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Summary

The object of investigation in this paper is a Markov replacement process with
rewards under a common stationary replacement policy as described in [5]. The
quality of the replacement policy is characterized by the expected mean reward from
the process @(i), i € I, defined in paragraph 2. In Theorem 1 we derive a system of
equations (11) for establishing the mean rewards ©(i) and there is proved the unique-
ness of its solution. A common Howard’s iteration method is constructed (see [1])
for finding the optimal stationary replacement policy under which the maximal
reward is reached. This paper refers to paragraph 10 in [4], which deals with a mean
reward from the controlled Markov chain.

1. Basic definitions and notations

Let a homogeneous Markov process with rewards {X,, r = 0} (see [5]) describing
the evolution of a system in state space / = {1, 2, ..., r} be defined by exit intensities
(u(), ..., u(r), 0 < u(j) £ o0,j =1, ..., rand by a stochastic matrix P = || p(i,j) |} j=1,
p(i, i) = 0, of transition probabilities in the moment of the exit. We constitute

a matrix of the so-called transition intensities M = | u(i,j) I}, =1, where u(i,j) =
= p(i) p(i, j) for i # j, p(i, i) = —p(),
iFi
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The system being in state i at time ¢ passes through the infinitesimal interval (¢, ¢ + dr)
into state j with the probability u(i, j) dt.

Consider a situation, where the development of the process can be influenced by
an action called replacement (see [5]). Under a replacement of type (i, +j) we mean
the instantaneous shift of the system from state i into state j. The information on the
development of the process up to the n-th state change is given by the sequence of
states visited

iOailaian-sin—lai =j: (2)
by the corresponding sojourn times

Lostistay eensty-ts (3)
and by the sequence
00501505, cees Oy, 4)

where 8,, = 0 if the system was left i, without interference and é,, = 1 if the passage
from i, into i,,, was the result of a replacement.
For the history of the process up to the n-th state change we use the notation

@y = [io, 105 005 115 115015 o5 dnmts tumys Op—y3 iy
and the complete history of the process is given by a sequence
o = [ig, 1o, 003 iy, 11, 015 ... ]

A replacement policy (see [5]) is a decision, for all possible sequences (2)—(4) and
all states j, on how long the system will be left in j without shifting (maximal sojourn
time) and in what state it is to be shifted.

We denote by D the set of couples (i, +j) meaning admissible replacements, D; =
= {j: G, +)) e D}.

A stationary replacement policy f is given by a function f(j) defined on a subset
I, c I and taking values in I such that f(j) € D; for je I, f(j) # j. The replacement
policy f is the prescription to realize instantaneously the replacement j — f(j)
whenever the transition in state j occurs. No replacements are made in states j ¢ I,.

For stationary replacement policies we make

Assumption 1.
fGél, for every jel,.

According to the assumption there is assigned to nearly every o the trajectory of the
replacement process {Y,, 7 = 0}, not being left continuous at time of the transition
and not right continuous at time of the replacement.

In what follows we denote by Ef the mathematical expectation in a replacement
process under the stationary replacement policy f and under the condition iy = j,
o(i), i € I, the reward per a time unit in state i, r(i, j), i, j € I, the reward from the
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transition (i, j); we set r(i, i) = 0, v(i,j), i, je I, the reward from the replacement
(i, +j); we set v(i, i) = 0. Let us make besides

Assumption 2.

(G, +j))eD, (j, +k)e D= (i, +k)e D or i = k,
v(i,J) + v(j, k) = v(i, k).

2. The mean reward per a time unit from the common process

Let us have the Markov process under the stationary replacement policy f. Let
the matrix P of transition probabilities under this policy define isolated recurrent
classes I, ..., I, and the transient class I'.

(A case with the state space of the process under the stationary policy f containing
just one recurrent class see in [2].) Let 7;; denote the probability that the first
recurrent state reached with the initial state 7 is the state j, n;; = 1 for iel — I'.

The quality of the policy f is characterized by the mean reward per a time unit
O(i), i € I, defined as follows: we choose in every isolated recurrent class one state
Jiel,i=1,...,m. Let

T = inf{t: Ye=Ji Yy ?éji}

be the time of the first transition into the state j;. We define

oGy = BB o ier
EL(T)
o)=Y mnpOk) for jel,
kel—1'

where Ry is the mean reward from the process up to the time T (see [2]).
Let us denote for jel,,i=1,...,m,
w(j) = Ef(Ry:) — O(j) EJ(T").
For j ¢ I, holds

W) = ﬂ + 500, DTG0 + E(Rr)] ~ @(1)[ ORI Ef(T)]
=20 5 MR Gy L ER - 0G)ELTY] — 2L ()

