.19. the last two theorems follow
from theorems 1.22. and 1.23. about nets.
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Shrnuti

POLOTKANE A PARCIALNI 3-LUPY
JAROSLAVA JACHANOVA

V &lanku se zobeciiuji nékteré vysledky z [3], tykajici se 3-tkdni a lup pro k-tkané
a jim odpovidajici lupové algebry. Prvni €ast je vénovana problematice polotkani
a jejich rozsifovani. Konstruuje se zde fetézec maximalniho rozsifeni a zavddi se
pojem volné tkdn€ a P, ,-centralni volné tkané.

Ve druhé casti je definovdna parcidlni J-lupa, kterda slouZi ke koordinatisaci
P, ,-centrélnich polotkdni. Tato struktura je jistym zobecnénim J-lup z [5]. Dile se
zde studuje homomorfismus parcialnich J-lup a volnych J-lup v souvislosti s ho-
momorfismem polotkdni a volnych tkani.

Bud # = (2, %)),.s, ) polotkaii. Pak existuje tkan 4", ktera je volné genero-
vdna polotkdni 5. Jestlize A", A"’ jsou dvé& tkdn& voln& generované polotkani J#,
pak jsou isomorfni.

Bud A = (2, %, (L ).cs, ]) tkan. Pak existuje volnd tkai .# a homomorfismus
(¢, @) tkan& # do N takovy, Ze M@ = 4.

A je Py -centrdlni volna tkan pravé tehdy, kdyzZ je to volna tkan.

L = (5,0,(0).e3, (+.)ieg) je volna J-lupa pravé tehdy, kdyz A'(L, &, n) je
volna tkan.

Bud'S = (S, 0, (0,),cy, (+)),c5) parcidlni I-lupa. Potom existuje, aZ na isomorfis-
mus, pravé jedna J-lupa L, kterd je volné generovadna S.

Bud L = (S,0,(0,)cy, (+.)ieg) J-lupa. Pak existuje volnd J-lupa L' =
= (5, 0, (6)),eq> (+1).c3) @ homomorfismus 7 L do L' tak, Ze {x" | xe S’} = S.
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Pesrome

IMOJOCETU N HACTUYHBIE 3-JIVIIbBI

SAPOCJIIABA AXAHOBA

B 3101 pabore 06001Iat0TCs U K-ceTeil (M 1JIst X COOTBETCTBYIOLMK ajirebpau-
YEeCKUX BbIPAXKEHWIL) HEKOTOPBIE Pe3yJIbTaThl 3HAKOMBIE TSI 3-CeTei.

B mepBoii riraBe cOCpeJOTOYHHMTCS BHUMAHME HA HOJOCETH M UX Pa3lUMPEHHUS.
IToxa3pIBaeTcs, UTO KaXaast ceTb roMOMOPDHBIM 06Pa3oM HEKOTOPOM CBOOOIHOH

CeTH.
Bo BTOpOit riaBe BBOAUTCS TMOHATHE YACTHYHOM J-jiynmbl — ajirebGpanyeckoi

CTPYKTYPbI TIPM TIOMOIIM KOTOPOH KOOPIMHATU3UPYETCS TIIOJOCETh CTEMEHU K.
B naneHeiieM 34eCh H3Y4aroTCsl TOMOMOPOU3MBI YACTUYHBIX J-JIYIT M UX CBOWCTBA.
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