Sbornik praci Pfirodovédecké fakulty University Palackého v
Olomouci. Matematika

Vladimir Vléek

On a certain boundary value problem for a fourth-order iterated differential equation

Sbornik pract Prirodovédecké fakulty University Palackého v Olomouci. Matematika, Vol. 20 (1981), No. 1,
117--127

Persistent URL: http://dml.cz/dmlcz/120100

Terms of use:

© Palacky University Olomouc, Faculty of Science, 1981

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
O with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz



http://dml.cz/dmlcz/120100
http://project.dml.cz

1981 — ACTA UNIVERSITATIS PALACKIANAE OLOMUCENSIS
FACULTAS RERUM NATURALIUM — TOM 69

Katedra matematické analyzy a numerické matematiky pFirodovédecké fakulty
University Palackého v Olomouci
Vedouci katedry: prof. RNDr. Miroslav Laitoch, CSc.

ON A CERTAIN BOUNDARY VALUE PROBLEM
FOR A FOURTH-ORDER ITERATED
DIFFERENTIAL EQUATION

VLADIMIR VLCEK
(Received March 30, 1980)

Consider a fourth-order linear homogeneous differential equation of the form
YY) + 10[q(1) Y'(0] + 3[3¢°(1) + ¢"(D] Y(1) = 0 M

with a function q(t) e C?(—o0, + ), q(t) > 0 on the interval I = (- 00, + ),
arising by iteration of the differential equation of the second order

y'(@) + q0) (@) = 0 @

(therefore the differential equation (1) will be also referred to as iterated equation).
As we know the basis of this equation is formed by a quadruple of functions

[u3(), (1) v(), u(t) (1), v*(1)],

where [u(t), v(t)] is the basis of (2). Thus the system of all solutions of (1) constitutes
a four-parametric space of functions of the form

Y(, Cy, -y C) = ¥, Cat* ™)) 3)
i=1

4

where C;€R, i = 1, ..., 4, are arbitrary parameters and Y C}? > 0 (trivial solution
i=1

not being considered).

Suppose the basis [u(t), v(¢)] of (2) to be oscillatory, which means that any (non-
trivial) solution y(z) of (2) on the interval I = (— o0, + o0) is oscillatory in the sense
of [2]. Thus for brevity, we also speak of an oscillatory equation instead of the
differential equation (2). It follows from the oscillatority of the basis [u(z), v()]
of (2) that any solution Y(¢) of (1) is oscillatory, i.e. equation (1) is oscillatory. We
understand under the oscillatority of any nontrivial solution y(¢) [or Y(#)] of (2)
[of (1)] a solution with infinitely many zeros both on the left and on the right from
an arbitrary point 7 € (— 00, + ).
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In what follows we mean by “a solution of the differential equation” a nontrivial
solution, only. '

The homogeneous Sturm — Liouville boundary value problem has for the general
(oscillatory) linear homogeneous differential equation of the fourth order

4
% p(0 Y40 = 0,
i=0
where pi(t)e C(— o0, + ), i =1, ..., 4, po(t) # 0, the following form
a Y(to) + by Y'(ty) + ¢ Y'(tp) + d Y"(t5) = 0,
@ Y(t) + 0, Y (1) + ¢, Y'(t)) + d,Y"(t) = 0,
aY(ty) + b3Y'(ty) + 3Y'(1,) + dyY"(1,) = 0, (SL%
arY(ts) + b Y'(t3) + ¢, Y'(t3) + dY"(t3) = 0,

where a;, by, ¢;, dieR, @} + b} + ¢ + df > 0,i =1, ...,4and where t; €
€(—co, +0),j=0,...,3, t;# t,forj#k; jk=0,..,3
Thus we obtain the simpliest four-point boundary value problem for b} + ¢? +
+ d? = 0 (which a; # 0, i = 1, ..., 4), which can be written in one and only one
way as
Y(t,) =0, Y(t,) = 0, Y(t;) = 0, Y(t3) = 0. ()4

The one-peint up to the three-point boundary value problem of the above type are
always solvable for (1). However, this assertion generally fails in case of the four-
point boundary value problem.

And yet we sill now show that (s), is always solvable for (1) if at least for one pair
of mutually distinct points ¢;€ (=00, + ), j =0, ..., 3, from the given quadruple
(t,, t1, t2, t3) the relative boundary value problem

¥y =0, ) =0, ()2

j#k,j,k=0,...,3,is solvable for (2).