H(]) k=i BU) 1(j)

Letjel;, i=1,..,m If u(j k) > 0, then also k € I; and thus @(j) = O(k), which
after a modification of (6) gives

e() +’§, 1G> k) [r(s k) + wk) — w()] — ©(G) =0,  jéI,. M
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For jeI,, je I, we have from the first line (6) in using u(j) <

VOGN + W) = w(i) =0, Jely. ®
So we obtain for je I — I’ the following system of equations
v, () + w(f() — w() =0,  Jjely, ©)

o(j) + Y u(, k) [r(j, k) + wk) —w()] — @) =0,  jé¢lI,.
K#j

Solving (9) for every isolated recurrent class I; particularly, then @(j),je I;, is in-
dependent of j and uniquely determined by system (9), w(}j), j € J;, uniquely up to the
additive constant (see [3]). From the definition O(j) for je I’ it follows that O(j)
are uniquely determined by (9) for all j € I. For j e I' (9) may be regarded as a system
of equations for establishing w(j): for jel,

w(j) = v f()) + w(f())

and since f(j) ¢ I, it suffices to confine to states j ¢ [;. From (9) for jel', j¢ I,
follows

W) = 3 pCic Rty = 20— S0

9k ,
O] Z”(” kyr(i )+ Z PGy k) w(k).

If we use the symbol s(j) to denote the right side of the equality, we get the solution
see the derivation in Theorem 3, paragraph 2 in [4])

W(_]) Z Z p(n)(}s k) S(k)s jE ],’jé If'

n=0 kel

Theorem 1
A1), O(2), ..., O(r) are the single possible numbers such that
of(j) —e(G)=0  for jel,, (10)
Y uj, k)Ok) =0 for j¢I,,
k

holds and to which w(l), ..., w(r) are to find so that

VLS + wif () — w(i =0 for j.<E Iy, (11)
e(j) +k;u(j, k) [r(s k) + w(k) = w()] — ©() =0  for j¢ I,.

Proof. We have just proved the existence of the numbers w(l), ..., w(r). From
the definition 7;; and from the definition @(j) for je I’ follows that

o(j) =kz n;0k),  jel (12)
€]
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The quantities n;; satisfy the relations

T = Trgws  JE€Lp,
;ﬂ(ja k)nki"—‘o’ Jé If~

(10) follows from here and from (12).
The uniqueness of the solution @(1), ..., ©(r) was shown in the foregoing con-
siderations on system (9).

Now we describe the Howard’s iteration procedure for determining the maximal
reward and the optimal stationary replacement policy. Let us M, = || u,(j, k) ||},x=1
denote the matrix of the transition intensities of the process under the stationary
policy f,, where p,(j, k) = u(j, k) for j¢ I, .

Choosing an arbitrary stationary replacement policy f, we successively determine the
stationary replacement policy £, on the basis f, for n = 0, 1, 2, ... as follows:
1. We determine the solution O,(1), ..., @,(r) and w,(1), ..., w,(r) from equations

VUL + wal £ (D) — wa(j) = 0, jely, (13)
(i) +k;u(j, k)Y [rGs k) + w(k) = wi(D] — ©,() =0, jé¢l;

0, = 0,) =0, jel,, (14)
X i 0 €, =0, j# 1y, ’

If here n # 0, we choose one state k in every isolated recurrent class Iy,, ..., I
with respect to the matrix M,, for which we put w,(k) = w,_,(k). We proceed in
such way that we first solve (13) for every isolated recurrent class with @,(j) being
an unknown independent of j. Inserting the above values in (14) we obtain the
system of equations for @,(j), j € I,. Finally inserting all calculed variables in (13),
we obtain the system of equations for w,(j), jeI,.

2. We determine f, ., as follows:

We seek step by step for all je 7

(A) | max {0,(k) — 0,(j), ke D;; ; v, k) ©,(k)}.

If t he maximum for a given j € I is reached by a single expression in the compound
racket, we proceed as follows

a) if the maximum is reached by the expression @,(i) — 0,(j), then jeI, , ,
Jorr() =15
b) if the maximum is reached by means of ) u(j, k) @,(k), then j¢ I, , .
k

he maximum in (A) for a given j € I is reached by more than only one expression,
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we use an auxiliary criterion to determine the policy Sfa+1: we search for
(B) max {v(j, k) + w,(k) — w,(j), keD;;
e() + Y uj, k) [r(j, k) + wy(k) — wi(D] — ©.(D}-
k%

If the maximum assumes the expression
e() + X u(js kY [rGiy k) + wi(k) = wi(D)] — ©,()),
k#j

we prefer then not to perform any replacements, i.€. j¢ I, . Otherwise, if the
maximum in (B) is obtained by the expression

V(j, l) + W”(l') - Wn(j)’

we choose je I ,,,f,+1(j) = i. Hereby preference is given to Sur1(D) = £,()), if this
choice is in agreement with the criterion (B).

