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Summaгy 

The object of investigation in this paper is a Markov replacement process with 

rewards under a common stationary replacement policy as described in [5]. The 

quality of the replacement policy is characterized by the expected mean reward from 

the process <9(i), i e I, defined in paragraph 2. In Theorem 1 we derive a system of 

equations (11) for establishing the mean rewards <9(i) and there is proved the unique­

ness of its solution. A common Howard's iteration method is constructed (see [ l ] ) 

for finding the optimal stationary replacement policy under which the maximal 

reward is reached. This paper refers to paragraph 10 in [4], which deals with a mean 

reward from the controlled Markov chain. 

1. Basic definitions and notations 

Let a homogeneous Markov process with rewards {Xt, t ^ 0} (see [5]) describing 

the evolution of a system in state space I = {1, 2, ..., r} be defined by exit intensities 

0/(1), • • •, tir)), 0 < rij) = °°>J = 1, • • • - r and by a stochastic matrix P = || p(ij) \\r

iJ=tt, 

p(i, i) = 0, of transition probabilities in the moment of the exit. We constitute 

a matrix of the so-called transition intensities M = || pi(ij) Vij**i> where ii(ij) = 

= n(i)p(ij) for i # j , fi(i, i) = -^(i), 

-tiUO-I.IKL]). 0) 
j*i 
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The system being in state i at time t passes through the infinitesimal interval (t91 + dt) 
into state j with the probability fi(ij) dt. 

Consider a situation, where the development of the process can be influenced by 
an action called replacement (see [5]). Under a replacement of type (/, +j) we mean 
the instantaneous shift of the system from state / into state/ The information on the 
development of the process up to the n-th state change is given by the sequence of 
states visited 

hJlJz* ••-Jn-\Jn = f (2) 

by the corresponding sojourn times 

t09tl9t29...9tn.l9 (3) 
and by the sequence 

<50, 5l9 S29 ..., Sn_l9 (4) 

where Sm = 0 if the system was left im without interference and Sm = 1 if the passage 
from im into im+1 was the result of a replacement. 

For the history of the process up to the n-th state change we use the notation 

Wn = L"0> ^0 » " 0 J" h •> h •> ^ 1 '•> ••• '•> l n - l 9 t n - l •> ^ n - l > V j > 

and the complete history of the process is given by a sequence 

w = [*o> f09 <̂ o; *i> tl9S1; . . . ] . 

A replacement policy (see [5]) is a decision, for all possible sequences (2) —(4) and 
all states j9 on how long the system will be left inf without shifting (maximal sojourn 
time) and in what state it is to be shifted. 

We denote by D the set of couples (/, +j) meaning admissible replacements, D{ = 
= {j.(i,+j)eD}. 

A stationary replacement policy f is given by a function f(j) defined on a subset 
If c: I and taking values in I such thatf(j) e Dj for j e If9f(j) T- j . The replacement 
policy f is the prescription to realize instantaneously the replacement j -+f(j) 
whenever the transition in state j occurs. No replacements are made in states j$If. 

For stationary replacement policies we make 

Assumption 1. 
f(j)$h for every je/y. 

According to the assumption there is assigned to nearly every co the trajectory of the 
replacement process {Yt91 — 0}, not being left continuous at time of the transition 
and not right continuous at time of the replacement. 

In what follows we denote by Efj the mathematical expectation in a replacement 
process under the stationary replacement policy f and under the condition i0 == j9 

q(i)9 iel9 the reward per a time unit in state /, r(i9j)9 i9jel9 the reward from the 
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transition (ij); we set r(i,i) = 0, v(i,j), ijel, the reward from the replacement 
(U +j)l we set v(i, i) = 0. Let us make besides 

Assumption 2. 

(i, +j) e D, (j, +k) eD=> (i, +k) e D or i = k, 

v(i,j) + v(j,k)^v(i,k). 

2. The mean reward per a time unit from the common process 

Let us have the Markov process under the stationary replacement policy f Let 
the matrix P of transition probabilities under this policy define isolated recurrent 
classes Ix, ..., Im and the transient class I'. 