For completeness, let us first go through some more special cases, where with
respect to the given quadruple of points ¢y, ..., t3, the boundary value problem
for the corresponding n-tuples, ne {2, 3, 4}, elected from the above quadiuple, is
solvable even for the differential equation (2) and all these cascs wili obviousiy be
sufficient for the solution of (s), relative to (1).

Let us recall only that in all what follows we need not keep to the ordering of
points in such a quadruple (or a-tuples considered).

SOLVABILITY OF PROBLEM (s),
Statements 1. —IV. presented at the end of this article immediately follow from
our considerations in [3] or and [4] for finding out all possible bundles of solutions

from (3) relative to the oscillatory differential equation (1), and their corresponding
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distribution of zeros (respecting the multiplicities). There is also shown that ayn
solution Y(¢) from the corresponding bundles of solutions of such an equation may
have either all triple zeros or the zeros will be alternately of multiplicity v = 2 and
v = 1. Or all zeros of such a solution are simple without exception.

First and foremost we want utilize following theorems (or definitions):

Lemma.

Let 1y € (— o0, +00) be an arbitrary firmly chosen point. Then any solution Y(r)
of (1) vanishing at the point ¢, is the form

D Y(t) = C*(t) + Cou*(t) v(t) + Cau(t) v*(t), C3 # 0, exactly if £, is a simple
zero of the solution Y(z),

2) Y(1) = C*(t) + Ca’(1) v(r), C, # 0, exactly if ¢, is a double zero of the
solution Y(¢),

3) Y(t) = Cy’(t), C; # 0, exactly if ¢, is a triple zero of the solution Y(),
where [u{t), vo(t)] is such a basis of (2) that u(z;) = 0.

Definition 1.

Letty e (— o0, +0) be an arbitrary firmly chosen point and let Y(t)be an arbitrary
solution of the oscillatory differential equation (1), vanishing at the point ¢, (we
shall use the symbol ", to denote that the point 1, is of multiplicity v = 1, 2, 3).

Then the n™ (n = 1,2, ...) zero of Y(¢) lying on the right [on the left] from the
point “ty (v = 1,2, 3) will be called the n” conjugate point from the right [from
the left] to the point *t,. We indicate this by writing #¢, [or #¢_,], where p = 1,2,3
denotes an appropriate multiplicity of this point.

Theerem 1.

Let *tg e (— 0, + ), v = 1, 2, 3, be an arbitrary firraly chosen point and let Y(f)
be such a solution of (1) where the point “¢, is its v-multiple zero.

Then it holds:

1) Any | k |-th conjugate point *t, (k = +1, +2,...) to the point 3t0 is uniquely
determined, whereby p = 3. At the same time there holds the inequality

e < 3tisy.

2) Any 2| k |-th conjugate point #f,, (k = +1, +2, ...) to the point 2t0 is uniquely
determined, whereby pu = 2 and the set of all | 2k + 1 |-th points #1544, (k = +1,
+2, ...), conjugate to the point ?¢, forms an open interval (3, 254 ,) Where u = 1
and there hold the inequalities

Tt < Moy < Pypeae

3a) If the first conjugate point ##, to the point !¢, is uniquely determined, then any
arbitrary | k |-th conjugate point “f, (k = +1, +2,...) is uniquely determined as
well, whereby g = 1. There holds the inequality

1
e < Myyy.
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b) If a set of all first conjugate doints ¢, to the point !t, forms an open interval,
where u = 2, then any arbitrary 2| k |-th point *t,, (k = +1, +2, ...), conjugate
to 'ty is uniquely determined, whereby & = 1. The set of all | 2k + 1 |-st points
‘tye+r (k= +1, £2,...) conjugate to the point !z, forms an open interval (*2,,
t,6+2), whereby ¢ = 2 and there hold the inequalities

1 2 1
far < “lakty < “lygsa-

c) If a set of all first conjugate points ##; to the point ‘¢, forms an open interval
where u = 1, then any arbitrary 3|k |-¢h conjugate point 5 (k = 1, £2,...)
to the point '#, is uniquely determined, where ¢ = 1 and the set of all | 3k + 1 |-st
conjugate points *t5,,, (k = +1, +2,...) to the point !¢, forms an open interval
(M35, t3x42), Where ¢ = 1, and the set of all | 3k + 2 |-nd conjugate points 5.,
(k = +1, +2,..) to the point 'z, forms an open interval (‘34 1, 'f3c4+3), Where
€ = 1 and there hold the inequalities

1 1 1 1
tap < “tap+1 < fap+z < l3ps3e

Definition 2.