3. If such a policy f, ., does not posses Assumption 1, we change it to the policy
fasy as follows: in states jel, ., where f,.,(j)el,,, we take
Sae1(D) = fus1(fr+1(j); in others je I, we have Sae1() = for10)-

We now demonstrate the correctness of the procedure in 3. Let us suppose f,(j) ¢
¢1,..jel,,, and the policy f,,, to be constructed as described above. Further let

]'Elf..ﬂ’ f;|+1(j)=i61f,,+la Sor1) =1,

which according to criterion (A), with respect to (14) and to the construction of the
replacement policy f, . ; implies that

0,(i) — 6,(j) 2 0, 0,(i) — 0,(i) 20,
therefrom
: 0,(i") — 0,(j) 2 0,() — 0,)).

There must hold the equality in the last relation (because je /I, ) i.e.
0,(i") — 0,i) =0,

consequently, there was either i’ = f,(i) or there was also used the criterion (B) for
the state 7.
In either case

v(i, i) + w,(i") — w,(i) = 0.

Therefrom v(j, i) + w,(0) — w,(j) = v(j, i) + v(i, i') + w,(i") — w(HNZ v(j, i) +
+ w,(i") — w,(j). Again, we see that the equality must hold here (in applying crite-
rion (B) in the state j).

We are thus led to the conclusion that i’ is equivalent to i for the state j by the
criterions (A), (B). Moreover

0,i) — 0,() = 0, (15)
Vv(i, i) + w,(i") — w,(i) = 0. (16)
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We can argue by contradiction that also
iel,, i =fl.
Hence, there cannot occur the situation
f;.+1(]) =1, fn+1(i) =i, f;:+1(i’) =1
since otherwise there would be also
L) =1, £0) =1,

which contradicts the assumption of the replacement policy f,. Thus it suffices to
change the constructed policy as described in 3. So, we have described the iteration
procedure for the construction of f,, n =0, 1,2, ...

If for any n

@n(]) = @n+-1(j)7 Wn(.]) = wn+1(j)’ jEIa (17)
we stop the iteration procedure. Then f, is the optimal stationary replacement
policy, i.e.

0,(j) = max {O(j): f stationary replacement policy}, jel (18)
We now verify, that (17) must truly hold.

Let us denote 0, . () — 0,()) = O6(j), je I. Again we assume the matrix M, =
= || s+ 1(J, k) |I,4=1 of the transition intensities under the policy f,;, to define
the isolated recurrent classes /,, ..., I,, and the transient class I'.

First, we prove that ©,(j), n = 0, 1, 2, ... constitute a not decreasing succession.
By (14) and by the construction of f, . there is

@n(ﬁl+l(]))_'@n(])_d,=0, jeIan,
Zu'rﬁ-l(j’ k)@n(k)_dj =0’ j¢1f"+|7 (19)
k

where d; 2 0, je L
Subtracting (19) from the corresponding equations in (10), Theorem 1, for f, .,

we obtain _ B
O(fori()) — () +d; =0, jel,  ,d;=
d;

0,
;unﬂ(j, k)O(k) +d;=0,  jé¢I,  ,d;20. (20)
Let My, = || 2os 1 ) |5 k=1 denote the (quasistochastic) matrix of the system

in (20) with respect to the variables @(1), ..., O(r) and x’ = (x{, ..., Xx,) the stationary
distribution, which is the solution of the system

XM, =0.

On multiplying the s-th equation in (20) by the number x,, s = 1, ..., r, and on adding
all equations we obtain

Z djx; = 0.
j=1
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Since x; = 0 for je I’, x; # 0 for je I — I’, this means with respect to d; = 0 that
d; =0 for jel —TI'.