(A case with the state space of the process under the stationary policy f containing 
just one recurrent class see in [2].) Let nu denote the probability that the first 
recurrent state reached with the initial state i is the state j , nu = 1 for / e I — I'. 

The quality of the policy f is characterized by the mean reward per a time unit 
0(i), iel, defined as follows: we choose in every isolated recurrent class one state 

jte It, i = 1, . . . , m. Let 
r = inf{/:Y , = / , , ¥,-¥>&} 

be the time of the first transition into the state j i . We define 

0O) = i i f e (ot j el,, 
EJ,(T) 

o0)= I njk0(k) for j el', 
kel-F 

where RT is the mean reward from the process up to the time T (see [2]). 
Let us denote for j e Ii9 i = 1, ..., m, 

W(j) = Ej(Rll)-0(j)EJ(Ti). 

Forj£If holds 

»0) - ^ | + I ,0, *) W.« + £'<Rn)] - e(l)\-^ + ZPU,k)E{(T')\-

- %+l Hr w-k) + «"w - 90)£'(r'« - f r (6) 

Let / e Ii9 i = 1, ... , w. If /i(f k) > 0, then also k e Jf and thus <9(j) = 0(k), which 
after a modification of (6) gives 

<?0) + I .-0. fe) [K/, *) + w(fc) - w(/)] - &(j) = o, j ^ it. (i) 
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For j e If, je Iiy we have from the first line (6) in using \i(j) ^ oo 

v(hf(j)) + w(f(j)) - w(j) = 0, jelf. (8) 

So we obtain for j e I — V the following system of equations 

v(ff(1)) + vv(f(I)) - w(j) = 0, 161/5 (9) 

Q(j) + E tih k) [r(j, k) + w(k) - w(jj] - 0(j) = 0, j t If 
k±j 

Solving (9) for every isolated recurrent class It particularly, then 0 ( j ) 5 j e / h is in­
dependent off and uniquely determined by system (9), w(j),j e It, uniquely up to the 
additive constant (see [3]). From the definition 0(j) for j e / ' it follows that 0(j) 
are uniquely determined by (9) for all J e I. Forj e V (9) may be regarded as a system 
of equations for establishing w(j): for j e If 

w(j) = v(j,f(j)) + w(f(j)) 

and since f(j) i If, it suffices to confine to states j$If. From (9) for jeV, j$If 

follows 

w<J)-YJp(j,k)w(k) = ^ - - - ^ - + ZPiJ,k)r(j,k)+ X P(j,k)w(k). 
kel' ll\J) l*\j) kel kel-I' 

If we use the symbol s(j) to denote the right side of the equality, we get the solution 
see the derivation in Theorem 3, paragraph 2 in [4]) 

OO 

w O ) = I TJP
(n\j,k)s(k), jel'Jil,. 

n = 0 kel' 

Theorem 1 

0(1), 0(2), ..., 0(r) are the single possible numbers such that 

0(f(j)) - 0(j) = 0 for jelf, (10) 

5>(/>fc)®(fc) = 0 for j$If, 
k 

holds and to which w(l), ..., vt!(r) arc to find so that 

v(hf(j)) + w(f(j)) - w(j) = 0 fOr f e If, (11) 

Q(J) + I A-0, fc) [r(j, k) 4- w(k) - w(j)] - 0(j) = 0 for j$If. 

Proof. We have just proved the existence of the numbers w(l), ..., w(r). From 
the definition nu and from the definition 0(j) forjeT follows that 

®U) = l,7tjk€>(k), jel. (12) 
kel 
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The quantities n^ satisfy the relations 

71jk ~ nfU)k> J^Ify 

%tij>k)nki = 0, j$If. 
k 

(10) follows from here and from (12). 
The uniqueness of the solution 0(1), ..., 0(r) was shown in the foregoing con­

siderations on system (9). 

Now we describe the Howard's iteration procedure for determining the maximal 
reward and the optimal stationary replacement policy. Let us Mn == || pin(j, k) ||ytk=1 

denote the matrix of the transition intensities of the process under the stationary 
policy fn, where fin(j, k) = fi(j, k) for j <£ Ifn. 