Let the points “ty, "f, € (—o0, +00), where v, pe{l1,2,3}, k = 1, £2, ...,
be conjugate points of a solution Y,(¢) relative to (1).

We say that the point “¢, is a strongly conjugate point to the point “t, exactiy if
all solutions Y(z) relative to (1) vanishing v-times at the point ##,, are vanishing at
the point #¢, as well.

Any conjugate point to the point “¢,, being not a strongly conjugate point to *#,
will be called a weakly conjugate point to “¢,.

Remark. It holds by the above definition: The point ¢, € (— o0, + ), k =
= +1, +2, ..., is a weakly conjugate point to *y € (— 00, + 00), where v € {1, 2, 3},
exactly if among all solutions Y(¢) relative to (1) vanishing v-times at “#, there exist
at least two solutions such that one of these vanishes at ¢;*, while the other does not.

‘Theorem 2.

Let*t,, *t, € (= o0, +0), where v, pe {1, 2,3}, k = +1, +2, ..., be two conjugate
points of the solution Y(¢) relative to (1).

Then the point ##, is a strongly conjugate point to *t, exactly if

1) eitherv=p=3k= %1, +2, ...,

2Q)orv=pu=2andk =2mm= +1, +£2, ...,

3orv=p=1and

a) k=3m, m= +1, +2, ..., if there exist simple weakly conjugate points to
the points *t,, P,

b) k =2m, m = +1, £2, ..., if there exist double weakly conjugate points to
the points *t,, #1;,

k=mm~ +1, £2, ..., if there does not exist weakly conjugate points to
the points “t,, #fy
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Theorem 3.

Let t*, “t*¥* e (—o0, +00), where v = 1, 2, 3, be two arbitrary neighbouring
strongly conjugate points of the solution Y(¢) relative to (1).

Then there may between “t*, *r** lie at most two weakly conjugate points of the
solution ¥(t), i.e. either none or exactly one or exactly two:

1) if v = 3, then there lies no weakly conjugate point of the solution Y(f)
between 3%, 3p%*

2) if v = 2, then there alwayslies exactly one and namely a simple weakly conjugate
point of the solution Y(¢) between 2¢*, 2¢%*,

3) if v = 1, then there lies either no weakly conjugate point between t*, 1r*%,
or there lies exactly one and namely double weakly conjugate point, or there lie
exactly two distinct points and namely simple weakly conjugate points of the solu-
tion Y(2).

A fuller account of the distribution of all weakly conjugate points of an arbitrary
solution Y{(¢) (together with the corresponding bundle of such solutions) relative
to (1) vanishing either at simple or at double points "t e (—o0, +0), v = 1,2, is
given by the following

Theorem 4.

Letk =0, +1, +2,...

1) Let Y(¢) be a solution relative to (1) vanishing at double strongly conjugate
points. Then we can write for an arbitrary simple weakly conjugate point at which
this solution vanishes

1 2, 2
far1 € Clags “tare2)s

where ?t,;, 2t,;4, are two neighbouring mutually strongly conjugate points of this
solution. '
2) Let Y(r) be a solution relative to (1) vanishing at simple strongly conjugate
points. Then
a) it holds for an arbitrary double weakly conjugate point at which this solution
vanishes that

2 1 1
tar1 € Claks "tarsa)s

where 15, '3+, are two neighbouring mutually strongly conjugate points of this
solution,

b) it holds for a simple weakly conjugate point at which this solution vanishes
either
Usie1 € (taes 3a2) © (taes Mages)
or

1 1 1, 1
tsirz € (Makans taas) © (Mags agea),

where 'f31, 13045 are two neighbouring mutually strongly conjugate points of this
solution.
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The general survey of zeros of the three-parametric bundle Y(¢, C,, C,, C3) of
solutions relative to (1) arising from the analysis of its algebraic structure is given by

Theorem 5.
Let to e (— o0, +00) be an arbitrary firmly chosen point. Consider the bundle

Y(t, Cy, Cy, C3) = u(t) [CuP(t) + Cou(t) v(t) + C3v*(1)], (S3)

C;eR,i=1,2,3, Cy # 0, of all solutions relative to (1), where [u(t), v(t)] is a basis
of the oscillatory differential equation (2) satisfying the condition

u(ty) = 0, V'(ty) =0 (P)

at the point ¢, [so that u/'(z) # 0, v(t,) # 0 and thus the point ¢, is a simple zero of
the function u(t)]. Let T, denote the neighbouring zero of the function u(t) lying
on the right from #, [so that ¢,, T; are neighbouring strongly conjugate points of
an arbitrary solution Y(¢) relative to (1) from the bundle (S;)].