For jel —1I' is thus the main criterion (A) maximized by the expression

¥ u(j, k) ©,(k) = 0 or by the expression @,(f,+,(j)) — @,(j) = 0, if the maximal

k

value is one and only one, or the auxiliary criterion (B) was applied.
In either case we may write for je I — I' with respect to (13)

V(s fax1(D) + Wil 1()) — wa(j) — e; = 0, J€E If,,,, (20
e() + 2 Hss (G ) [r(G, ) + wo(k) — wi(D] — ©() — ¢, =0,  j¢I,,,,
k#j
where e; = 0.
Subtracting for j mentioned (21) from the corresponding equations in (11) for f, .,
we obtain for je I — I’ with the notation w'(j) = w,4(j) — wu(j)
wW(furi() = w() +e; =0, jel, ., (22)
Y tnir(Gs ) [WK) = w(D] = OG) +¢,=0,  j¢l,,
k#j

where e; = 0. :
0(j) is expressed in (22) and (20) for je I — I’ as a mean reward. Since e; Z 0,
we have from Theorem 1 (in choosing v(J, f,.(j)) = e; for jel, . ; 7(j k) =0,

o) = e;forj¢ 1, )
6(j)=0, jel-T.

For je I' we obtain from (20)
- zlﬁw 1(j’ k) @_(k) = dj + Zl ﬁn‘f‘ 1(j»> k) é(k), (23)
kel kel-I'

where for the elements u, . ,(j, k) of the matrix M, ,

/7“-1(]., k)=z0 for j # k; ﬁn+1(jaj) = —1 for je I,
ﬁn+l(jaj) = —/'L(.]) fOI' j¢1f,,+1a 0 < H(]) < 0o.

Let d'(j) denote the right side of (23), which according to the foregoing always
a non-negative expression is; then

—EHGD@ﬂ—EidL@@@=%§Q
kel

k#j
whence
0) = ¥ payi(j ) O = d; 20, jel,
where
d] =d; for je d] = 4 for j¢lI
J J Sa+1? ﬂ(]) Snty
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On successive substituting we come to
N
0() = L (X Pl b d) + ¥ pli V6. b OGk). el
m= el kel’

Because of k € I' the serie Y. pt",(j, k) converges for j € I (see [4], page 8) and thus
m=0
passing to the limit for N —» o
o)=Y Y. kdiz0. jel
m=0 kel’

Thus we have proved that
@_(]) = @n+1(j) - @n(.]) g 0’ ie. @n(.]) é @n+1(j)’ jE L

We conclude from the finiteness of the set of the stationary replacement policies
that there exists a ¢ such that

@n—\"l(j) = @n(]) fOr jGI, nh=4gq, q + la (24)

If (24) holds, then from (23) d; = 0 for je I’ and by an analogous consideration as
above it can be proved, that the system (22) for je I’ holds as well.
Under the validity of (24) i.e. from (22) with some modification

w() =€) + Y pasiG )W),  jel, (25)
X
e(j)=e;, forjel, ,  , e(j)= ii—)— for j¢ I, ,,.

Analogous to the proof of d; = 0 for jeI — I’ in (20) we can verify that (25)
yields
e(j)=0 for jel —1T.
Then
w'(j) =kZ, Pari(s )W(K),  jel.i=1,..,m,

hence w'(j) = constant for je I,. Since in every isolated recurrent class there exists
one state k for which w,, (k) = w,(k) was chosen, it turns out that

w(j) = Woi (j) — wii) =0, jel—-1T. (26)
From (25) and (26) we can write for je I’
w(j) = e'(j) + ZI Pa+10J, k) W'(K)
kel’

and proceeding similarly as in deriving @(j) =0, jeI', we come to the conclusion
that w'(j) = 0, jeI', that is for all jeI,n = g, g + 1, ...

w(j) = n+1(j) — w,() 20,
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hence
wa(j) S woi(), JelLm=gq,q+ 1, .. (27

Let us remark that the equality in (27) holds for all j whenever the stationary policies
f. and f,,, are equal to each other. A finite number of the stationary replacement
policies leads to a conclusion that n = ¢ can be found so that (17) holds.

We have now to prove that in stopping the common iteration procedure we obtain
the optimal stationary policy. We apply a similar consideration to that used in
proving that ©,(j), n = 0, 1, 2, ... form a non-decreasing succession.

Let (17) hold, we want to prove (18). Let f be an arbitrary stationary policy, M =
= || u(i,j) ||, ;=1 the matrix of transition intensities determined by the policy f,
I,, ..., I, the recurrent classes with respect to the matrix M, and I’ the transient class.