Choosing an arbitrary stationary replacement policy f0 we successively determine the 
stationary replacement policy fn+l on the basis f, for n = 0, 1, 2, ... as follows: 

1. We determine the solution 0n(\), ..., 0n(r) and wn(\), ..., wn(r) from equations 

v(j\fn(j)) + wn(fn(i)) ~ wn(j) = 0, je Ifn, (13) 

Q(J) + E tih k) {r(j, k) + wn(k) ~ wn(j)-] - 0n(j) = 0, j$ Ifn; 

On(fn(j)) - 0n(j) = 0, jelfn, (14) 

YJtiJ,k)0n(k) = O, jtlfn. 
k 

If here n # 0, we choose one state k in every isolated recurrent class I1n, ..., Imn 
with respect to the matrix Mn, for which we put wn(k) — w^^k). We proceed in 
such way that we first solve (13) for every isolated recurrent class with 0n(j) being 
an unknown independent of j . Inserting the above values in (14) we obtain the 
system of equations for 0n(j), je Vn. Finally inserting all calculed variables in (13), 
we obtain the system of equations for wn(j), j e In. 

2. We determine fn+i as follows: 
We seek step by step for all j e J 

(A) max {0n(k) - 0n(j), keDy,^ tih k) 0n(k)}. 
k 

If t he maximum for a given y e I is reached by a single expression in the compound 
racket, we proceed as follows 

a) if the maximum is reached by the expression 0n(i) — ®h(j), then j 6 1/ri+l, 

/n + iO) = ':; 
b) if the maximum is reached by means of £ fi(j, k) 0n(k), then j $ Ifn + l. 

k 

h e maximum in (A) for a given j 6 I is reached by more than only one expression, 

43 



we use an auxiliary criterion to determine the policy fn+i: w e search for 

(B) max {v(j, k) + w„(k) - wn(j), keDjl 

Qti) + S tih k) [r(j, k) + wn(k) - wn(m - On(j)}. 
k±j 

If the maximum assumes the expression 

Qti) + I Kh k) \_r(j, k) + wn(k) - wn(j)l - On(j), 
k±j 

we prefer then not to perform any replacements, i.e. j$Ifn+i. Otherwise, if the 
maximum in (B) is obtained by the expression 

v(j, 0 + wB(0 ~ wn(j), 

we choose j e Ifn+i,fn + l(j) = i. Hereby preference is given to f . + 10') = fn(j), if this 
choice is in agreement with the criterion (B). 

3. If such a policy fn + 1 does not posses Assumption 1, we change it to the policy 
f n ' + 1 as follows: in states je//n+1, where fn +,(j) e Ifn + . we take 

fn+iti) = f ,+ i ( /+ iO) ) ; in othersfeI / M + 1 we havef„ + 1(j) = f n + i (I) . 
We now demonstrate the correctness of the procedure in 3. Let us suppose fn(j) $ 

<£ Ifn, je Ifn, and the policy f n + 1 to be constructed as described above. Further let 

Ie//n+t> fn+lU) = * e / / „ + i> fn+M = i'> 

which according to criterion (A), with respect to (14) and to the construction of the 
replacement policy fn + 1 implies that 

e,(0 - 0.0") ^ o, &n(?) - en(i) ^ o, 
therefrom 

@n(0 - eH(j) ^ ©»(0 - su(j). 

There must hold the equality in the last relation (because j e I/n + 1) i.e. 

en(V) - en(i) = o, 

consequently, there was either i" = fn(i) or there was also used the criterion (B) for 
the state i. 

In either case 
v& O + wn(i') - wn(i) ^ 0. 

Therefrom v(/, i) + w„(i) - wn(j) ^ v(j, i) + v(i, V) + %(/') - wn(j)S v(j, i") + 
+ wn(t") - w„(j). Again, we see that the equality must hold here (in applying crite­
rion (B) in the state j ) . 