Then

1) the sub-bundle of all solutions relative to (1) (up to an arbitrary nonzero
multiplicative constant) exactly of the form

Y(1, Cy, Cy) = u(t) yi(t, Cy, C3), (S31)

where y,(t, C{, C;) = C{u(t) + C,o(t), CieR, i=1,2,C, #0 stands for the
double-parametric system of all solutions relative to (2) on the interval (— oo, + c0)
linearly independent of the function u(z) corresponds to the condition

C3—-4C,C,=0.

Any solution from this system has in interval (¢,, T;) exactly one zero, which is the
double weakly point of the sub-bundle (S;;) of the solutions relative to (1),

2) the sub-bundle of all solutions relative to (1) (up to an arbitrary nonzero multi-
plicative constant) exactly of the form

Y(t7 Cll 3 C(29 Cllr s C;) = u(t) yl(t, Crl ’ C’Z) J’2(t, C’I,a Cg)a (S32)

where y,(t, C{, C;) = Cju(t) + Cyu(t), y,(t, C{, C3) = Ciu(t) + Cyu(¢), C{, C! €R,
i=1,2,C/(C; #0,C/C; — C;C{ # 0, stand for two double-parametric systems of
all solutions relative to (2) such that any two functions from the three functions u(t),
»1(2), y,(¢) are on the interval (— oo, + o0) linearly independent corresponds to the
condition :

C} —4C,C; > 0.

Each of the two solutions y,(?), y,(t) [from the systems y,(t, C, C3), y,(t, C{, C;
respectively, in an arbitrary choice of the constants C;, C/ €R, i = 1, 2, satisfying
the given conditions] has exactly in the interval (¢y, T;) one zero, each of which is
a simple weakly conjugate point of the sub-bundle (S32) of the solutions relative
to (1),
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3) the sub-bundle of all solutions relative to (1) (up to an arbitrary nonzero multi-
plicative constant) exactly of the form
Y(t, C1, C3, C1, C3) = u(t) y*(t, Cy, C3, Cy, C3), (S33)
where the four-parametric system of functions y*(t, C{, C,, Cy, C3) stands for
the sum of squares of the two linearly independent double-parametric systems of
selutions y,(t, C{, C;) = C{u(t) + Cyu(t), y,(t, C{, C3) = Clu(t) + Ciu(t), C}, C{'e
eR,i=1,2, C{C; — C{C; # 0 (so that C}*> + C;? > 0, i = 1, 2), relative to (2)
having no zero on the interval (— oo, + 00) corresponds to the condition

C3 - 4C,C, <.

In such a case the sub-bundle (S;3) of the solutions relative to (1), whose single and
namely simple strongly conjugate points are the zeros of the function u(¢) has no
weakly conjugate points.

STATEMENTS ON SOLVABILITY OF THE PROBLEM (s,)

Statement 1.
Let there be a solution yy(¢) of the differential equation (2) for which

Yolto) = yo(t)) = yo(t) = yolt) = 0
holds [so that the four-point problem (s,) is solvable even for (2)].

Then the problem (s,) is solvable for (1) by means of any arbitrary function Y(¢)
of the form

1) Y,(t) = y3(t), whose all zeros ¢,, ..., t; are always triple,

2) Y,(t) = y3(t) y1(¢), where y,(¢) is an arbitrary solution of (2) linearly indepen-
dent of the solution yo(¢) on the interval (— oo, + o) [hereafterin short: y;(£) N yo(£)].
All points ¢, ..., t3 are here double zeros of the solution Y,() and (according to
the Sturm’s theorem) they are separating themselves with the simple zeros of the
function y,(t).