By (17) and by the construction of f,,, the maximum in (A) is reached either
by the expression

0,(fo+1() = 0.()) = Ops1(fos:1())) — Op11(j) = 0, Jelg .,

or by the expression
Zﬂ(]a k)@n(k): Z[I(j, k)@n+l(k)=0’ j¢Ifn+1’
3 K

fromwhere for je I

O,k) — 0,(j) + dy =0, where keD;,dy =z 0,
; (i, k) ©,(k) + d; = 0, where d; 2 0. (28)

Subtracting (10) from (28) for k = f(j) we come to

o,(f(j)) — eU()) + 0()) — 0,(j) + djis;y =0, Jely,
Y u(j, K [Ok) = Ok)] +d; =0,  j¢l (29)
k

Let us introduce for simplification ©,(k) — @(k) = O(k), d;z;, = d;, je I;. Then
(29) has the form B B
of(j) — () +d; =0, jelg,

Y u(j, k)Ok) +d; =0, jl. (30)

a) In the same manner as we have deduced from (20) that d; = 0 for je 7 — I
we obtain from (30)
d=0 for jel — T
We can see from (28) that the criterion (A) reaches its maximum for je I — I’ either
by the expression @,(f(j)) — ©,(j) = 0 or by the expression Y. u(j, k) ©,(k) = 0.
k

It means for je I — I'.
1. if the maximum was reached by only one expression, it waseither j ¢ I, and at the
same time j¢ I, or jel, and at the same time je I, , , f(j) = f,+.(});
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2. or the policy f,+, was obtained in the states je I — I’ by the maximalization
of the criterion (B).
Thus it holds for jeI — I’

v(j, k) + wyk) — w,(j) + e, =0, keDj,e; =0, (€3]
o(j) + X #G, B [r(, k) + wy(k) = wo()] — ©,(j) + ¢; =0,  ¢;20.
k#j
Subtracting from (31) the corresponding equations from (11) (in the first row we
choose k = f(j) € D;), we obtain with the notation
wa(k) — wk) = w'(k), ey = € jel,,
0,(k) — 6(k) = Ok),
the following equations
W) —w() +e =0 jel;, ¢ 20, (32
2GR W () = w()] - O() + ¢, =0, j¢ e 20
J

(30) and (32) analogously to (20) and (22) yield

o()z0 forjel—1,
that is
0,)) z 6(j), jel-1T.

b) For jel' we get from (30)
—L G k) Ok) =d; + 3 (), k) O(K),
€ kel-I'

where M = || u(j, k) 1%, =1 18 the matrix of the system in (30). From this we deduce
in the same manner as from (23)

6(j)z0, jel,

6.() z 0()), Jjel

The proof of relation (18) is thus complete.
Finally I should like to express my gratitude to dr. P. Mandl, DrSc., for providing me
with valuable expert advice and helpful criticism in writing this article.
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Souhrn

PRUMERNY VYNOS Z OBECNEHO MARKOVOVA PROCESU
S OBNOVAMI

PAVLA KUNDEROVA

Uvazuje se Markoviv proces s obnovami popsany v [5] s obecnou stacionarni strategii obnovy.
Za charakteristiku kvality strategie se povazuje oekavany primérny vynos na jednotku &asu O(i),
i€ I, definovany v odstavci 2. Ve vété 1 je odvozena soustava rovnic (11) pro vypocet vynosit O(i)
a ukdzana jednoznac¢nost jejiho feSeni. Je zkonstruovan obecny Howarduv iteraéni postup (viz [1])
k nachazeni optimalni stacion4rni strategie, pfi ni% se dosahuje optimélniho vynosu. Clanek navazuje
na par. 10 prace [4], ktery se zabyvd primérnym vynosem z fizeného Markovova fetézce.

Pestome

CPEIHNN JO0XOJ U3 OBIMETO NPOILECCA MAPKOBA
C BOCCTAHOBJIEHNAMU

IIABJIA KYHIEPOBA

B pa6ore paccmotpen mpouecc MapkoBa ¢ BOCCTAHOBJCHUAMH (onpesenéHubil B [5]) mpu uc-
NOJIb30BaHAM 06LIeR CTAHOHAPHOM CTPATETHH BOCCTAHOBIECHHA. Xapax TEPUCTHKOR XavecTa cTpa-
TErHH SBJIAETCS OXHIAEMBbL CPEIHUM HOXOA Ha eNUHNLY BpeMerH O(i), i € I, oupenenéHHbii B nap. 2.
B Teopeme 1 BBenena cucrema ypasnesuit (11) mis moxomos O(i) 1 noka3zaHa €QUECTBEHHOCTS pe-
mennst 3ToA cucremsl. OmMHUCaH UTEPALMOHHBIN MeTOA XOBapAa Vit HAXOXIEHHS ONTHMAIBHOR
CTAlMOHAaPHOR CTPATErMH IIPH KOTOPOM IOCTUTaETC MAKCHMAILHOTO fKoxoxa. CTaThsl OTHOCATCS
k map. 10 pa6oTsr [4], koTOpas 3aHUMAETCs CPETHHM HOXOHNOM M3 yripapisiemoit uenn Mapxosa.
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