We are thus led to the conclusion that f is equivalent to i for the state j by the 
criterions (A), (B). Moreover 

@n(i') ~~ ©n(i) = 0, (15) 

vft V) + wn(i') - Wn(i) -= 0. (16) 
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We can argue by contradiction that also 

ielfn, i'=fn(0-

Hence, there cannot occur the situation 

fn+\(j)=h f„+l(0 = *', fn+l(i') = i"> 

since otherwise there would be also 

fn(0 = i\ fn(0 = i\ 

which contradicts the assumption of the replacement policy fn. Thus it suffices to 
change the constructed policy as described in 3. So, we have described the iteration 
procedure for the construction off,, n = 0, 1, 2, ... 

If for any n 
®n(j) = en+ {(j), wn(j) = wn + l(j), j e I, (17) 

we stop the iteration procedure. Then fn is the optimal stationary replacement 
policy, i.e. 

0n(j) = max {@f(j):f stationary replacement policy}, j el. (18) 

We now verify, that (17) must truly hold. 
Let us denote 0n + l(j) - 0n(j) = 0(j),je I. Again we assume the matrix Mn + l = 

= || fin+l(j,k) \\rj,k = i of the transition intensities under the policy fn+i to define 
the isolated recurrent classes It, ..., Im and the transient class F. 

First, we prove that On(j), n = 0, V 2, ... constitute a not decreasing succession. 
By (14) and by the construction of f l + 1 there is 

0n(L + , (D ) - ®„(j) ~ dj = 0, jelu+l, 

X ft,+1(/, k) 0n(k) - dj = 0, i*I,n„, (19) 
k 

where di ^ 0, j e I. 
Subtracting (19) from the corresponding equations in (10), Theorem 1, forf,+ 1 

we obtain 
0(fn+l(j)) - 0(j) + dj = 0, jelfn+1, dj ^ 0, 

X fin+l(j, k) 0(k) + dj = 0, j$Ifn + l, dj .> 0. (20) 
k 

Let Mn+l = || Jin + i(j\ k) | |}> f c = 1 denote the (quasistochastic) matrix of the system 
in (20) with respect to the variables 0(1), ..., 0(r) and x' = (xt, ..., xr) the stationary 
distribution, which is the solution of the system 

x'Mn+l = 0 . 

On multiplying the s-th equation in (20) by the number xs, s = 1, ..., r, and on adding 
all equations we obtain 

i djxj = 0. 
1=1 
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Since Xj = 0 for j e I\ x} =. 0 for j e I — I', this means with respect to d} ^ 0 that 

dj = 0 for j e I - / ' . 

For j el — / ' is thus the main criterion (A) maximized by the expression 

X . 0>fc) ^n(fc) = 0 or by the expression On(f„+1(j)) ~ On(j) ==. 0, if the maximal 
k 

value is one and only one, or the auxiliary criterion (B) was applied. 
In either case we may write fo r je I — I' with respect to (13) 

v(j\fn+1(j)) + wn(fn+l(j)) - wn(j) - ej = 0, jelfn + i (21) 

Q(j) + I AWiO, fc) [>0\ fc) + w,(fc) - w„(;)] - <9„0) - e, - 0, I # / / n + 1 , 
**1 

where e} §; 0. 
Subtracting for 7 mentioned (21) from the corresponding equations in (11) for fn+ x, 

we obtain for je I — / ' with the notation w'(j) = wn+l(j) — wn(j) 

w'(fn+10)) ~ W(J) + es = 0, j e / / n + % , (22) 

S /W i0> fc) [w'(fc) ~ w'0)] - # 0 ) + ^ = 0, j£ Ifn+i, 
**j 

where e, ^ 0. 
O(j) is expressed in (22) and (20) for j e I — I' as a mean reward. Since e, ^ 0, 

we have from Theorem 1 (in choosing v(j\fn+l(j)) = e} for jelfn+i; f(j\k) = 0, 
g(j) - ej for j 4 If n + l) 

6>( I )_0 , j e l - l \ 

Forje V we obtain from (20) 

- £ ft,+1(/\ fc) ©(fc) = ^ + £ /in+ -(J, fc) ©(fc), (23) 
fceL kel-f 

where for the elements fin+x(j, k) of the matrix >Vln+1 

^ + i ( J f c ) _ o forJ#fc; . n+i(fj) - - * f o r y e / / r i + 1 ; 

AWiOJ) = - . 0 ) for j$Ifn + i9 0 < /i(j) < 00. 