3) Y5(t) = po(t) ¥1(t) y,(¢), where y(t), i =1, 2, are two arbitrary mutually
linearly independent solutions of (2), each of them being a linearly independent
of the function yy(f) on the interval (—co, +), i.e. yo(t) N y(#), yo(t) N y,(1),
y1(t) N y,(2), so that all points #,, ..., t; are simple zeros of the solution Y,(f).
Between any arbitrary two of these there always lies at least per one zero of each
from both functions y;(t), i = 1, 2, being also mutually separating,

b) Y5(t) = yo(t) ¥3(¢) is an arbitrary solution of (2), linearly independent of the
solution yo(t) on the interval (—oo, +0) [i.e. y,(t) N yo(2)]; all points t,,..., 7y
are simple zeros of the solution Y;(¢) and (according to the Sturm’s theorem) they
are mutually separating with the zeros of the function y,(t), which are the double
zeros of the solution Y;(#) relative to (1). Let us observe that the case 3) b) is dual
to the case 2).
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€) Ys(t) = po(t) [¥3(t) + y3(1)], where y,(t), i = 1,2, are two arbitrary mutually
independent solutions of (2) [i.e. y,(f) N y,(t)], so that all points tys ..., I3 are simple
zeros of the solution Y;3(f). All zeros of the solution Y;(¢) relative to (1) coincide
exactly with all—simple—zeros of the solution y,(¢) relative to (2) since for all
t € (— o0, + o) there holds

yi + yi(0 > 0.

Statement II.
Let there be a solution y(f) relative to (2) for which

Yolto) = Yolt) = yolty) = 0, Yo(t3) #0

holds [so that there certainly exists the solution y,(¢) relative to (2)—and even a whole
bundle of such solutions mutually distinct by a multiplicative nonzero constant—
such that there holds: y,(t) N yo(¢) on (— o0, +o0) with y,(¢3) = 0].

Then the problem (s,) is solvable for the differential equation (1) by means of an
arbitrary function Y(¢) of the form

1) Y,(8) = yi(t) y,(t), for which all three points #,, t,, t, are double zeros, while
the point t; is its simple zero. All zeros of both functions yy(t), y,(t) are mutually
separating on (— o0, + £) [so that there always lies at least one simple zero of the
function y(¢) between the double zeros as ty, t; as t;, t,].

2) a) Y,(t) = yo(t) y:(t) y,(t), where y,(¢) is a further arbitrary solution of (2),
in which besides yo(t) N y,(¢) also y,(t) N y,(z) and y,(t) N y,(¢) holds. All points
to, t1, 1y, I3 are simple zeros of the solution Y,(¢). All zeros of the functions yy(f),
y1(t), y,(t) are mutually separating on the interval (— o0, +00), so that between
arbitrary two neighbouring zeros of each of these there always lies exactly one zero
of the remaining two functions. Hence, there always lies at least per one zero of each
from both functions y,(¢) and y,(¢) as between the points ¢, #, as between #y, t;.

b) Y,(t) = yo(t) yi(t), for which all three points t,, t,, f, are simple zeros and the
point 7, is its double zero [so that the case 2) b) is dual to the case 1)]. All zeros of
both functions y(t), y,(t) are mutually separating on (— oo, + 00). Thus there always
lies at least one double zero of the solution Y,(¢) relative to (1) between the simple
zeros as t,, t, as ty, t,. Likewise, there lies at least one simple zero between two
arbitrary double zeros of the solution Y,(¢).

Statement III.
Let there be a solution y,(t) relative to (2) for whlch

J’o(tO) =0, yot;) =0, polt) 0,

i=2, 3, holds and a solution y,(¢) relative to (2), y,(f) N Yo(t) on (=00, +a)

such that
Yi(t) =0, y1(t3) =0

i=0,1)-
(s that y;(t) # 0,7 =0 )
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Then the problem (s,) is solvable for (1) by an arbitrary function Y(f) as the solu-
tion of (1) of the form

1) Y1(t) = 3(t) y,(t), for which both points ty, t; are double zeros, while both
points 1, t; are its neighbouring simple zeros. As all zeros of both functions y,(?),
»1(#) are mutually separating on (— o0, +o0), there always lies at least one simple
zero of the function y,(¢) between the double zeros t,, #;. At the same time there
lies always one double zero of the solution Y,(¢) relative to (1) between the simple
Ze108 15, 15,

2) a) Y,(t) = yo(t) ¥1(t) yo(t), where p,(¢) is a further arbitrary solution relative
to (2) in which besides yo(t) N p,(¢) also yo(t) N y,(t) and p,(¢) N y,(¢) holds. All
four points ¢y, ¢4, t,, t; are simple zeros of the solution Y,(¢) relative to (1). All zeros
of the functions yy(t), y,(¢), y,(t) are mutually separating on (— 0, + o), so that
there always lies at least one zero as of the function y(¢) as of y,(#) between the
points t,, t;. Likewise, there always lies at least one zero as of the function y(t)
as of y,(¢) between the points ¢,, 75,

b) Y,(t) = yo(t) ¥i(t), for which both points t,, ¢; are simple zeros, while both
points f,, t; are its double zeros [both cases 1) and 2) b) are mutually dual again].
It follows from the mutual separation of all zeros of yo(f), y,(¢) on (— 0, + o) that
there always lies at least one double [or simple] zero between an arbitrary two simple
[or double] zeros of the solution Y,(z) relative to (1).