Let d'(j) denote the right side of (23), which according to the foregoing always 
a non-negative expression is; then 

- f t , + i t t j ) ©0) - I £.+-(/, fc) ®(fc) = s1 - °> 
fee/' 
* * j 

whence 

where 

(j) - Z P„ + , ( / , fc) (/c) = d"j fc 0, je ľ, 

1' 

ďj = ďj for jej- ,, d"i = -^J) f o - * - > . • . • 

; 



On successive substituting we come to 

&()) = I ( I Pl1\(J, k) dl) + £ pi1\ lU k) &(k), j e V. 

CO 

Because of k e V the serie £ Pn
m+i(h k) converges for j e / (see [4], page 8) and thus 

m = 0 

passing to the limit for N -> oo 

oo 

&(J) = 1 lpl1\(j,k)d'^0, jet. 
m = 0 fceT 

Thus we have proved that 

o(j) = en+1(j) - en(j) ^ o, i.e. eju) g on+l(j), j e i. 

We conclude from the finiteness of the set of the stationary replacement policies 
that there exists a q such that 

®n + i()) = ®u(j) ^ r jel,n = q,q+l, ... (24) 

If (24) holds, then from (23) d} = 0 forje V and by an analogous consideration as 
above it can be proved, that the system (22) for j e V holds as well. 

Under the validity of (24) i.e. from (22) with some modification 

w'(j) = e'(j) + £ pn+i(j, k) w'(k), j e I, (25) 
k 

e'(j) = ef, for jelfn+1, e'(j) = ~Lj for j$Ifn+r 

Analogous to the proof of dj = 0 for jel - V in (20) we can verify that (25) 
yields 

e'(j) = 0 f o r j e / - F. 
Then 

w'Q) = I Pn+x(h k)w'(k), jeIiJ = 1, ..., m, 
keh 

hence w'(j) = constant for j e /,. Since in every isolated recurrent class there exists 
one state k for which wn+l(k) = wn(k) was chosen, it turns out that 

w'O") = %+ i0) ~ *,(/) = 0, j e I - F. (26) 

From (25) and (26) we can write for j e V 

w'O) = e'(J) + £ P*+t(J> k) w'(k) 
keV 

and proceeding similarly as in deriving ©(f) ^ 0, j e I', we come to the conclusion 
that w'(j) ^ Q,jel', that is for alljel,n = q,q+l9... 

w'U) = wn+iU)- *„(/)§. o, 
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hence 
w«0*) S Wn+iU), jel,n== q,q + 1, ... (27) 

Let us remark that the equality in (27) holds for ally whenever the stationary policies 
fn and f ,+ 1 are equal to each other. A finite number of the stationary replacement 
policies leads to a conclusion that n ^ q can be found so that (17) holds. 

We have now to prove that in stopping the common iteration procedure we obtain 
the optimal stationary policy. We apply a similar consideration to that used in 
proving that 0n(j), n = 0, 1, 2, ... form a non-decreasing succession. 

Let (17) hold, we want to prove (18). Let f be an arbitrary stationary policy, M = 
= || fi(i,j) ||',/-= i the matrix of transition intensities determined by the policy f, 
I{, ..., /,„ the recurrent classes with respect to the matrix M, and / ' the transient class. 

By (17) and by the construction off. + 1 the maximum in (A) is reached either 
by the expression 

ejUn+iU)) - 0*0) = o.+iC/i+iO)) - en+1(j) = o, jeifn+i, 

or by the expression 

X iKJ, k) 0n(k) = X fi(j, k) 0n+ ,(k) = 0, j$Ifn+l, 
k k 

fromwhere for j e I 

0n(k) - 0n(j) + dJk = 0, where k e D}, djk ^ 0, 

I l*j, k) Gn(k) + dj = 0, where d} ^ 0. (28) 
k 

Subtracting (10) from (28) for k = f(j) we come to 

e>n(f(j)) - B(f(J)) + 0(j) - 0„(j) + djfU) = 0, jelf, 

I HU, k) [0„(k) - 0(k)} + dj = 0, H lr (29) 
k 

Let us introduce for simplification 0n(k) - 0(k) = S(k), djfU) = dj9 jelf. Then 

(29) has the form 
0(f(j))~ 0(j) + dj = O, jelf, 

ZKJ,k)0(k) + dj = O, it Ir (30) 
k 

a) In the same manner as we have deduced from (20) that dj = 0 for j e I - / 
we obtain from (30) 

dj, = 0 for y e / - F . 
We can see from (28) that the criterion (A) reaches its maximum forj 6 / — / ' either 
by the expression 0n(f(j)) - 0n(j) = 0 or by the expression £ /i(f k) <9n(k) = 0. 

It means for jel — / ' . 
1. if the maximum was reached by only one expression, it was either j $ If and at the 

same time j$Ifn + l or j e If and at the same timefe / / „+ . , / ( / ) = fn + \(f)\ 
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2. or the policy frt+1 was obtained in the states je I - V by the maximalization 
of the criterion (B). 

Thus it holds for j e I - V 

vtt k) + wn(k) - wn(j) + ejk = 0, k 6 Dj, ejk £ 0, (31) 

Q(j) + E MI, k) [r(f fc) + w„(k) - wXO] - ©»(/) + ej = 0, es^ 0. 

Subtracting from (31) the corresponding equations from (11) (in the first row we 
choose k = f(j) e Dj), we obtain with the notation 

wn(k) ~ w(k) = w'(k), ejfU) = ej, jelf, 
On(k) - 0(k) = &(k), 

the following equations 

w'(f(j)) ~ w'(I) + ej = 0, j e If, ej ^ 0, (32) 

E Kh k) [w'(k) - w'O)] - ®(j) + ey = 0, j$If9 ej ^ 0. 

(30) and (32) analogously to (20) and (22) yield 

&(j) > 0 f o r j e I - r, 
that is 

®n(J)k®UX jel-I'. 

b) For j e I' we get from (30) 

-TJRj,k)0(k) = dj+ E Khk)0(k), 
kel' kBl-V 

where M = II fi(j\ k) ||}jfcs=1 is the matrix of the system in (30). From this we deduce 
in the same manner as from (23) 

<9(j)^0, jeV, 
i.e. 

en(j)^e(j), jer. 

The proof of relation (18) is thus complete. 
Finally I should like to express my gratitude to dr. P. Mandl, DrSc, for providing me 
with valuable expert advice and helpful criticism in writing this article. 
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Souhrn 

PRŮMĚRNÝ VÝNOS Z OBECNÉHO MARKOVOVA PROCESU 
S OBNOVAMI 

PAVLA KUNDEROVÁ 

Uvažuje se Markovův proces s obnovami popsaný v [5] s obecnou stacionární strategií obnovy. 
Za charakteristiku kvality strategie se považuje očekávaný průměrný výnos na jednotku času <9(i), 
ie I, definovaný v odstavci 2. Ve větě 1 je odvozena soustava rovnic (1 1) pro výpočet výnosů &(i) 
a ukázána jednoznačnost jejího řešení. Je zkonstruován obecný Howardův iterační postup (viz [1]) 
k nacházení optimální stacionární strategie, při níž se dosahuje optimálního výnosu. Článek navazuje 
na par. 10 práce [4], který se zabývá průměrným výnosem z řízeného Markovova řetězce. 

Резюме 

С Р Е Д Н И Й ДОХОД И З ОБЩЕГО ПРОЦЕССА МАРКОВА 
С ВОССТАНОВЛЕНИЯМИ 

ПАВЛА КУНДЕРОВА 

В работе рассмотрен процесс Маркова с восстановлениями (определённый в [5]) при ис­
пользовании общей стационарной стратегии восстановления. Характеристикой качества стра­
тегии является ожидаемый средний доход на единицу времени @(/), / е I, определённый в пар. 2. 
В теореме 1 введена система уравнений (11) для доходов $(/) и показана единственность ре­
шения этой системы. Описан итерационный метод Ховарда для нахождения оптимальной 
стационарной стратегии при которой достигается максимального дохода. Статья относится 
к пар. 10 работы [4], которая занимается средним доходом из управляемой цепи Маркова. 
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