Statement IV.
Let there be a solution y,(¢) relative to (2) for which

Yolto) = 0, yo(t) = 0, yo(ts) # 0,

i =2, 3, holds and a solution y(¢t) relative to (2), y;(t) N y,(t) on (— o0, + )
such that
»i(t2) =0, yi(t3) #0

[so that also y,(t;) # 0, j =0, 1].
Then there certainly exists a solution y,(t) relative to (2) such that y,(t) N yy(t)
and at the same time y,(t) N y,(t) on (— 0, + o) for which

y,(t;) =0  [and of course y,(#) # 0,k = 0, 1, 2].

In the above case is the problem (s,) relative to (1) solvable by the function (up to
an arbitrary non-zero multiplicative constant) exactly of the form

Y(t) = yo(t) y1(t) y,(2),

so that all four points ¢y, ¢, t,, t5 are its simple zeros. It follows from the fact that
all zeros of the three functions yo(t), 1(t), »,(¢) [being in pairs linear independent
solutions of (2)] are mutually separating on (— o0, + o) that there lies at least one
zero of each from both functions y,(t), y,(¢) between the points #,, ;. At the same
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time there lies at least one zero of the function y,(¢) [or y,(¢), or yo(t)] between the
points t,, t; [or ¢4, t5, Or ¢, t3].

Remark. In case that each of the points of the quadruple ¢, ¢,,1¢,,t;€
(=00, +), t; #t;,i,j =0, ..., 3, is a zero always of one out of the four in pairs
mutually linearly independent solutions y(t), i = 0, ..., 3, on (— o0, + c0) relative
to (2), i.e. if y(O)Ny;(t), i #J, i, j=0,..., 3, the problem (s,) relative to (1) is
unsolvable.
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SOUHRN

POZNAMKA K JEDNE OKRAJOVE ULOZE
PRO ITEROVANOU DIFERENCIALNI ROVNICI
4. RADU]

VLADIMIR VLZEK

Préce se tyka feSeni homogenniho &tyfbodového okrajového problému Sturm-—
Liouvilleova typu pro iterovanou obycejnou linedrni diferencialni rovnici 4. fadu.

Ve &tyfech tvrzenich jsou ukadzany vSechny mozZné tvary svazki feSeni, které se
(s ohledem na nédsobnosti) anuluji v dané &tvefici bodt za pfedpokladu, Ze se v téchto
bodech anuluji pfislu§na linearné nezdvisla feSeni obyéejné lin. homogenni diferen-
cialni rovnice 2. ¥adu, z niZ uvaZovana rovnice vznikla iteraci.



PE3IOME

3AMEUAHUE Ob OOJHON KPAEBOU 3AZTAUE
A1 UTEPUPOBAHHOTIO JUOPDPEPEHIIMAJIBHOI'O
YPABHEHMWA 4-ro IOPA KA

BIIAIMMUP BIIYEK

Pabora 3aHMMaeTCs pellieHUeM OJHOPONHOM UeTHIPEXTOYEUHOM KpaeBoH 3ajaun
Tuna Typma-JIuyBUWIIs O30 UTEPHPOBAHHOTO OOBIKHOBEHHOTO JuMHeHHOro mud-
¢epeHumanbHOro ypaBHeHus 4-ro nopsaxa.

B ueTwhIpex yTBEpXKICHUSIX NMOKa3aHbl BCEBO3MOXHBIC NYYKU pELUCHWH, KOTOpbIE
(B3MJIAOM K HaCOOGHOCTBSIM) aHHYJIMPYIOTCS B 3aJaHHOM 4YeTBEpKE TOYEK TOJBKO
B TOM TIPEHNOJIONEHUH, YTO B 3TUX TOYKAX AHHYJIUPYIOTCA HalJiexallue JMHEHHO
He3aBHCHMBbIE peLleHus OOBIKHOBEHHOTO JIMHEeHHOTo Au(depeHuHaIbHOro ypaBHEeHHS
2-ro nopsgaxa, ¥3 KOTOPOro BBILIC IPUBE/IEHHOE YPaBHEHUE BO3HUKJIO IIOCITE HTE-
pauun.
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